Skip to main content

Geothermal Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Geochemistry

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Geothermal systems form a continuum having a wide range of geologic and thermal conditions depending on: (1) their depth and temperature (geothermal gradient); (2) the amount of natural steam and/or water they contain; and (3) the permeability and porosity of the geologic formation in which fluids flow. At one extreme are convective geothermal systems where nature provides sufficiently high temperatures, fluid content, and permeability to support convective fluid transport. At the other extreme are conduction dominated systems where fluid content and permeabilities are very low and reservoirs are at greater depth due to lower geothermal gradients. Although it is challenging to specify geologic conditions for each system, high-grade hydrothermal reservoirs are often contained in highly fractured volcanic rocks at or near tectonic plate boundaries. In contrast, conduction dominated systems are frequently associated with deeper sedimentary basins or basement rock formations...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams, M., and Davis, J., 1991. Kinetics of fluorescein decay and its application as a geothermal tracer. Geothermics, 20, 53–60.

    Article  Google Scholar 

  • Armstead, C., 1983. Geothermal Energy, 2nd edn. London: E. & F. N. Spon. 357 pp.

    Google Scholar 

  • Arnórsson, S., and Gunnlaugsson, E., 1985. New gas geothermometers for geothermal exploration calibration and application. Geochimica et Cosmochimica Acta, 49, 549–1325.

    Article  Google Scholar 

  • Arnórsson, S., D’Amore, F., and Gerardo, J. (eds.), 2000. Isotopic and Chemical Techniques in Geothermal Exploration. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Arnórsson, S., Stefánsson, A., and Bjarnason, J., 2007. Fluid-fluid interactions in geothermal systems. Reviews in Mineralogy and Geochemistry, 65, 259–312.

    Article  Google Scholar 

  • Bertani, R., 2015. Geothermal power generation in the world 2010–2014 update report. In: Proceedings of the World Geothermal Congress, Melbourne, 19–25 April 2015.

    Google Scholar 

  • Blake, R., 1974. Extracting Minerals from Geothermal Brines: A Literature Study. Washington, DC: U.S. Bureau of Mines.

    Book  Google Scholar 

  • Bourcier, W., Lin, M., and Nix, G., 2005. Recovery of Minerals and Metals from Geothermal Fluids. Livermore: Lawrence Livermore National Laboratory.

    Google Scholar 

  • Burgassi, P., 1999. Historical outline of geothermal technology in the Larderello region to the middle of the 20th century. In Cataldi, R., Hodgson, S., and Lund, J. (eds.), Stories from a Heated Earth. Davis: International Geothermal Association and the Geothermal Resources Council, pp. 195–220.

    Google Scholar 

  • Cathles, L., 1977. An analysis of the cooling of intrusives by ground-water convection which includes boiling. Economic Geology, 72, 804–826.

    Article  Google Scholar 

  • D’Amore, F., and Panichi, C., 1980. Evaluation of deep temperatures in hydrothermal systems by new gas geothermometer. Geochimica et Cosmochimica Acta, 44, 549–556.

    Article  Google Scholar 

  • Fouillac, C., and Michard, G., 1981. Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics, 10, 55–70.

    Article  Google Scholar 

  • Fournier, R., 1979. A revised equation for the Na/K geothermometer. Geothermal Resources Council Transactions, 3, 221–224.

    Google Scholar 

  • Fournier, R., and Potter, R., 1982. A revised and expanded silica (quartz) geothermometer. Geothermal Resource Council Transactions, 3, 221–224.

    Google Scholar 

  • Fournier, R., and Truesdell, A., 1973. An empirical Na-K-Ca geothermometer for natural waters. Geochimica et Cosmochimica Acta, 37, 1255–1275.

    Article  Google Scholar 

  • Gallup, D., 1998. Geochemistry of geothermal fluids and well scales, and potential for mineral recovery. Ore Geology Reviews, 12, 225–236.

    Article  Google Scholar 

  • Giggenbach, W., 1988. Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52, 2749–2765.

    Article  Google Scholar 

  • Glassley, W., 2010. Geothermal Energy: Renewable Energy and the Environment. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Harper, R., and Thain, I., 1992. Towards the efficient utilization of geothermal resources. Geothermics, 21, 641–651.

    Article  Google Scholar 

  • Hartley, R., 1978. Pollution control guidance for geothermal energy development. Report no. EPA 600/7-78-101, pp 130

    Google Scholar 

  • Hawkins, A., Fox, D., Becker, M., and Tester, J., 2016. Tracking subsurface temperature rise via thermally degrading tracer tests: field testing in a heterogeneous bedrock fracture. Manuscript submitted for publication.

    Google Scholar 

  • Hayba, D., and Ingebritsen, S., 1997. Multiphase groundwater flow near cooling plutons. Journal of Geophysical Research, 102, 12235–12252.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on climate change), 2011. Geothermal energy. In Special Report on Renewable Energy Sources and Climate Change Mitigation. New York: Cambridge University Press.

    Google Scholar 

  • Johns, W., and Huang, W., 1967. Distribution of chlorine in terrestrial rocks. Geochimica et Cosmochimica Acta, 31, 35–49.

    Article  Google Scholar 

  • Kharaka, Y., and Mariner, R., 1989. Chemical geothermometers and their application to formation waters from sedimentary basins. In Naser, N., and McCollin, T. (eds.), Thermal History of Sedimentary Basins. New York: Springer, pp. 99–117.

    Chapter  Google Scholar 

  • Lund, J., and Boyd, T., 2015. Direct utilization of geothermal energy 2015 worldwide review. In: Proceedings of the World Geothermal Congress, Melbourne, 19–25 April 2015.

    Google Scholar 

  • Maimoni, A., 1982. Minerals recovery from Salton Sea geothermal brines: a literature review and proposed cementation process. Geothermics, 11, 239–258.

    Article  Google Scholar 

  • Matek, B., 2015. 2015 annual U.S. & global geothermal power production report. Geothermal Energy Association.

    Google Scholar 

  • Mock, J., Tester, J., and Wright, P., 1997. Geothermal energy from the Earth: its potential impact as environmentally sustainable resource. Annual Review of Environment and Resources, 22, 305–356.

    Article  Google Scholar 

  • Nicholson, K., 1993. Geothermal Fluids: Chemistry and Exploration Techniques. Berlin: Springer.

    Book  Google Scholar 

  • Norton, D., and Knight, J., 1977. Transport phenomena in hydrothermal systems: cooling plutons. American Journal of Science, 277, 937–981.

    Article  Google Scholar 

  • Nuti, S., Calore, C., Noto, P., 1981. Use of environmental isotopes as natural tracers in a reinjection experiment at Larderello. In: Proceedings of the 7th workshop on geothermal reservoir engineering, Stanford University, Stanford, December 1981.

    Google Scholar 

  • Rinehart, J., 1974. Geysers. Earth & Space Science News, 55, 1052–1062.

    Google Scholar 

  • Robinson, B., Tester, J., and Brown, L., 1988. Reservoir sizing using inert and chemically reactive tracers. SPE Formation Evaluation, 3, 227–234.

    Article  Google Scholar 

  • Rose, P., Benoit, W., and Kilbourn, P., 2001. The application of the polyaromatic sulfonates as tracers in geothermal reservoirs. Geothermics, 30, 617–640.

    Article  Google Scholar 

  • Stober, I., and Bucher, K., 2013. History of Geothermal Energy Use: From Theoretical Models to Exploration and Development. Berlin: Springer.

    Book  Google Scholar 

  • Tester, J., Drake, E., Driscoll, M., Golay, M., and Peters, W., 2012. Geothermal energy. In Sustainable Energy: Choosing Among Options. Cambridge: MIT Press.

    Google Scholar 

  • Vetter, O., and Crichlow, H., 1979. Suggested solutions to injection problems. In Injection, Injectivity and Injectability in Geothermal Operations: Problems and Possible Solutions. Costa Mesa/Norman: U.S. Department of Energy: Division of Geothermal Energy.

    Chapter  Google Scholar 

  • Williams, A., and McKibben, M., 1989. A brine interface in the Salton Sea Geothermal System, California: fluid geochemical and isotopic characteristics. Geochimica et Cosmochimica Acta, 53, 1905–1920.

    Article  Google Scholar 

  • Yokoyama, T., Nakai, S., and Wakita, H., 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 88, 99–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam J. Hawkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Hawkins, A.J., Tester, J.W. (2016). Geothermal Systems. In: White, W. (eds) Encyclopedia of Geochemistry. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39193-9_106-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39193-9_106-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-39193-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics