Skip to main content

Programmed Temperature Pyrolysis

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 255 Accesses

Modified version from ā€œProgrammed Temperature Pyrolysisā€ published in Peters KE and Rodriguez LB (2017)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen TL, Fraser TA, Osadetz KG (2008) Rock-Eval/TOC data for 18 wells, Peel Plateau and Plain, Yukon Territory (65o 50ā€² to 67o 00ā€² N; 133o 45ā€² to 135o 15ā€² W). Yukon Geological Survey, Open File 2008ā€“1, 14 p. plus spreadsheet(s). www.geology.gov.yk.ca/pdf/ of2008_1(2).xls

  • Barth T, Smith BJ, Nielsen SB (1996) Do kinetic parameters from open pyrolysis describe petroleum generation by simulated maturation? Bull Can Petrol Geol 44:446ā€“457

    Google ScholarĀ 

  • Behar F, Kressman S, Rudkiewicz JL, Vandenbroucke M (1992) Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking. Org Geochem 19:173ā€“189. https://doi.org/10.1016/ 0146-6380(92)90035-V

    ArticleĀ  Google ScholarĀ 

  • Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuel 1:153ā€“161. https://doi.org/10.1021/ef00002a003

    ArticleĀ  Google ScholarĀ 

  • Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuel 13:1ā€“22. https://doi.org/10.1021/ef9800765

    ArticleĀ  Google ScholarĀ 

  • Dahl B, Yukler MA (1991) The role of petroleum geochemistry in basin modelling of the Oseberg Area, North Sea. In: Merrill RK (ed) AAPG treatise of petroleum geology handbook. Source and migration processes and evaluation techniques. Am Assoc Petrol Geol, Tulsa, pp 65ā€“85

    Google ScholarĀ 

  • Dahl B, Bojesen-Koefoed J, Holm A, Justwan H, Rasmussen E, Thomsen E (2004) A new approach to interpreting Rock-Eval S2 and TOC data from kerogen quality assessment. Org Geochem 35:1461ā€“1477

    ArticleĀ  Google ScholarĀ 

  • Demaison G (1984) The generative basin concept. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. Am Assoc Petrol Geol Mem 35. American Association of Petroleum Geologists, Tulsa, pp 1ā€“14

    Google ScholarĀ 

  • Dembicki H (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals. Am Assoc Petrol Geol 93:341ā€“356

    Google ScholarĀ 

  • Dieckmann V (2005) Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Mar Pet Geol 22:375ā€“390. https://doi.org/10.1016/j.marpetgeo.2004.11.002

    ArticleĀ  Google ScholarĀ 

  • EspitaliĆ© J, Madec M, Tissot B, Menning, JJ, Leplat P (1977) Source rock characterization methods for petroleum exploration. Proceedings of the 1977 offshore technology conference, Houston, TX, vol 3, pp 439ā€“444

    Google ScholarĀ 

  • Espitalie J, Madec M, Tissot B (1980) Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. Am Assoc Petrol Geol Bull 4:59ā€“66

    Google ScholarĀ 

  • EspitaliĆ© J, Ungerer P, Irwin I, Marquis F (1988) Primary cracking of kerogens. Experimenting and modeling C1, C2-C5, C6-C15 and C15+classes of hydrocarbons formed. Org Geochem 13:893ā€“899

    ArticleĀ  Google ScholarĀ 

  • Gonzalez J, Lewis R, Hemingway J, Grau J, Rylander E, Schmitt R (2013) Determination of formation organic carbon content using a new neutron-induced gamma ray spectroscopy service that directly measures carbon. SPWLA 54th annual logging symposium, 22ā€“23 June, pp 1ā€“15

    Google ScholarĀ 

  • Horsfield B, Disko U, Leistner F (1989) The micro-scale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78:361ā€“373. https://doi.org/10.1007/BF01988370

    ArticleĀ  Google ScholarĀ 

  • Issler DR, Snowdon LR (1990) Hydrocarbon generation kinetics and thermal modeling, Beaufort-Mackenzie Basin. Bull Can Petrol Geol 38:1ā€“16

    Google ScholarĀ 

  • Jarvie DM (2012a) Shale resource systems for oil and gas: part 1 ā€“ shale-gas resource systems. In: Breyer JA (eds) Shale reservoirs ā€“ giant resources for the 21st century. Am Assoc Petrol Geol Mem 97. American Association of Petroleum Geologists, Tulsa, pp 69ā€“87

    Google ScholarĀ 

  • Jarvie DM (2012b) Shale resource systems for oil and gas: part 2 ā€“ shale-oil resource systems. Am Assoc Petrol Geol Mem 97:89ā€“119

