Skip to main content

Organic Matter Degradation and Preservation

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Organic matter degradation is the disintegration of mainly photosynthetically produced organic matter by microorganisms. It proceeds via multiple enzymatic reactions involving different microorganisms and oxidants as well as a number of intermediate compounds. Depending on the degradation pathway, organic matter is directly oxidized to carbon dioxide, partly oxidized to intermediate compounds or reduced to methane. In the simplest of terms, preservation can be simply defined as the incompleteness of degradation.

Global Importance

Life depends on the continuous recycling of bioactive elements. The resulting global biogeochemical cycles are intimately connected through the biological process of photosynthesis, which fixes energy in carbon bonds and respiration, which breaks the organic bonds and thereby releases energy. On long time scales, organic matter, OM, production generally exceeds respiration and a small fraction of the photosynthetically produced organic carbon...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arndt S, Jørgensen BB, LaRowe DE, Middelburg JJ, Regnier P (2013) Quantification of organic matter degradation in marine sediments: a synthesis and model review. Earth Sci Rev 123:53–86

    Article  Google Scholar 

  • Arnosti C, Jørgensen BB, Sageman J, Thamdrup B (1998) Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction. Mar Ecol Prog Ser 165:59–70

    Article  Google Scholar 

  • Bauer JE, Cai W-J, Raymond PA, Bianchi TS, Hokinson CS, Regnier PAG (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70

    Article  Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci U S A 108:19473–19481

    Article  Google Scholar 

  • Blair NE, Aller RC (2012) The fate of terrestrial organic carbon in the marine environment. Ann Rev Mar Sci 4:401–423

    Article  Google Scholar 

  • Burd AB, Frey S, Cabre A, Ito T, Levine NM, Lønborg C, Long M, Mauritz M et al (2016) Terrestrial and marine perspectives on modeling organic matter degradation pathways. Glob Chang Biol 22:121–136

    Article  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  Google Scholar 

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 23–62

    Chapter  Google Scholar 

  • Decad GM, Nikaido H (1976) Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J Bacteriol 128:325–336

    Google Scholar 

  • Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob Biogeochem Cycles 21:1–16

    Article  Google Scholar 

  • Eglinton TI, Repeta DJ (2004) Organic matter in the contemporary ocean. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, pp 145–180

    Google Scholar 

  • Emerson S, Fisher K, Reimers C, Heggie D (1985) Organic carbon dynamics and preservation in deep-sea sediments. Deep Sea Res 32:1–21

    Article  Google Scholar 

  • Finke N, Jørgensen BB (2008) Response of fermentation and sulfate reduction to experimental temperature changes in temperate and Arctic marine sediments. ISME J 2:815–829

    Article  Google Scholar 

  • Hansell DA, Carlson CA (2015) Biogeochemistry of marine dissolved organic matter, 2nd edn. Academic, San Diego

    Google Scholar 

  • Hedges JJ, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  Google Scholar 

  • Honjo S, Manganini S, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76:217–285

    Article  Google Scholar 

  • Jin Q, Bethke CM (2003) A new rate law describing microbial respiration. Appl Environ Microbiol 69:2340–2348

    Article  Google Scholar 

  • Jørgensen BB (2006) Bacteria and marine biogeochemistry. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin, pp 169–206

    Chapter  Google Scholar 

  • Jørgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  Google Scholar 

  • Jørgensen BB, Marshall IPG (2016) Slow microbial life in the seabed. Ann Rev Mar Sci 8:311–332

    Article  Google Scholar 

  • LaRowe D, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta 75:2030–2042

    Article  Google Scholar 

  • LaRowe DE, Dale AW, Amend JP, Van Cappellen P (2012) Thermodynamic limitations on microbially catalyzed reaction rates. Geochim Cosmochim Acta 90:96–109

    Article  Google Scholar 

  • Lever MA, Rogers K, Lloyd KG, Overmann J, Schink B, Thauer R, Hoehler TM, Jørgensen BB (2015) Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev 39:688–728

    Article  Google Scholar 

  • Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ (2012) Endospore abundance, microbial growth and necromass turnover in deep subseafloor sediments. Nature 484:101–104. Lomstein

    Article  Google Scholar 

  • Mayer LM (1994) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284

    Article  Google Scholar 

  • Mayer LM (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis – a comment. Mar Chem 49:123–126

    Article  Google Scholar 

  • Middelburg JJ (1989) A simple rate model for organic-matter decomposition in marine-sediments. Geochim Cosmochim Acta 53:1577–1581

    Article  Google Scholar 

  • Middelburg JJ (2011) Chemoautotrophy in the ocean. Geophys Res Lett. https://doi.org/10.1029/2011GL049725

  • Middelburg JJ (2017) Reviews and synthesis: to the bottom of carbon processing at the seafloor. Biogeosci Discuss. https://doi.org/10.5194/bg-2017-362

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. https://doi.org/10.1128/MMBR.00051-12

    Article  Google Scholar 

  • Nielsen LP, Risgaard-Petersen N, Fossing H (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074

    Article  Google Scholar 

  • Regnier PAG et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Article  Google Scholar 

  • Robador A, Brüchert V, Steen AW, Arnosti C (2010) Temperature induced decoupling of enzymatic hydrolysis and carbon remineralization in long-term incubations of Arctic and temperate sediments. Geochim Cosmochim Acta 74:2316–2326

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103–3106

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Heidelberg

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Arndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Arndt, S., LaRowe, D.E. (2018). Organic Matter Degradation and Preservation. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_184-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics