Encyclopedia of Geochemistry

Living Edition
| Editors: William M. White

Programmed Temperature Pyrolysis

  • Kenneth E. Peters
  • Leonardo Briceño Rodriguez
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-39193-9_148-1


Programmed pyrolysis is a laboratory method commonly used to characterize organic matter in sedimentary rocks; it involves heating of a rock sample at progressively higher temperatures in the absence of oxygen in order to evaluate it as a petroleum source or reservoir rock or to determine kinetic parameters that describe the thermal decomposition of the organic matter to petroleum.


This article focuses on the application of pyrolysis to petroleum resources. Pyrolysis at a programmed rate of increasing temperature is used to volatilize and crack organic matter from petroleum source-rock samples for characterization by various detectors. For example, programmed pyrolysis coupled with flame ionization and thermal conductivity detection monitors evolved hydrocarbons and other products and is suitable for screening large numbers of rock samples (Espitalié et al. 1977; Peters 1986). More detailed fingerprinting of these products can be obtained using other detectors,...

This is a preview of subscription content, log in to check access.


  1. Allen TL, Fraser TA, Osadetz KG (2008) Rock-Eval/TOC data for 18 wells, Peel Plateau and Plain, Yukon Territory (65o 50′ to 67o 00′ N; 133o 45′ to 135o 15′ W). Yukon Geological Survey, Open File 2008–1, 14 p. plus spreadsheet(s). www.geology.gov.yk.ca/pdf/ of2008_1(2).xls
  2. Barth T, Smith BJ, Nielsen SB (1996) Do kinetic parameters from open pyrolysis describe petroleum generation by simulated maturation? Bull Can Petrol Geol 44:446–457Google Scholar
  3. Behar F, Kressman S, Rudkiewicz JL, Vandenbroucke M (1992) Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking. Org Geochem 19:173–189. https://doi.org/10.1016/ 0146-6380(92)90035-VCrossRefGoogle Scholar
  4. Braun RL, Burnham AK (1987) Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuel 1:153–161.  https://doi.org/10.1021/ef00002a003 CrossRefGoogle Scholar
  5. Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuel 13:1–22.  https://doi.org/10.1021/ef9800765 CrossRefGoogle Scholar
  6. Dahl B, Yukler MA (1991) The role of petroleum geochemistry in basin modelling of the Oseberg Area, North Sea. In: Merrill RK (ed) AAPG treatise of petroleum geology handbook. Source and migration processes and evaluation techniques. Am Assoc Petrol Geol, Tulsa, pp 65–85Google Scholar
  7. Dahl B, Bojesen-Koefoed J, Holm A, Justwan H, Rasmussen E, Thomsen E (2004) A new approach to interpreting Rock-Eval S2 and TOC data from kerogen quality assessment. Org Geochem 35:1461–1477CrossRefGoogle Scholar
  8. Demaison G (1984) The generative basin concept. In: Demaison G, Murris RJ (eds) Petroleum geochemistry and basin evaluation. Am Assoc Petrol Geol Mem 35. American Association of Petroleum Geologists, Tulsa, pp 1–14Google Scholar
  9. Dembicki H (2009) Three common source rock evaluation errors made by geologists during prospect or play appraisals. Am Assoc Petrol Geol 93:341–356Google Scholar
  10. Dieckmann V (2005) Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction. Mar Pet Geol 22:375–390.  https://doi.org/10.1016/j.marpetgeo.2004.11.002 CrossRefGoogle Scholar
  11. Espitalié J, Madec M, Tissot B, Menning, JJ, Leplat P (1977) Source rock characterization methods for petroleum exploration. Proceedings of the 1977 offshore technology conference, Houston, TX, vol 3, pp 439–444Google Scholar
  12. Espitalie J, Madec M, Tissot B (1980) Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. Am Assoc Petrol Geol Bull 4:59–66Google Scholar
  13. Espitalié J, Ungerer P, Irwin I, Marquis F (1988) Primary cracking of kerogens. Experimenting and modeling C1, C2-C5, C6-C15 and C15+classes of hydrocarbons formed. Org Geochem 13:893–899CrossRefGoogle Scholar
  14. Gonzalez J, Lewis R, Hemingway J, Grau J, Rylander E, Schmitt R (2013) Determination of formation organic carbon content using a new neutron-induced gamma ray spectroscopy service that directly measures carbon. SPWLA 54th annual logging symposium, 22–23 June, pp 1–15Google Scholar
  15. Horsfield B, Disko U, Leistner F (1989) The micro-scale simulation of maturation: outline of a new technique and its potential applications. Geol Rundsch 78:361–373.  https://doi.org/10.1007/BF01988370 CrossRefGoogle Scholar
  16. Issler DR, Snowdon LR (1990) Hydrocarbon generation kinetics and thermal modeling, Beaufort-Mackenzie Basin. Bull Can Petrol Geol 38:1–16Google Scholar
  17. Jarvie DM (2012a) Shale resource systems for oil and gas: part 1 – shale-gas resource systems. In: Breyer JA (eds) Shale reservoirs – giant resources for the 21st century. Am Assoc Petrol Geol Mem 97. American Association of Petroleum Geologists, Tulsa, pp 69–87Google Scholar
  18. Jarvie DM (2012b) Shale resource systems for oil and gas: part 2 – shale-oil resource systems. Am Assoc Petrol Geol Mem 97:89–119Google Scholar
  19. Jarvie DM, Claxton BL, Henk F, Breyer JT (2001) Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas. Abstract Am Assoc Petrol Geol Bull 85:A100Google Scholar
  20. Katz BJ (1983) Limitations of Rock-Eval pyrolysis for typing organic matter. Org Geochem 4:195–199CrossRefGoogle Scholar
  21. Kissin YV (1987) Catagenesis and composition of petroleum: origin of n-alkanes and isoalkanes in petroleum crudes. Geochim Cosmochim Acta 51:2445–2457.  https://doi.org/10.1016/0016-7037(87)90296-1 CrossRefGoogle Scholar
  22. Kuhn PP, di Primio R, Hill R, Lawrence JR, Horsfield B (2012) Three-dimensional modeling study of the low-permeability petroleum system of the Bakken formation. Am Assoc Petrol Geol Bull 96:1867–1897.  https://doi.org/10.1306/03261211063 Google Scholar
  23. Lafargue E, Espitalié J, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and in soil contamination studies. Rev Inst Fr Pétrol 53:421–437CrossRefGoogle Scholar
  24. Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees KJ (ed) Analytical pyrolysis: techniques and applications. Butterworths, London, UK, pp 212–275Google Scholar
  25. Levenberg K (1944) A method for the solution of certain nonlinear problems in least squares. Q Appl Math 2:164–168CrossRefGoogle Scholar
  26. Lewan MD, Ruble TE (2002) Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org Geochem 33:1457–1475.  https://doi.org/10.1016/S0146-6380(02)00182-1 CrossRefGoogle Scholar
  27. Lewan MD, Winters JC, McDonald JH (1979) Generation of oil-like pyrolyzates from organic-rich shales. Science 203:897–899.  https://doi.org/10.1126/science.203.4383.897 CrossRefGoogle Scholar
  28. Mullins O, Pomerantz AE, Zuo JY, Dong C (2014) Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Ann Rev Chem Biomol Eng 5:325–345CrossRefGoogle Scholar
  29. Mullins O, Wang K, Kauerauf A, Zuo JY, Chen Y, Dong C, Elshahawi H (2015) Evaluation of coexisting reservoir fluid gradients of GOR, asphaltene and biomakers as determined by charge history and reservoir fluid dynamics. Society of Petrophysicists and Well Log Analysts (SPWLA) 56th SPWLA logging symposium, Long Beach, 18–22 July, pp 1–14Google Scholar
  30. Munson TO (2006) Chapter 7: Environmental applications of pyrolysis. In: Applied pyrolysis handbook. CRC Press, Boca Raton, FL, pp 133–173Google Scholar
  31. Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation: part I—oil and gas generation from kerogen. Mar Pet Geol 12:291–319.  https://doi.org/10.1016/0264-8172(95)98381-E CrossRefGoogle Scholar
  32. Peters KE (1986) Guidelines for evaluating petroleum source rocks using programmed pyrolysis. Am Assoc Petrol Geol Mem 70:318–329Google Scholar
  33. Peters KE, Cassa MR (1994) Applied source-rock geochemistry. Am Assoc Petrol Geol Mem 60:93–120Google Scholar
  34. Peters KE, Whelan JK, Hunt JM, Tarafa ME (1983) Programmed pyrolysis of organic matter from thermally altered cretaceous black shales. Am Assoc Petrol Geol Bull 67:2137–2146Google Scholar
  35. Peters KE, Walters CC, Moldowan JM (2005) The biomaker guide, 2nd edn. Cambridge University Press, Cambridge, 1155 pGoogle Scholar
  36. Peters KE, Walters CC, Mankiewicz PJ (2006) Evaluation of kinetic uncertainty in numerical models of petroleum generation. Am Assoc Petrol Geol Bull 90:1–20.  https://doi.org/10.1306/08090504134 Google Scholar
  37. Peters KE, Burnham AK, Walters CC (2015a) Petroleum generation kinetics: single- versus multiple heating-ramp open-system pyrolysis. Am Assoc Petrol Geol Bull 99:591–616Google Scholar
  38. Peters KE, Schenk O, Hosford Scheirer A, Wygrala B, Hantschel T (2015b, in press) Basin and petroleum system modeling of conventional and unconventional petroleum resources. In: Hsu C, Robinson P (eds) Practical advances in petroleum production and processing. Springer, New YorkGoogle Scholar
  39. Peters KE, Burnham AK, Walters CC (2016a) Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis: reply. Am Assoc Petrol Geol Bull 100:690–694Google Scholar
  40. Peters KE, Xia X, Pomerantz D, Mullins O (2016b) Chapter 3: Geochemistry applied to evaluation of unconventional resources. In: Ma Z, Holditch S (eds) Unconventional oil and gas resources handbook. Elsevier, Waltham, pp 71–126CrossRefGoogle Scholar
  41. Reynolds JG, Burnham AK (1995) Comparison of kinetic analysis of source rocks and kerogen concentrates. Org Geochem 23:11–19.  https://doi.org/10.1016/0146-6380(94)00114-G CrossRefGoogle Scholar
  42. Ritter U, Myhr MB, Vinge T, Aareskjold K (1995) Experimental heating and kinetic models of source rocks: comparison of different methods. Org Geochem 23:1–9.  https://doi.org/10.1016/0146-6380(94)00108-D CrossRefGoogle Scholar
  43. Schenk HJ, Horsfield B (1993) Kinetics of petroleum generation by programmed-temperature closed- versus open system pyrolysis. Geochim Cosmochim Acta 57:623–630. https://doi.org/10.1016/0016- 7037(93)90373-5CrossRefGoogle Scholar
  44. Schenk HJ, Horsfield B (1998) Using natural maturation series to evaluate the utility of parallel reaction kinetics models: an investigation of Toarcian shales and carboniferous coals, Germany. Org Geochem 29:137–154.  https://doi.org/10.1016/S0146-6380(98)00139-9 CrossRefGoogle Scholar
  45. Sephton MA (2017) Thermal extraction for organic-matter containing materials to answer questions both on earth and in space. First Break 35:113–117Google Scholar
  46. Stainforth JG (2009) Practical kinetic modeling of petroleum generation and expulsion. Mar Pet Geol 26:552–572.  https://doi.org/10.1016/j.marpetgeo.2009.01.006 CrossRefGoogle Scholar
  47. Sundararaman P, Merz PH, Mann RG (1992) Determination of kerogen activation energy distribution. Energy Fuel 6:793–803.  https://doi.org/10.1021/ef00036a015 CrossRefGoogle Scholar
  48. Sweeney JJ, Burnham AK, Braun RL (1987) A model of hydrocarbon generation from type I kerogen: application to Uinta Basin, Utah. Am Assoc Petrol Geol Bull 71:967–985Google Scholar
  49. Tegelaar EW, Noble RA (1994) Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Org Geochem 22:543–574.  https://doi.org/10.1016/0146-6380(94)90125-2 CrossRefGoogle Scholar
  50. Tissot BP, Espitalié J (1975) L’evolution thermique de la matiere organique des sediments: applications d’une simulation mathematizue. Rev Inst Fr Petrol 30:743–777CrossRefGoogle Scholar
  51. Ungerer P (1990) State of the art of research in kinetic modeling of oil formation and expulsion. Org Geochem 16:1–25CrossRefGoogle Scholar
  52. Ungerer P, Pelet R (1987) Extrapolation of the kinetics of oil and gas formation from laboratory experiments to sedimentary basins. Nature 327:52–54.  https://doi.org/10.1038/327052a0 CrossRefGoogle Scholar
  53. Voorhees KJ (1984) Analytical pyrolysis: techniques and applications. Butterworths, London, UK, 486 pGoogle Scholar
  54. Vyazovkin S, Wight CA (1999) Model-free and model fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340–341:53–68.  https://doi.org/10.1016/S0040-6031(99)00253-1 CrossRefGoogle Scholar
  55. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolet N, Roduit B, Sbirrazzouli N, Sunol JJ (2014) ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta 590:1–23.  https://doi.org/10.1016/j.tca.2014.05.036 CrossRefGoogle Scholar
  56. Waples D (2016) Petroleum generation kinetics: single versus multiple heating-ramp open-system pyrolysis: discussion. Am Assoc Petrol Geol Bull 100:683–689Google Scholar
  57. Waples DW, Suizu M, Kamata H (1992) The art of maturity modeling: part 2––alternative models and sensitivity analysis. Am Assoc Petrol Geol Bull 76:47–66Google Scholar
  58. Wüst RAJ, Nassiuchuk BR, Brezovski R, Hackley PC, Willment N (2013) Vitrinite reflectance versus pyrolysis Tmax data: assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Canada: Society of Petroleum Engineers Unconventional Resources Conference and Exhibition-Asia Pacific, 11–13 November, Brisbane, SPE-167031-MS, 11 p. https://doi.org/10.2118/167031-MS

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Kenneth E. Peters
    • 1
    • 2
  • Leonardo Briceño Rodriguez
    • 3
  1. 1.SchlumbergerMill ValleyUSA
  2. 2.Department of Geological SciencesStanford UniversityStanfordUSA
  3. 3.SchlumbergerMexico CityMexico