    Google ScholarĀ 

  • Jarvie DM, Claxton BL, Henk F, Breyer JT (2001) Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas. Abstract Am Assoc Petrol Geol Bull 85:A100

    Google ScholarĀ 

  • Katz BJ (1983) Limitations of Rock-Eval pyrolysis for typing organic matter. Org Geochem 4:195ā€“199

    ArticleĀ  Google ScholarĀ 

  • Kissin YV (1987) Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes. Geochim Cosmochim Acta 51:2445ā€“2457. https://doi.org/10.1016/0016-7037(87)90296-1

    ArticleĀ  Google ScholarĀ 

  • Kuhn PP, di Primio R, Hill R, Lawrence JR, Horsfield B (2012) Three-dimensional modeling study of the low-permeability petroleum system of the Bakken formation. Am Assoc Petrol Geol Bull 96:1867ā€“1897. https://doi.org/10.1306/03261211063

    Google ScholarĀ 

  • Lafargue E, EspitaliĆ© J, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and in soil contamination studies. Rev Inst Fr PĆ©trol 53:421ā€“437

    ArticleĀ  Google ScholarĀ 

  • Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees KJ (ed) Analytical pyrolysis: techniques and applications. Butterworths, London, UK, pp 212ā€“275

    Google ScholarĀ 

  • Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164ā€“168

    ArticleĀ  Google ScholarĀ 

  • Lewan MD, Ruble TE (2002) Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org Geochem 33:1457ā€“1475. https://doi.org/10.1016/S0146-6380(02)00182-1

    ArticleĀ  Google ScholarĀ 

  • Lewan MD, Winters JC, McDonald JH (1979) Generation of oil-like pyrolyzates from organic-rich shales. Science 203:897ā€“899. https://doi.org/10.1126/science.203.4383.897

    ArticleĀ  Google ScholarĀ 

  • Mullins O, Pomerantz AE, Zuo JY, Dong C (2014) Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Ann Rev Chem Biomol Eng 5:325ā€“345

    ArticleĀ  Google ScholarĀ 

  • Mullins O, Wang K, Kauerauf A, Zuo JY, Chen Y, Dong C, Elshahawi H (2015) Evaluation of coexisting reservoir fluid gradients of GOR, asphaltene and biomakers as determined by charge history and reservoir fluid dynamics. Society of Petrophysicists and Well Log Analysts (SPWLA) 56th SPWLA logging symposium, Long Beach, 18ā€“22 July, pp 1ā€“14

    Google ScholarĀ 

  • Munson TO (2006) Chapter 7: Environmental applications of pyrolysis. In: Applied pyrolysis handbook. CRC Press, Boca Raton, FL, pp 133ā€“173

    Google ScholarĀ 

  • Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation: part Iā€”oil and gas generation from kerogen. Mar Pet Geol 12:291ā€“319. https://doi.org/10.1016/0264-8172(95)98381-E

    ArticleĀ  Google ScholarĀ 

  • Peters KE (1986) Guidelines for evaluating petroleum source rocks using programmed pyrolysis. Am Assoc Petrol Geol Mem 70:318ā€“329

    Google ScholarĀ 

  • Peters KE, Cassa MR (1994) Applied source-rock geochemistry. Am Assoc Petrol Geol Mem 60:93ā€“120

    Google ScholarĀ 

  • Peters KE, Whelan JK, Hunt JM, Tarafa ME (1983) Programmed pyrolysis of organic matter from thermally altered cretaceous black shales. Am Assoc Petrol Geol Bull 67:2137ā€“2146

    Google ScholarĀ 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomaker guide, 2nd edn. Cambridge University Press, Cambridge, 1155 p

    Google ScholarĀ 

  • Peters KE, Walters CC, Mankiewicz PJ (2006) Evaluation of kinetic uncertainty in numerical models of petroleum generation. Am Assoc Petrol Geol Bull 90:1ā€“20. https://doi.org/10.1306/08090504134

    Google ScholarĀ 

  • Peters KE, Burnham AK, Walters CC (2015a) Petroleum generation kinetics: single- versus multiple heating-ramp open-system pyrolysis. Am Assoc Petrol Geol Bull 99:591ā€“616

    Google ScholarĀ 

  • Peters KE, Schenk O, Hosford Scheirer A, Wygrala B, Hantschel T (2015b, in press) Basin and petroleum system modeling of conventional and unconventional petroleum resources. In: Hsu C, Robinson P (eds) Practical advances in petroleum production and processing. Springer, New York

    Google ScholarĀ 

  • Peters KE, Burnham AK, Walters CC (2016a) Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis: reply. Am Assoc Petrol Geol Bull 100:690ā€“694

    Google ScholarĀ 

  • Peters KE, Xia X, Pomerantz D, Mullins O (2016b) Chapter 3: Geochemistry applied to evaluation of unconventional resources. In: Ma Z, Holditch S (eds) Unconventional oil and gas resources handbook. Elsevier, Waltham, pp 71ā€“126

    ChapterĀ  Google ScholarĀ 

  • Reynolds JG, Burnham AK (1995) Comparison of kinetic analysis of source rocks and kerogen concentrates. Org Geochem 23:11ā€“19. https://doi.org/10.1016/0146-6380(94)00114-G

    ArticleĀ  Google ScholarĀ 

  • Ritter U, Myhr MB, Vinge T, Aareskjold K (1995) Experimental heating and kinetic models of source rocks: comparison of different methods. Org Geochem 23:1ā€“9. https://doi.org/10.1016/0146-6380(94)00108-D

    ArticleĀ  Google ScholarĀ 

  • Schenk HJ, Horsfield B (1993) Kinetics of petroleum generation by programmed-temperature closed- versus open system pyrolysis. Geochim Cosmochim Acta 57:623ā€“630. https://doi.org/10.1016/0016- 7037(93)90373-5

    ArticleĀ  Google ScholarĀ 

  • Schenk HJ, Horsfield B (1998) Using natural maturation series to evaluate the utility of parallel reaction kinetics models: an investigation of Toarcian shales and carboniferous coals, Germany. Org Geochem 29:137ā€“154. https://doi.org/10.1016/S0146-6380(98)00139-9

    ArticleĀ  Google ScholarĀ 

  • Sephton MA (2017) Thermal extraction for organic-matter containing materials to answer questions both on earth and in space. First Break 35:113ā€“117

    Google ScholarĀ 

  • Stainforth JG (2009) Practical kinetic modeling of petroleum generation and expulsion. Mar Pet Geol 26:552ā€“572. https://doi.org/10.1016/j.marpetgeo.2009.01.006

    ArticleĀ  Google ScholarĀ 

  • Sundararaman P, Merz PH, Mann RG (1992) Determination of kerogen activation energy distribution. Energy Fuel 6:793ā€“803. https://doi.org/10.1021/ef00036a015

    ArticleĀ  Google ScholarĀ 

  • Sweeney JJ, Burnham AK, Braun RL (1987) A model of hydrocarbon generation from type I kerogen: application to Uinta Basin, Utah. Am Assoc Petrol Geol Bull 71:967ā€“985

    Google ScholarĀ 

  • Tegelaar EW, Noble RA (1994) Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org Geochem 22:543ā€“574. https://doi.org/10.1016/0146-6380(94)90125-2

    ArticleĀ  Google ScholarĀ 

  • Tissot BP, EspitaliĆ© J (1975) Lā€™evolution thermique de la matiere organique des sediments: applications dā€™une simulation mathematizue. Rev Inst Fr Petrol 30:743ā€“777

    ArticleĀ  Google ScholarĀ 

  • Ungerer P (1990) State of the art of research in kinetic modeling of oil formation and expulsion. Org Geochem 16:1ā€“25

    ArticleĀ  Google ScholarĀ 

  • Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327:52ā€“54. https://doi.org/10.1038/327052a0

    ArticleĀ  Google ScholarĀ 

  • Voorhees KJ (1984) Analytical pyrolysis: techniques and applications. Butterworths, London, UK, 486 p

    Google ScholarĀ 

  • Vyazovkin S, Wight CA (1999) Model-free and model fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340ā€“341:53ā€“68. https://doi.org/10.1016/S0040-6031(99)00253-1

    ArticleĀ  Google ScholarĀ 

  • Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolet N, Roduit B, Sbirrazzouli N, Sunol JJ (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1ā€“23. https://doi.org/10.1016/j.tca.2014.05.036

    ArticleĀ  Google ScholarĀ 

  • Waples D (2016) Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis: discussion. Am Assoc Petrol Geol Bull 100:683ā€“689

    Google ScholarĀ 

  • Waples DW, Suizu M, Kamata H (1992) The art of maturity modeling: part 2ā€“ā€“alternative models and sensitivity analysis. Am Assoc Petrol Geol Bull 76:47ā€“66

    Google ScholarĀ 

  • WĆ¼st RAJ, Nassiuchuk BR, Brezovski R, Hackley PC, Willment N (2013) Vitrinite reflectance versus pyrolysis Tmax data: assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Canada: Society of Petroleum Engineers Unconventional Resources Conference and Exhibition-Asia Pacific, 11ā€“13 November, Brisbane, SPE-167031-MS, 11 p. https://doi.org/10.2118/167031-MS

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this entry

Cite this entry

Peters, K.E., Rodriguez, L.B. (2017). Programmed Temperature Pyrolysis. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_148-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_148-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39193-9

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics