Skip to main content

Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions

  • Living reference work entry
  • First Online:
Book cover Cell Engineering and Regeneration

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

Abstract

A major challenge in tissue engineering and cell-therapy-based approaches is the production of a significant amount of functional cells. Although it does not represent a physiologic environment, most of stem cell cultivation is performed in static conditions (e.g., petri dishes). Furthermore, static expansion or differentiation of stem cells is labor-intensive and cells are often limited in number and functionality. In contrast, dynamic conditions (intentional active motion) enhance mass transfer and mechanotransductive effects which often results in higher numbers of functional cells. Specialized and partially automated bioreactor systems are widely used to transfer motion to cells and monitor important cultivation parameters. Furthermore, in dynamic differentiation processes, bioreactors directly apply mechanical forces to generate physiologic conditions and enhance differentiation towards a specific lineage. Therefore, in this chapter, we discuss the application of dynamic conditions for the expansion and differentiation of stem cells. Consequently, a comprehensive overview of commercially available bioreactors for the expansion and differentiation of stem cells is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamo L, García-Cardeña G (2011) Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal 15(5):1463–1473

    Article  Google Scholar 

  • Åkerström H (2009) Expansion of adherent cells for cell therapy, Uppsala University and GE Healthcare Department of Cell Technologies. Uppsala University, Uppsala

    Google Scholar 

  • Alimperti S, Lei P et al (2014) Serum-free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnol Prog 30:974–983

    Article  Google Scholar 

  • Amit M, Laevsky I et al (2011) Dynamic suspension culture for scalable expansion of undifferentiated human pluripotent stem cells. Nat Protoc 6(5):572–579

    Article  Google Scholar 

  • Arnsdorf EJ, Tummala P et al (2009) Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122(4):546–553

    Article  Google Scholar 

  • Bilgen B, Sucosky P et al (2006) Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol Bioeng 95:1009–1022

    Article  Google Scholar 

  • Boulpaep EL, Boron WF et al (2009) Medical physiology a cellular and molecular approach. Signal Transduct 48:27

    Google Scholar 

  • Braccini A, Wendt D et al (2005) Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23(8):1066–1072

    Article  Google Scholar 

  • Carrier RL, Rupnick M et al (2002) Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng 8:175–188

    Article  Google Scholar 

  • Chhaya MP, Melchels FPW et al (2015) Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials 52:551–560

    Article  Google Scholar 

  • Chu L, Robinson DK (2001) Industrial choices for protein production by large-scale cell culture. Curr Opin Biotechnol 12:180–187

    Article  Google Scholar 

  • Cierpka K, Elseberg CL et al (2013) HMSC production in disposable bioreactors with regards to GMP and PAT. Chem Ing Tech 85:67–75

    Article  Google Scholar 

  • Croughan MS, Hamel JF et al (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29(1):130–141

    Article  Google Scholar 

  • Delaine-Smith RM (2012) Mesenchymal stem cell responses to mechanical stimuli. Muscles Ligaments Tendons J 2(3):169–180

    Google Scholar 

  • Diederichs S, Roker S et al (2009) Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z (R) RP platform. Biotechnol Prog 25(6):1762–1771

    Google Scholar 

  • Dolley-Sonneville PJ, Romeo LE et al (2013) Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions. PLoS One 8(8):e70263

    Article  Google Scholar 

  • Dove A (2013) LIFE SCIENCE TECHNOLOGIES living large: scaling up cell culture. Science 342(6163):1259–1261

    Article  Google Scholar 

  • Doyle AM, Nerem RM et al (2009) Human mesenchymal stem cells form multicellular structures in response to applied cyclic strain. Ann Biomed Eng 37:783–793

    Article  Google Scholar 

  • Duncan R, Turner C (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57(5):344–358

    Article  Google Scholar 

  • Eghbali H, Nava MM et al (2016) Hollow fiber bioreactor configurations hollow fiber bioreactor technology for tissue engineering applications. Int J Artif Organs 39:1–15

    Article  Google Scholar 

  • Eibl R, Kaiser S et al (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49

    Article  Google Scholar 

  • Elder BD, Athanasiou KA (2009) Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng B Rev 15(1):43–53

    Article  Google Scholar 

  • Engler AJ, Sen S et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  Google Scholar 

  • Ertl P, Sticker D et al (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32(5):245–253

    Article  Google Scholar 

  • Gaut C, Sugaya K (2015) Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med 10:1–15

    Article  Google Scholar 

  • Gey GO (1933) An improved technic for massive tissue culture. Am J Cancer 17(3):752–756

    Google Scholar 

  • Glacken MW, Fleischaker RJ et al (1983) Large-scale production of mammalian cells and their products: engineering principles and barriers to scale-up. Ann N Y Acad Sci 413:355–372

    Article  Google Scholar 

  • Goodwin T, Prewett T et al (1993) Reduced shear stress: a major component in the ability of mammalian tissues to form three-dimensional assemblies in simulated microgravity. J Cell Biochem 51(3):301–311

    Article  Google Scholar 

  • Hao J, Zhang Y et al (2015) Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater 20:1–9

    Article  Google Scholar 

  • Hervy M, Weber JL et al (2014) Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 9(3):e92120

    Article  Google Scholar 

  • Hodge W, Fijan R et al (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci 83(9):2879–2883

    Article  Google Scholar 

  • Hyun I (2010) The bioethics of stem cell research and therapy. J Clin Invest 120(1):71–75

    Article  Google Scholar 

  • Irani DN (2009) Cerebrospinal fluid in clinical practice. Elsevier Health Sciences, Philadelphia

    Google Scholar 

  • Jayapal KP, Wlaschin KF et al (2007) Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog 103(10):40

    Google Scholar 

  • Jeon JE, Schrobback K et al (2012) Dynamic compression improves biosynthesis of human zonal chondrocytes from osteoarthritis patients. Osteoarthr Cartil 20:906–915

    Article  Google Scholar 

  • Johnson GA, Tramaglini DM et al (1994) Tensile and viscoelastic properties of human patellar tendon. J Orthop Res 12:796–803

    Article  Google Scholar 

  • Jossen V, Pörtner R, Kaiser SC, Kraume M, Eibl D and Eibl R (2014) Mass Production of Mesenchymal Stem Cells — Impact of Bioreactor Design and Flow Conditions on Proliferation and Differentiation, Cells and Biomaterials in Regenerative Medicine Daniel Eberli, IntechOpen, https://doi.org/10.5772/59385. Available from: https://www.intechopen.com/books/cells-and-biomaterials-in-regenerative-medicine/mass-production-of-mesenchymal-stem-cells-impact-of-bioreactor-design-and-flow-conditions-on-prolife

  • Kaiser SC, Eibl R et al (2011) Engineering characteristics of a single-use stirred bioreactor at bench-scale: the Mobius CellReady 3L bioreactor as a case study. Eng Life Sci 11:359–368

    Article  Google Scholar 

  • Kearney EM, Farrell E et al (2010) Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng 38:1767–1779

    Article  Google Scholar 

  • Kisiday JD, Frisbie DD et al (2009) Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng A 15(10):2817–2824

    Article  Google Scholar 

  • Klabunde R (2011) Cardiovascular physiology concepts. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kumar S, Wittmann C et al (2004) Minibioreactors. Biotechnol Lett 26:1–10

    Article  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36(5):476–483

    Article  Google Scholar 

  • Laurent LC, Ulitsky I et al (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118

    Article  Google Scholar 

  • Lechanteur C (2014) Large-scale clinical expansion of mesenchymal stem cells in the GMP-compliant, closed automated quantum® cell expansion system: comparison with expansion in traditional T-flasks. J Stem Cell Res Ther 04:222

    Article  Google Scholar 

  • Lee PJ, Hung PJ et al (2006) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94(1):5–14

    Article  Google Scholar 

  • Lee C-Y, Chang C-L et al (2011) Microfluidic mixing: a review. Int J Mol Sci 12(5):3263–3287

    Article  Google Scholar 

  • Li J, Wang J et al (2012) The influence of delayed compressive stress on TGF-β1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways. Biomaterials 33:8395–8405

    Article  Google Scholar 

  • Lopes AG (2015) Single-use in the biopharmaceutical industry: a review of current technology impact, challenges and limitations. Food Bioprod Process 93:98–114

    Article  Google Scholar 

  • Luciani N, Du V et al (2016) Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomater 37:101–110

    Article  Google Scholar 

  • Maul TM, Chew DW et al (2011) Mechanical stimuli differentially control stem cell behavior: morphology, proliferation, and differentiation. Biomech Model Mechanobiol 10(6):939–953

    Article  Google Scholar 

  • McMahon LA, Reid AJ et al (2008) Regulatory effects of mechanical strain on the chondrogenic differentiation of MSCs in a collagen-GAG scaffold: experimental and computational analysis. Ann Biomed Eng 36(2):185–194

    Article  Google Scholar 

  • Mohamet L, Lea ML et al (2010) Abrogation of E-cadherin-mediated cellular aggregation allows proliferation of pluripotent mouse embryonic stem cells in shake flask bioreactors. PLoS One 5(9):e12921

    Article  Google Scholar 

  • Moretti M, Prina-Mello A et al (2004) Endothelial cell alignment on cyclically-stretched silicone surfaces. J Mater Sci Mater Med 15:1159–1164

    Article  Google Scholar 

  • Morrell KC, Hodge WA et al (2005) Corroboration of in vivo cartilage pressures with implications for synovial joint tribology and osteoarthritis causation. Proc Natl Acad Sci U S A 102(41):14819–14824

    Article  Google Scholar 

  • Neumann A, Lavrentieva A et al (2014) Characterization and application of a disposable rotating bed bioreactor for mesenchymal stem cell expansion. Bioengineering 1(4):231–245

    Article  Google Scholar 

  • Nold P, Brendel C et al (2013) Good manufacturing practice-compliant animal-free expansion of human bone marrow derived mesenchymal stroma cells in a closed hollow-fiber-based bioreactor. Biochem Biophys Res Commun 430:325–330

    Article  Google Scholar 

  • Noyes FR, Grood ES (1976) The strength of the anterior cruciate ligament in humans and Rhesus monkeys. J Bone Joint Surg 58:1074–1082. American volume

    Article  Google Scholar 

  • Oh SK, Chen AK et al (2009) Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2(3):219–230

    Article  Google Scholar 

  • Pelaez D, Arita N et al (2012) Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun 417:1286–1291

    Article  Google Scholar 

  • Reinders ME, de Fijter JW et al (2013) Autologous bone marrow-derived mesenchymal stromal cells for the treatment of allograft rejection after renal transplantation: results of a phase I study. Stem Cells Transl Med 2(2):107–111

    Article  Google Scholar 

  • Reinders ME, Bank JR et al (2014) Autologous bone marrow derived mesenchymal stromal cell therapy in combination with everolimus to preserve renal structure and function in renal transplant recipients. J Transl Med 12(1):1

    Article  Google Scholar 

  • Reuveny S, Bino T et al (1979) Pilot plant scale production of human lymphoblastoid interferon. Dev Biol Stand 46:281–288

    Google Scholar 

  • Rojewski MT, Fekete N et al (2013) GMP-compliant isolation and expansion of bone marrow-derived MSCs in the closed, automated device quantum cell expansion system. Cell Transplant 22:1981–2000

    Article  Google Scholar 

  • Rui YF, Lui PPY et al (2011) Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res 29(3):390–396

    Article  Google Scholar 

  • Schechtman H, Bader DL (1997) In vitro fatigue of human tendons. J Biomech 30:829–835

    Article  Google Scholar 

  • Scherberich A, Galli R et al (2007) Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity. Stem Cells 25(7):1823–1829

    Article  Google Scholar 

  • Schnitzler AC, Verma A et al (2016) Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: current technologies and challenges. Biochem Eng J 108:3–13

    Article  Google Scholar 

  • Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30(1–3):149–158

    Article  Google Scholar 

  • Somerville RP, Devillier L et al (2012) Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor. J Transl Med 10(1):1

    Article  Google Scholar 

  • Steward AJ, Kelly DJ (2015) Mechanical regulation of mesenchymal stem cell differentiation. J Anat 227(6):717–731

    Article  Google Scholar 

  • Storm MP, Sorrell I et al (2016) Hollow fiber bioreactors for in vivo-like mammalian tissue culture. J Vis Exp 111:1–12. https://doi.org/10.3791/53431

  • Subramony SD, Dargis BR et al (2013) The guidance of stem cell differentiation by substrate alignment and mechanical stimulation. Biomaterials 34(8):1942–1953

    Article  Google Scholar 

  • Sun L, Qu L et al (2016) Effects of mechanical stretch on cell proliferation and matrix formation of mesenchymal stem cell and anterior cruciate ligament fibroblast. Stem Cells Int 2016:1–10

    Google Scholar 

  • Swartz MA, Fleury ME (2007) Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng 9:229–256

    Article  Google Scholar 

  • Timmins NE, Kiel M et al (2012) Closed system isolation and scalable expansion of human placental mesenchymal stem cells. Biotechnol Bioeng 109(7):1817–1826

    Article  Google Scholar 

  • Toh Y-C, Voldman J (2011) Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J 25(4):1208–1217

    Article  Google Scholar 

  • Tran SC, Cooley AJ et al (2011) Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 108:1421–1429

    Article  Google Scholar 

  • Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22

    Article  Google Scholar 

  • Tyler JE (1990) Microencapsulation of mammalian cells. Bioprocess Technol 10:343–361

    Google Scholar 

  • Usuludin SBM, Cao X et al (2012) Co-culture of stromal and erythroleukemia cells in a perfused hollow fiber bioreactor system as an in vitro bone marrow model for myeloid leukemia. Biotechnol Bioeng 109:1248–1258

    Article  Google Scholar 

  • Van Wezel A (1967) Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64–65

    Article  Google Scholar 

  • Vick Roy TB, Blanch HW et al (1983) Microbial hollow fiber bioreactors. Trends Biotechnol 1:135–139

    Article  Google Scholar 

  • Vournakis J, Runstadler P Jr (1990) Optimization of the microenvironment for mammalian cell culture in flexible collagen microspheres in a fluidized-bed bioreactor. Biotechnology (Reading, Mass) 17:305–326

    Google Scholar 

  • Vyawahare S, Griffiths AD et al (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17(10):1052–1065

    Article  Google Scholar 

  • Wang D, Tarbell J (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J Biomech Eng 117(3):358–363

    Article  Google Scholar 

  • Weinbaum S, Cowin S et al (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  Google Scholar 

  • Wu H-W, Lin C-C et al (2011) Stem cells in microfluidics. Biomicrofluidics 5(1):013401

    Article  Google Scholar 

  • Wung N, Acott SM et al (2014) Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnol Lett 36:2357–2366

    Article  Google Scholar 

  • Xu H, Heilshorn SC (2013) Microfluidic investigation of BDNF-enhanced neural stem cell chemotaxis in CXCL12 gradients. Small 9(4):585–595

    Article  Google Scholar 

  • Yassin MA, Leknes KN et al (2016) Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. J Biomed Mater Res A 104:2049–2059

    Article  Google Scholar 

  • You JB, Kang K et al (2015) PDMS-based turbulent microfluidic mixer. Lab Chip 15(7):1727–1735

    Article  Google Scholar 

  • Yu W, Qu H et al (2014) A microfluidic-based multi-shear device for investigating the effects of low fluid-induced stresses on osteoblasts. PLoS One 9(2):e89966

    Article  Google Scholar 

  • Zeilinger K, Schreiter T et al (2011) Scaling down of a clinical three-dimensional perfusion multicompartment hollow fiber liver bioreactor developed for extracorporeal liver support to an analytical scale device useful for hepatic pharmacological in vitro studies. Tissue Eng Part C Methods 17:549–556

    Article  Google Scholar 

  • Zhang D, Weinbaum S et al (1998) Estimates of the peak pressures in bone pore water. J Biomech Eng 120(6):697–703

    Article  Google Scholar 

  • Zhang Z-Y, Teoh SH et al (2009) A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30(14):2694–2704

    Article  Google Scholar 

  • Zhang Z-Y, Teoh SH et al (2010) A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 31(33):8684–8695

    Article  Google Scholar 

  • Zhao W, Li X et al (2014) Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C 40:316–323

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kasper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Clementi, A., Egger, D., Charwat, V., Kasper, C. (2018). Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics