Skip to main content

microRNA Modulation

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Abstract

microRNAs are small and evolutionary conserved RNA molecules that vastly fine-tune protein expression at a posttranscriptional level. microRNA modulation has recently surfaced as powerhouse feeding the progress of novel strategies for tissue and cell engineering and regeneration. The field is growing exponentially each year and approaching clinical applications, with considerable progress in identifying biomarkers for personalized medical needs and also harnessing the therapeutic potential of these molecules to finely enhance tissue repair. This chapter aims to support beginner and expert researchers alike to delve into this emerging dynamic field. Within this chapter, we provide an overview of the biology and function of microRNAs and how they are being addressed within the tissue engineering and regenerative medicine (TERM) arena in terms of resources, applications, and development projection. Specific attention is given to the advances in the development of specialized delivery systems for microRNAs, which largely involves the application of biomaterial scaffolds, and to finalize, we review the proven therapeutic potential of microRNAs to date within the TERM space. Overall, this chapter underlines the exciting potential of microRNA modulation for cell engineering and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • (Agency), E.E.M (2016a) Strimvelis autologous CD34+ enriched cell fraction that contains CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence. EMA/CHMP/249031/2016: European Medicines Agency

    Google Scholar 

  • (Agency), E.E.M (2016b) Zalmoxis allogeneic T cells genetically modified with a retroviral vector encoding for a truncated form of the human low affinity nerve growth factor receptor (ΔLNGFR) and the herpes simplex I virus thymidine kinase (HSV-TK Mut2). EMA/454627/2016: European Medicines Agency

    Google Scholar 

  • Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, Haqqi TM (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum 62:1361

    Article  Google Scholar 

  • Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD (2016) Bioinformatic tools for microRNA dissection. Nucleic Acids Res 44:24

    Article  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, andTuschl T (2003) A uniform system for microRNA annotation. RNA 9:277

    Article  Google Scholar 

  • Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, Andl CD, Seykora JT, Hannon GJ, Millar SE (2006) The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol 16:1041

    Article  Google Scholar 

  • Arashiro P, Eisenberg I, Kho AT, Cerqueira AM, Canovas M, Silva HC, Pavanello RC, Verjovski-Almeida S, Kunkel LM, Zatz M (2009) Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers. Proc Natl Acad Sci U S A 106:6220

    Article  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337

    Article  Google Scholar 

  • Aubin JE (1999) Osteoprogenitor cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interactions in osteoblast differentiation. J Cell Biochem 72:396

    Article  Google Scholar 

  • Bader AG, Brown D, Winkler M (2010) The promise of microRNA replacement therapy. Cancer Res 70:7027

    Article  Google Scholar 

  • Baglìo SR, Devescovi V, Granchi D, Baldini N (2013) MicroRNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation reveals Osterix regulation by miR-31. Gene 527:321

    Article  Google Scholar 

  • Balaji S, King A, Crombleholme TM, Keswani SG (2013) The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle) 2:283

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281

    Article  Google Scholar 

  • Barter MJ, Tselepi M, Gómez R, Woods S, Hui W, Smith GR, Shanley DP, Clark IM, Young DA (2015) Genome-wide MicroRNA and gene analysis of mesenchymal stem cell chondrogenesis identifies an essential role and multiple targets for miR-140-5p. Stem Cells (Dayton, Ohio) 33:3266

    Article  Google Scholar 

  • Basyuk E, Suavet F, Doglio A, Bordonne R, Bertrand E (2003) Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res 31:6593

    Article  Google Scholar 

  • Beavers KR, Nelson CE, Duvall CL (2014) MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev

    Google Scholar 

  • Behr J-P (1997) The proton sponge: a trick to enter cells the viruses did not exploit. CHIMIA Int J Chem 51:34

    Google Scholar 

  • Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244

    Article  Google Scholar 

  • Bernardo BC, Charchar FJ, Lin RCY, McMullen JR (2012) A MicroRNA guide for clinicians and basic scientists: background and experimental techniques. Heart, Lung Circ 21:131

    Article  Google Scholar 

  • Bhattacharya A, Ziebarth JD, Cui Y (2014) PolymiRTS database 3.0: linking polymorphisms in microRNAs and their target sites with human diseases and biological pathways. Nucleic Acids Res 42:D86

    Article  Google Scholar 

  • Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207

    Article  Google Scholar 

  • Bonadio J, Smiley E, Patil P, Goldstein S (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5:753

    Article  Google Scholar 

  • Bonev B, Stanley P, Papalopulu N (2012) MicroRNA-9 modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell Rep 2:10

    Article  Google Scholar 

  • Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJ, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107

    Article  Google Scholar 

  • Bose S, Tarafder S (2012) Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 8:1401

    Article  Google Scholar 

  • Boudreau RL, Martins I, Fau-Davidson BL, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17:169

    Article  Google Scholar 

  • Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1

    Article  Google Scholar 

  • Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY) 3:108

    Article  Google Scholar 

  • Bucholz RW (2002) Nonallograft osteoconductive bone graft substitutes. Clin Orthop Relat Res 395:44

    Article  Google Scholar 

  • Budak H, Bulut R, Kantar M, Alptekin B (2016) MicroRNA nomenclature and the need for a revised naming prescription. Brief funct genomics. The Author 2015. Published by Oxford University Press For permissions, please email: journals.permissions@oup.com, England, p 65

    Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229

    Article  Google Scholar 

  • Caporali A, Emanueli C (2011) MicroRNA-503 and the extended microRNA-16 family in angiogenesis. Trends Cardiovasc Med 21:162

    Article  Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491

    Article  Google Scholar 

  • Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411

    Article  Google Scholar 

  • cBio (2010) MicroRNA.org. In: M.S.-K.C.C.M (ed) Computational biology center. Memorial Sloan-Kettering Cancer Center ™, New York

    Google Scholar 

  • Cezar CA, Mooney DJ (2015) Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 84:188

    Article  Google Scholar 

  • Chamorro-Jorganes A, Araldi E, Penalva LOF, Sandhu D, Fernandez-Hernando C, Suarez Y (2011) MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol 31:2595

    Article  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83

    Article  Google Scholar 

  • Chen Y, Gelfond J, McManus LM, Shireman PK (2011a) Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics 43:621

    Article  Google Scholar 

  • Chen CL, Luo WY, Lo WH, Lin KJ, Sung LY, Shih YS, Chang YH, Hu YC (2011b) Development of hybrid baculovirus vectors for artificial MicroRNA delivery and prolonged gene suppression. Biotechnol Bioeng 108:2958

    Article  Google Scholar 

  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399

    Article  Google Scholar 

  • Cheng CS, Ran L, Bursac N, Kraus WE, Truskey GA (2016) Cell density and joint microRNA-133a and microRNA-696 inhibition enhance differentiation and contractile function of engineered human skeletal muscle tissues. Tissue Eng Part A 22:573

    Article  Google Scholar 

  • Chew SY (2015) MicroRNAs in tissue engineering & regenerative medicine. Adv Drug Deliv Rev 88:1

    Article  Google Scholar 

  • Christensen M, Larsen LA, Kauppinen S, Schratt G (2010) Recombinant adeno-associated virus-mediated microRNA delivery into the postnatal mouse brain reveals a role for miR-134 in dendritogenesis in vivo. Front Neural Circ 3:16

    Google Scholar 

  • Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P (2016) MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res 7:68

    Article  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102:13944

    Article  Google Scholar 

  • Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: microRNA function in multipotent mesenchymal stromal cells. Stem Cells 32:1074

    Article  Google Scholar 

  • Clarkin CE, Gerstenfeld LC (2013) VEGF and bone cell signalling: an essential vessel for communication? Cell Biochem Funct 31:1

    Article  Google Scholar 

  • ClinicalTrials.gov (2013) Multicenter phase I study of MRX34, MicroRNA miR-RX34 Liposome Injectable Suspension. October 28, 2013 ed: U.S. National Institutes of Health

    Google Scholar 

  • Conde J, Oliva N, Atilano M, Song HS, Artzi N (2016) Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater 15:353

    Article  Google Scholar 

  • Cui Y, Xiao Z, Chen T, Wei J, Chen L, Liu L, Chen B, Wang X, Li X, Dai J (2014) The miR-7 identified from collagen biomaterial-based three-dimensional cultured cells regulates neural stem cell differentiation. Stem Cells Dev 23:393

    Article  Google Scholar 

  • Cunniffe GM, O’Brien FJ, Partap S, Levingstone TJ, Stanton KT, Dickson GR (2010) The synthesis and characterization of nanophase hydroxyapatite using a novel dispersant-aided precipitation method. J Biomed Mater Res A 95:1142

    Article  Google Scholar 

  • Cunniffe GM, Curtin CM, Thompson EM, Dickson GR, O’Brien FJ (2016) Content-dependent osteogenic response of nanohydroxyapatite: an in vitro and in vivo assessment within collagen-based scaffolds. ACS Appl Mater Interfaces 8:23477

    Article  Google Scholar 

  • Curtin CM, Cunniffe GM, Lyons FG, Bessho K, Dickson GR, Duffy GP, O’Brien FJ (2012) Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient non-viral gene delivery platform for stem cell-mediated bone formation. Adv Mater 24:749

    Article  Google Scholar 

  • Curtin CM, Mencía Castaño I, O’Brien FJ (2017) Scaffold-based microRNA therapies in regenerative medicine and cancer. Adv Healthc Mater 7:1700695

    Article  Google Scholar 

  • Dai X, Tan C (2015) Combination of microRNA therapeutics with small-molecule anticancer drugs: mechanism of action and co-delivery nanocarriers. Adv Drug Deliv Rev 81:184

    Article  Google Scholar 

  • Dawes E, Rushton N (1994) The effects of lactic acid on PGE2 production by macrophages and human synovial fibroblasts: a possible explanation for problems associated with the degradation of poly(lactide) implants? Clin Mater 17:157

    Article  Google Scholar 

  • Deiters A (2010) Small molecule modifiers of the microRNA and RNA interference pathway. AAPS J 12:51

    Article  Google Scholar 

  • Deng Y, Zhou H, Zou D, Xie Q, Bi X, Gu P, Fan X (2013a) The role of miR-31-modified adipose tissue-derived stem cells in repairing rat critical-sized calvarial defects. Biomaterials 34:6717

    Article  Google Scholar 

  • Deng Y, Wu S, Zhou H, Bi X, Wang Y, Hu Y, Gu P, Fan X (2013b) Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Stem Cells Dev 22:2278

    Article  Google Scholar 

  • Deng Y, Bi X, Zhou H, You Z, Wang Y, Gu P, Fan X (2014a) Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds. Eur Cell Mater 27:13

    Article  Google Scholar 

  • Deng Y, Zhou H, Gu P, Fan X (2014b) Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci 55:6016

    Article  Google Scholar 

  • des Rieux A, Ucakar B, Mupendwa BP, Colau D, Feron O, Carmeliet P, Preat V (2011) 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J Control Release 150:272

    Article  Google Scholar 

  • Desvignes T, Batzel P, Berezikov E, Eilbeck K, Eppig JT, McAndrews MS, Singer A, Postlethwait JH (2015) microRNA nomenclature: a view incorporating genetic origins, biosynthetic pathways, and sequence variants. Trends Genet: TIG 31:613

    Article  Google Scholar 

  • Dey BK, Gagan J, Yan Z, Dutta A (2012) miR-26a is required for skeletal muscle differentiation and regeneration in mice. Genes Dev 26:2180

    Article  Google Scholar 

  • Diao HJ, Low WC, Lu QR, Chew SY (2015a) Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development. Biomaterials 70:105

    Article  Google Scholar 

  • Diao HJ, Low WC, Milbreta U, Lu QR, Chew SY (2015b) Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release 208:85

    Article  Google Scholar 

  • Dimmeler S, Nicotera P (2013) MicroRNAs in age-related diseases. EMBO Mol Med 5:180

    Article  Google Scholar 

  • Diomede F, Merciaro I, Martinotti S, Cavalcanti MF, Caputi S, Mazzon E, Trubiani O (2016) miR-2861 is involved in osteogenic commitment of human periodontal ligament stem cells grown onto 3D scaffold. J Biol Regul Homeost Agents 30:1009

    Google Scholar 

  • Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16:2043

    Article  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721

    Article  Google Scholar 

  • Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR (2018) Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 20:e3015

    Article  Google Scholar 

  • Eguchi T, Watanabe K, Hara ES, Ono M, Kuboki T, Calderwood SK (2013) OstemiR: a novel panel of microRNA biomarkers in osteoblastic and osteocytic differentiation from mesencymal stem cells. PLoS One 8:e58796

    Article  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, andTuschl T (2001a) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877

    Article  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001b) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188

    Article  Google Scholar 

  • Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108:6139

    Article  Google Scholar 

  • Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376

    Article  Google Scholar 

  • Evans CH (2013) Advances in regenerative orthopedics. Mayo Clin Proc 88:1323

    Article  Google Scholar 

  • Fabani MM, Gait MJ (2008) miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14:336

    Article  Google Scholar 

  • Fang J, Zhu YY, Smiley E, Bonadio J, Rouleau JP, Goldstein SA, McCauley LK, Davidson BL, Roessler BJ (1996) Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc Natl Acad Sci U S A 93:5753

    Article  Google Scholar 

  • Fang L, Du WW, Yang W, Rutnam ZJ, Peng C, Li H, O’Malley YQ, Askeland RW, Sugg S, Liu M, Mehta T, Deng Z, Yang BB (2012) MiR-93 enhances angiogenesis and metastasis by targeting LATS2. Cell Cycle 11:4352–4365

    Article  Google Scholar 

  • Farrell RE (2006) RNA methodologies. Rev Cell Biol Mol Med. Wiley-VCH Verlag GmbH & Co. KGaA

    Google Scholar 

  • Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G, Capogrossi MC, Martelli F (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878

    Article  Google Scholar 

  • Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R (2018) Bone-related circulating MicroRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 8:4867

    Article  Google Scholar 

  • Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, Chakrabarti S (2011) miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60:2975

    Article  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806

    Article  Google Scholar 

  • Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272

    Article  Google Scholar 

  • Fitzgerald KA, Malhotra M, Curtin CM, O’Brien FJ, O’Driscoll CM (2015) Life in 3D is never flat: 3D models to optimise drug delivery. J Control Release 215:39–54

    Article  Google Scholar 

  • Fitzgerald KA, Guo J, Raftery RM, Castano IM, Curtin CM, Gooding M, Darcy R, O’Brien FJ, O’Driscoll CM (2016) Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Int J Pharm 511:1058

    Article  Google Scholar 

  • Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett 28:1601

    Article  Google Scholar 

  • Gabler J, Ruetze M, Kynast KL, Grossner T, Diederichs S, Richter W (2015) Stage-specific miRs in chondrocyte maturation: differentiation-dependent and hypertrophy-related miR clusters and the miR-181 family. Tissue Eng A 21:2840

    Article  Google Scholar 

  • Ghosh R, Singh LC, Shohet JM, Gunaratne PH (2012) A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 34:807

    Article  Google Scholar 

  • Giger EV, Castagner B, Raikkonen J, Monkkonen J, Leroux JC (2013) siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators. Adv Healthc Mater 2:134

    Article  Google Scholar 

  • Git A, Dvinge H, Salmon-Divon M, Osborne M, Kutter C, Hadfield J, Bertone P, Caldas C (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991

    Article  Google Scholar 

  • Gordeladze JO, Reseland JE, Duroux-Richard I, Apparailly F, Jorgensen C (2010) From stem cells to bone: phenotype acquisition, stabilization, and tissue engineering in animal models. ILAR J 51:42

    Article  Google Scholar 

  • Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456

    Article  Google Scholar 

  • GrandPré T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403:439

    Article  Google Scholar 

  • Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 43:D1079

    Article  Google Scholar 

  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140

    Article  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91

    Article  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23

    Article  Google Scholar 

  • Grundmann S, Hans FP, Kinniry S, Heinke J, Helbing T, Bluhm F, Sluijter JP, Hoefer I, Pasterkamp G, Bode C, Moser M (2011) MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation 123:999

    Article  Google Scholar 

  • Grunhagen J, Ott CE (2013) On microRNA-214 suppressing osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 57:325

    Article  Google Scholar 

  • Guk K, Lim H, Kim B, Hong M, Khang G, Lee D (2013) Acid-cleavable ketal containing poly(beta-amino ester) for enhanced siRNA delivery. Int J Pharm 453:541

    Article  Google Scholar 

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835

    Article  Google Scholar 

  • Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep 4:528

    Article  Google Scholar 

  • Gupta P, Authimoolam SP, Hilt JZ, Dziubla TD (2015) Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater 27:194

    Article  Google Scholar 

  • Hackl M, Jakobi T, Blom J, Doppmeier D, Brinkrolf K, Szczepanowski R, Bernhart SH, Honer Zu Siederdissen C, Bort JA, Wieser M, Kunert R, Jeffs S, Hofacker IL, Goesmann A, Puhler A, Borth N, Grillari J (2011) Next-generation sequencing of the Chinese hamster ovary microRNA transcriptome: identification, annotation and profiling of microRNAs as targets for cellular engineering. J Biotechnol 153:62

    Article  Google Scholar 

  • Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases – complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2015 The Authors, Ireland. Published by Elsevier Ireland Ltd. p 83

    Google Scholar 

  • Haensler J, Szoka FC Jr (1993) Synthesis and characterization of a trigalactosylated bisacridine compound to target DNA to hepatocytes. Bioconjug Chem 4:85

    Article  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950

    Article  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293

    Article  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146

    Article  Google Scholar 

  • Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 105:1516

    Article  Google Scholar 

  • Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, Van Wijnen AJ, Stein JL, Stein GS, Lian JB (2012) miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem 287:42084–42092

    Article  Google Scholar 

  • Hatakeyama Y, Tuan RS, Shum L (2004) Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 91:1204

    Article  Google Scholar 

  • Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, Bösl MR, Hess A, Surmann-Schmitt C, von der Mark H, de Crombrugghe B, von der Mark K (2010) SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development 137:901

    Article  Google Scholar 

  • Haussecker D (2014) Current issues of RNAi therapeutics delivery and development. J Control Release 195:49

    Article  Google Scholar 

  • Hedberg EL, Shih CK, Lemoine JJ, Timmer MD, Liebschner MA, Jansen JA, Mikos AG (2005) In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26:3215

    Article  Google Scholar 

  • Hoseinzadeh S, Atashi A, Soleimani M, Alizadeh E, Zarghami N (2016) MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold. In Vitro Cell Dev Biol Anim 52:479

    Article  Google Scholar 

  • Hu R, Li H, Liu W, Yang L, Tan Y, Luo X (2010) Targeting miRNAs in osteoblast differentiation and bone formation. Expert Opin Ther Targets 14:1109

    Article  Google Scholar 

  • Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28:357

    Google Scholar 

  • Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science (New York, NY) 338:917

    Article  Google Scholar 

  • Huh YH, Ryu J-H, Chun J-S (2007) Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem 282:17123

    Article  Google Scholar 

  • Hutvagner G, Zamore PDA (2002) microRNA in a multiple-turnover RNAi enzyme complex. Science 297:2056

    Article  Google Scholar 

  • Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834

    Article  Google Scholar 

  • Huynh CT, Nguyen MK, Naris M, Tonga GY, Rotello VM, Alsberg E (2016) Light-triggered RNA release and induction of hMSC osteogenesis via photodegradable, dual-crosslinked hydrogels. Nanomedicine (Lond) 11:1535

    Article  Google Scholar 

  • Hwang DW, Son S, Jang J, Youn H, Lee S, Lee D, Lee YS, Jeong JM, Kim WJ, Lee DS (2011) A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials 32:4968

    Article  Google Scholar 

  • Icli B, Wara AK, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J, Cheng HW, Raghuram S, Arany Z, Liao R, Croce K, MacRae C, Feinberg MW (2013) MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 113:1231

    Article  Google Scholar 

  • Ilina P, Hyvonen Z, Saura M, Sandvig K, Yliperttula M, Ruponen M (2012) Genetic blockage of endocytic pathways reveals differences in the intracellular processing of non-viral gene delivery systems. J Control Release 163:385

    Article  Google Scholar 

  • Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A (2008) Integrative MicroRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One 3:e3740

    Article  Google Scholar 

  • ISBLab (2013) miRTarBase: the experimentally validated microRNA-target interactions database. In: National Chiao Tung University (ed) Department of Biological Science and Technology I.o.B.a.S.B., miRTarBase Release 45. Taiwan © ISBLab, Hsinchu

    Google Scholar 

  • Ishizuka A, Siomi MC, Siomi HA (2002) Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497

    Article  Google Scholar 

  • Itoh T, Nozawa Y, Akao Y (2009) MicroRNA-141 and -200a are involved in bone morphogenetic protein-2-induced mouse pre-osteoblast differentiation by targeting distal-less homeobox 5. J Biol Chem 284:19272

    Article  Google Scholar 

  • Jacobsen A, Silber J, Harinath G, Huse JT, Schultz N, Sander C (2013) Analysis of microRNA-target interactions across diverse cancer types. Nat Struct Mol Biol 20:1325

    Article  Google Scholar 

  • Jaklenec A, Stamp A, Deweerd E, Sherwin A, Langer R (2012) Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Eng B-Rev 18:155

    Article  Google Scholar 

  • James EN, Delany AM, Nair LS (2014) Post-transcriptional regulation in osteoblasts using localized delivery of miR-29a inhibitor from nanofibers to enhance extracellular matrix deposition. Acta Biomater 10:3571

    Article  Google Scholar 

  • Janssen HL, Kauppinen S, Hodges MR (2013) HCV infection and miravirsen. N Engl J Med 369:878

    Google Scholar 

  • Jee YH, Wang J, Yue S, Jennings M, Clokie SJ, Nilsson O, Lui JC, Baron J (2018) mir-374-5p, mir-379-5p, and mir-503-5p regulate proliferation and hypertrophic differentiation of growth plate chondrocytes in male rats. Endocrinology 159:1469

    Article  Google Scholar 

  • Jensen ED, Gopalakrishnan R, Westendorf JJ (2010) Regulation of gene expression in osteoblasts. Biofactors 36:25

    Google Scholar 

  • Jere D, Xu CX, Arote R, Yun CH, Cho MH, Cho CS (2008) Poly(beta-amino ester) as a carrier for si/shRNA delivery in lung cancer cells. Biomaterials 29:2535

    Article  Google Scholar 

  • Johnson EE, Urist MR (1998) One-stage lengthening of femoral nonunion augmented with human bone morphogenetic protein. Clin Orthop Relat Res, 347:105

    Google Scholar 

  • Johnston RJ, Hobert O (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426:845

    Article  Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265

    Article  Google Scholar 

  • Jones E, Mazirka P, McNurlan MA, Brink P, Caso G (2017) Inhibition of human prostate cancer growth by mesenchymal stem cells delivering MiR-16. FASEB J 31:lb177

    Google Scholar 

  • Kapinas K, Kessler CB, Delany AM (2009) miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108:216

    Article  Google Scholar 

  • Karlsen TA, Jakobsen RB, Mikkelsen TS, Brinchmann JE (2013) microRNA-140 targets RALA and regulates chondrogenic differentiation of human mesenchymal stem cells by translational enhancement of SOX9 and ACAN. Stem Cells Dev 23:290

    Article  Google Scholar 

  • Karlsen TA, de Souza GA, Ødegaard B, Engebretsen L, Brinchmann JE (2016) microRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1β-induced osteoarthritis. Mol Ther Nucleic Acids 5:e373

    Article  Google Scholar 

  • Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH (1999) Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133

    Article  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654

    Article  Google Scholar 

  • Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64

    Article  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209

    Article  Google Scholar 

  • Kim KM, Lim S-K (2014) Role of miRNAs in bone and their potential as therapeutic targets. Curr Opin Pharmacol 16:133

    Article  Google Scholar 

  • Kim YJ, Bae SW, Yu SS, Bae YC, Jung JS (2009) miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res Off J Am Soc Bone Miner Res 24:816

    Article  Google Scholar 

  • Kim NH, Choi SH, Kim CH, Lee CH, Lee TR, Lee AY (2014) Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J Invest Dermatol 134:1075

    Article  Google Scholar 

  • Kimelman-Bleich N, Pelled G, Zilberman Y, Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Gazit D (2011) Targeted gene-and-host progenitor cell therapy for nonunion bone fracture repair. Mol Ther: J Am Soc Gene Ther 19:53

    Article  Google Scholar 

  • Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269

    Article  Google Scholar 

  • Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ (2009) Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nat Methods 6:291

    Article  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685

    Article  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853

    Article  Google Scholar 

  • Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858

    Article  Google Scholar 

  • Laufs S, Guenechea G, Gonzalez-Murillo A, Zsuzsanna Nagy K, Luz Lozano M, del Val C, Jonnakuty S, Hotz-Wagenblatt A, Jens Zeller W, Bueren JA, Fruehauf S (2006) Lentiviral vector integration sites in human NOD/SCID repopulating cells. J Gene Med 8:1197

    Article  Google Scholar 

  • Leblebici B, Adam M, Bagis S, Tarim AM, Noyan T, Akman MN, Haberal MA (2006) Quality of life after burn injury: the impact of joint contracture. J Burn Care Res Engl 27:864

    Article  Google Scholar 

  • Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843

    Article  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663

    Article  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415

    Article  Google Scholar 

  • Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153

    Article  Google Scholar 

  • Lee K, Oh MH, Lee MS, Nam YS, Park TG, Jeong JH (2013) Stabilized calcium phosphate nano-aggregates using a dopa-chitosan conjugate for gene delivery. Int J Pharm 445:196

    Article  Google Scholar 

  • Lee MS, Lee JE, Byun E, Kim NW, Lee K, Lee H, Sim SJ, Lee DS, Jeong JH (2014) Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. J Control Release 192:122–130

    Article  Google Scholar 

  • Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39:2195

    Article  Google Scholar 

  • Legendre F, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Gruchy N, Mallein-Gerin F, Leclercq S, Demoor M, Galéra P (2017) Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Sci Rep 7:3406

    Article  Google Scholar 

  • Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G, Candi E (2008) miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 15:1187

    Article  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639

    Article  Google Scholar 

  • Levy O, Ruvinov E, Reem T, Granot Y, Cohen S (2010) Highly efficient osteogenic differentiation of human mesenchymal stem cells by eradication of STAT3 signaling. Int J Biochem Cell Biol 42:1823

    Article  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15

    Article  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319

    Article  Google Scholar 

  • Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105:13906

    Article  Google Scholar 

  • Li Z, Hassan MQ, Jafferji M, Aqeilan RI, Garzon R, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2009a) Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 284:15676

    Article  Google Scholar 

  • Li H, Xie H, Liu W, Hu R, Huang B, Tan YF, Xu K, Sheng ZF, Zhou HD, Wu XP, Luo XH (2009b) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 119:3666

    Article  Google Scholar 

  • Li J, Chen YC, Tseng YC, Huang L (2010) Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J Control Release 142:416

    Article  Google Scholar 

  • Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y (2013) The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34:5048

    Article  Google Scholar 

  • Li J, Yu X, Wang Y, Yuan Y, Xiao H, Cheng D, Shuai X (2014) A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv Mater 26:8217

    Article  Google Scholar 

  • Li KC, Lo SC, Sung LY, Liao YH, Chang YH, Hu YC (2016) Improved calvarial bone repair by hASCs engineered with Cre/loxP-based baculovirus conferring prolonged BMP-2 and MiR-148b co-expression. J Tissue Eng Regen Med 11:3068

    Article  Google Scholar 

  • Li KC, Chang YH, Yeh CL, Hu YC (2016a) Healing of osteoporotic bone defects by baculovirus-engineered bone marrow-derived MSCs expressing MicroRNA sponges. Biomaterials 74:155

    Article  Google Scholar 

  • Li Y, Dal-Pra S, Mirotsou M, Jayawardena TM, Hodgkinson CP, Bursac N, Dzau VJ (2016b) Tissue-engineered 3-dimensional (3D) microenvironment enhances the direct reprogramming of fibroblasts into cardiomyocytes by microRNAs. Sci Rep 6:38815

    Article  Google Scholar 

  • Liao XB, Zhang ZY, Yuan K, Liu Y, Feng X, Cui RR, Hu YR, Yuan ZS, Gu L, Li SJ, Mao DA, Lu Q, Zhou XM, de Jesus Perez VA, Yuan LQ (2013a) MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology 154:3344

    Article  Google Scholar 

  • Liao L, Yang X, Su X, Hu C, Zhu X, Yang N, Chen X, Shi S, Shi S, Jin Y (2013b) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600

    Article  Google Scholar 

  • Liao Y-H, Chang Y-H, Sung L-Y, Li K-C, Yeh C-L, Yen T-C, Hwang S-M, Lin K-J, Hua Y-C (2014a) Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 35:4901

    Article  Google Scholar 

  • Liao YH, Chang YH, Sung LY, Li KC, Yeh CL, Yen TC, Hwang SM, Lin KJ, Hu YC (2014b) Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Biomaterials 35:4901

    Article  Google Scholar 

  • Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991

    Article  Google Scholar 

  • Lin RC, Weeks KL, Gao XM, Williams RB, Bernardo BC, Kiriazis H, Matthews VB, Woodcock EA, Bouwman RD, Mollica JP, Speirs HJ, Dawes IW, Daly RJ, Shioi T, Izumo S, Febbraio MA, Du XJ, McMullen JR (2010) PI3K (p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol 30:724

    Article  Google Scholar 

  • Lingel A, Simon B, Izaurralde E, Sattler M (2003) Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465

    Article  Google Scholar 

  • Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240

    Article  Google Scholar 

  • Liu YP, Berkhout B (1809) miRNA cassettes in viral vectors: problems and solutions. Biochim Biophys Acta (BBA) – Gene Regul Mech 732:2011

    Google Scholar 

  • Liu C-F, Lefebvre V (2015) The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 43:8183

    Article  Google Scholar 

  • Liu L, Shu S, Cheung GS, Wei X (2016) Effect of miR-146a/bFGF/PEG-PEI nanoparticles on inflammation response and tissue regeneration of human dental pulp cells. Biomed Res Int 2016:3892685

    Google Scholar 

  • Lolli A, Lambertini E, Penolazzi L, Angelozzi M, Morganti C, Franceschetti T, Pelucchi S, Gambari R, Piva R (2014) Pro-chondrogenic effect of miR-221 and slug depletion in human MSCs. Stem Cell Rev 10:841

    Article  Google Scholar 

  • Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N, Gasparini S, van Osch GJ, Piva R (2016) Silencing of Antichondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo. Stem Cells 34:1801

    Article  Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95

    Article  Google Scholar 

  • Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Miner Res Off J Am Soc Bone Miner Res 23:287

    Article  Google Scholar 

  • Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci 104:9667

    Article  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya-Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247

    Article  Google Scholar 

  • MacLaughlin FC, Mumper RJ, Wang J, Tagliaferri JM, Gill I, Hinchcliffe M, Rolland AP (1998) Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56:259

    Article  Google Scholar 

  • Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M (2012) MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 9:355

    Article  Google Scholar 

  • Mahboudi H, Soleimani M, Enderami SE, Kehtari M, Ardeshirylajimi A, Eftekhary M, Kazemi B (2018) Enhanced chondrogenesis differentiation of human induced pluripotent stem cells by MicroRNA-140 and transforming growth factor beta 3 (TGFβ3). Biologicals 52:30–36

    Article  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435

    Article  Google Scholar 

  • Malmo J, Sorgard H, Varum KM, Strand SP (2012) siRNA delivery with chitosan nanoparticles: molecular properties favoring efficient gene silencing. J Control Release 158:261

    Article  Google Scholar 

  • Mariner PD, Johannesen E, Anseth KS (2011) Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. J Tissue Eng Regen Med 6:314

    Article  Google Scholar 

  • Mariner PD, Johannesen E, Anseth KS (2012) Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds. J Tissue Eng Regen Med 6:314

    Article  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, andTuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563

    Article  Google Scholar 

  • Martini FH, Nath JL, Bartholomew EF (2006) Fundamentals of anatomy and physiology, 9th edn. P.E.I. Editorial, San Francisco

    Google Scholar 

  • McArthur K, Feng B, Wu Y, Chen S, Chakrabarti S (2011) MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes 60:1314

    Article  Google Scholar 

  • McCarthy JJ (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 1779:682

    Article  Google Scholar 

  • McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13:805

    Article  Google Scholar 

  • McKiernan P, Cunningham O, Greene C, Cryan S-A (2013) Targeting miRNA-based medicines to cystic fibrosis airway epithelial cells using nanotechnology. Int J Nanomedicine 8:3907

    Google Scholar 

  • Mencia Castano I, Curtin CM, Shaw G, Murphy JM, Duffy GP, O’Brien FJ (2015) A novel collagen-nanohydroxyapatite microRNA-activated scaffold for tissue engineering applications capable of efficient delivery of both miR-mimics and antagomiRs to human mesenchymal stem cells. J Control Release 200:42

    Article  Google Scholar 

  • Mencia Castano I, Curtin CM, Duffy GP, O’Brien FJ (2016) Next generation bone tissue engineering: non-viral miR-133a inhibition using collagen-nanohydroxyapatite scaffolds rapidly enhances osteogenesis. Sci Rep 6:27941

    Article  Google Scholar 

  • Mencia Castano I, Curtin CM, Duffy GP, O’Brien FJ (2018) Harnessing a novel role of miR-16 in osteogenesis for scaffold-based bone tissue engineering. Tissue Eng A 25:24

    Google Scholar 

  • Mercado AT, Yeh JM, Chin TY, Chen WS, Chen-Yang YW, Chen CY (2016) The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation. J Biomed Mater Res A 104:2730

    Article  Google Scholar 

  • Mercken EM, Majounie E, Ding J, Guo R, Kim J, Bernier M, Mattison J, Cookson MR, Gorospe M, de Cabo R, Abdelmohsen K (2013) Age-associated miRNA alterations in skeletal muscle from rhesus monkeys reversed by caloric restriction. Aging (Albany NY) 5:692

    Article  Google Scholar 

  • Midgley AC, Bowen T, Phillips AO, Steadman R (2014) MicroRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 13:235

    Article  Google Scholar 

  • Midoux P, Pichon C, Yaouanc JJ, Jaffres PA (2009) Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carrier. Br J Pharmacol 157:166

    Article  Google Scholar 

  • Miller KJ, Brown DA, Ibrahim MM, Ramchal TD, Levinson H (2015) MicroRNAs in skin tissue engineering. Adv Drug Deliv Rev 88:16

    Article  Google Scholar 

  • miRBase (2013) ed: Faculty of Life Sciences University of Manchester

    Google Scholar 

  • Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y (2008) miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 368:267

    Article  Google Scholar 

  • Mizuno Y, Tokuzawa Y, Ninomiya Y, Yagi K, Yatsuka-Kanesaki Y, Suda T, Fukuda T, Katagiri T, Kondoh Y, Amemiya T, Tashiro H, Okazaki Y (2009) miR-210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett 583:2263

    Article  Google Scholar 

  • Monaghan M, Pandit A (2011) RNA interference therapy via functionalized scaffolds. Adv Drug Deliv Rev 63:197

    Article  Google Scholar 

  • Monaghan M, Browne S, Schenke-Layland K, Pandit A (2014) A collagen-based scaffold delivering exogenous microrna-29B to modulate extracellular matrix remodeling. Mol Ther: J Am Soc Gene Ther 22:786

    Article  Google Scholar 

  • Monaghan MG, Holeiter M, Brauchle E, Layland SL, Lu Y, Deb A, Pandit A, Nsair A, Schenke-Layland K (2018) Exogenous miR-29B delivery through a hyaluronan-based injectable system yields functional maintenance of the infarcted myocardium. Tissue Eng Part A 24:57

    Article  Google Scholar 

  • Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, Doglioni C, Di Serio C, von Kalle C, Naldini L (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964

    Article  Google Scholar 

  • Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16:720

    Article  Google Scholar 

  • Mourrain P, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Remoue K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533

    Article  Google Scholar 

  • Mowa MB, Crowther C, Arbuthnot P (2010) Therapeutic potential of adenoviral vectors for delivery of expressed RNAi activators. Expert Opin Drug Deliv 7:1373

    Article  Google Scholar 

  • Nakasa T, Ishikawa M, Shi M, Shibuya H, Adachi N, Ochi M (2010) Acceleration of muscle regeneration by local injection of muscle-specific microRNAs in rat skeletal muscle injury model. J Cell Mol Med 14:2495

    Article  Google Scholar 

  • Nelson CE, Kim AJ, Adolph EJ, Gupta MK, Yu F, Hocking KM, Davidson JM, Guelcher SA, Duvall CL (2014) Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv Mater 26:607

    Article  Google Scholar 

  • Nerem RM (1991) Cellular engineering. Ann Biomed Eng 19:529

    Article  Google Scholar 

  • Nguyen MK, Jeon O, Krebs MD, Schapira D, Alsberg E (2014) Sustained localized presentation of RNA interfering molecules from in situ forming hydrogels to guide stem cell osteogenic differentiation. Biomaterials 35:6278

    Article  Google Scholar 

  • Nguyen LH, Diao HJ, Chew SY (2015) MicroRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 88:53

    Article  Google Scholar 

  • Nguyen LH, Gao M, Lin J, Wu W, Wang J, Chew SY (2017) Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci Rep 7:42212

    Article  Google Scholar 

  • Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36:2091

    Article  Google Scholar 

  • Nunes DN, Dias-Neto E, Cardo-Vila M, Edwards JK, Dobroff AS, Giordano RJ, Mandelin J, Brentani HP, Hasselgren C, Yao VJ, Marchio S, Pereira CA, Passetti F, Calin GA, Sidman RL, Arap W, Pasqualini R (2015) Synchronous down-modulation of miR-17 family members is an early causative event in the retinal angiogenic switch. Proc Natl Acad Sci U S A 112:3770

    Article  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309

    Article  Google Scholar 

  • Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508

    Article  Google Scholar 

  • O’Brien FJ, Harley BA, Waller MA, Yannas IV, Gibson LJ, Prendergast PJ (2007) The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15:3

    Google Scholar 

  • Ohler U, Yekta S, Lim LP, Bartel DP, Burge CB (2004) Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10:1309

    Article  Google Scholar 

  • Okamura K, Liu N, Lai EC (2009) Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 36:431

    Article  Google Scholar 

  • Ørom UA, Lund AH (2010) Experimental identification of microRNA targets. Gene 451:1

    Article  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87

    Article  Google Scholar 

  • Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4:581

    Article  Google Scholar 

  • Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L (2012a) Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J 279:1198

    Article  Google Scholar 

  • Pan Y, Jia T, Zhang Y, Zhang K, Zhang R, Li J, Wang L (2012b) MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int J Nanomedicine 7:5957

    Article  Google Scholar 

  • Park K, Lee K-M, Yoon D, Park K, Choi W, Lee J, Kim S-H (2016) Inhibition of microRNA-449a prevents IL-1β-induced cartilage destruction via SIRT1. Osteoarthr Cartil 24:2153

    Article  Google Scholar 

  • Pascual-Gil S, Garbayo E, Díaz-Herráez P, Prosper F, Blanco-Prieto MJ (2015) Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 203:23

    Article  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86

    Article  Google Scholar 

  • Pastar I, Khan AA, Stojadinovic O, Lebrun EA, Medina MC, Brem H, Kirsner RS, Jimenez JJ, Leslie C, Tomic-Canic M (2012) Induction of specific microRNAs inhibits cutaneous wound healing. J Biol Chem 287:29324

    Article  Google Scholar 

  • Pearson H (2006) Genetics: what is a gene? Nature 441:398

    Article  Google Scholar 

  • Pedraza CE, Bassett DC, McKee MD, Nelea V, Gbureck U, Barralet JE (2008) The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials 29:3384

    Article  Google Scholar 

  • Pekarsky Y, Balatti V, Croce CM (2018) BCL2 and miR-15/16: from gene discovery to treatment. Cell Death Differ 25:21

    Article  Google Scholar 

  • Pelled G, Ben-Arav A, Hock C, Reynolds DG, Yazici C, Zilberman Y, Gazit Z, Awad H, Gazit D, Schwarz EM (2010) Direct gene therapy for bone regeneration: gene delivery, animal models, and outcome measures. Tissue Eng Part B Rev 16:13

    Article  Google Scholar 

  • Pena JT, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M, Mihailovic A, Lim C, Holoch D, Berninger P, Zavolan M, Tuschl T (2009) miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat Methods 6:139

    Article  Google Scholar 

  • Peng WJ, Tao JH, Mei B, Chen B, Li BZ, Yang GJ, Zhang Q, Yao H, Wang BX, He Q, Wang J (2012) MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin Ther Targets 16:875

    Article  Google Scholar 

  • Perruisseau-Carrier C, Jurga M, Forraz N, McGuckin CP (2011) miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol 43:215

    Article  Google Scholar 

  • Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74

    Article  Google Scholar 

  • Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108:3068

    Article  Google Scholar 

  • Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW, van Rooij E, Olson EN (2011) MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 109:670

    Article  Google Scholar 

  • Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, Pu P, Yuan X, Ren Y, Kang C (2014) Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials 35:2322

    Article  Google Scholar 

  • Qureshi AT, Monroe WT, Dasa V, Gimble JM, Hayes DJ (2013) miR-148b eNanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials 34:7799

    Article  Google Scholar 

  • Qureshi AT, Doyle A, Chen C, Coulon D, Dasa V, Del Piero F, Levi B, Monroe WT, Gimble JM, Hayes DJ (2015) Photoactivated miR-148b-nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomater 12:166

    Article  Google Scholar 

  • Raftery RM, Walsh DP, Mencía Castaño I, Heise A, Duffy GP, Cryan S-A, O’Brien FJ (2016) Delivering nucleic-acid based nanomedicines on biomaterial scaffolds for orthopedic tissue repair: challenges, progress and future perspectives. Adv Mater n/a

    Google Scholar 

  • Reddy KJ, Gilman M (2001) Preparation of bacterial RNA. Curr Protoc Mol Biol. Wiley

    Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901

    Article  Google Scholar 

  • Remaut K, Symens N, Lucas B, Demeester J, De Smedt SC (2010) Efficient delivery of intact phosphodiester oligonucleotides by poly-beta-amino esters. J Control Release 144:65

    Article  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145

    Article  Google Scholar 

  • Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H (2008) Innate immune response induced by gene delivery vectors. Int J Pharm 354:9

    Article  Google Scholar 

  • Santos JL, Pandita D, Rodrigues J, Pego AP, Granja PL, Tomas H (2011) Non-viral gene delivery to mesenchymal stem cells: methods, strategies and application in bone tissue engineering and regeneration. Curr Gene Ther 11:46

    Article  Google Scholar 

  • Santos-Carballal B, Aaldering LJ, Ritzefeld M, Pereira S, Sewald N, Moerschbacher BM, Gotte M, Goycoolea FM (2015) Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells. Sci Rep 5:13567

    Article  Google Scholar 

  • Sathy BN, Olvera D, Gonzalez-Fernandez T, Cunniffe GM, Pentlavalli S, Chambers P, Jeon O, Alsberg E, McCarthy HO, Dunne N, Haut Donahue TL, Kelly DJ (2017) RALA complexed α-TCP nanoparticle delivery to mesenchymal stem cells induces bone formation in tissue engineered constructs in vitro and in vivo. J Mater Chem B 5:1753

    Article  Google Scholar 

  • Schade A, Delyagina E, Scharfenberg D, Skorska A, Lux C, David R, Steinhoff G (2013) Innovative strategy for microRNA delivery in human mesenchymal stem cells via magnetic nanoparticles. Int J Mol Sci 14:10710

    Article  Google Scholar 

  • Schade A, Muller P, Delyagina E, Voronina N, Skorska A, Lux C, Steinhoff G, David R (2014) Magnetic nanoparticle based nonviral microRNA delivery into freshly isolated CD105(+) hMSCs. Stem Cells Int 2014:197154

    Article  Google Scholar 

  • Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346:608

    Article  Google Scholar 

  • Schmidt CE, Leach JB (2003) Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng 5:293

    Article  Google Scholar 

  • Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J (2002) Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthr Cartil 10:62

    Article  Google Scholar 

  • Schneider MR, Samborski A, Bauersachs S, Zouboulis CC (2013) Differentially regulated microRNAs during human sebaceous lipogenesis. J Dermatol Sci 70:88

    Article  Google Scholar 

  • Schoolmeesters A, Eklund T, Leake D, Vermeulen A, Smith Q, Force Aldred S, Fedorov Y (2009) Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS One 4:e5605

    Article  Google Scholar 

  • Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199

    Article  Google Scholar 

  • Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229

    Article  Google Scholar 

  • Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, Zhang Z, Sun X (2014) Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression. J Control Release 194:228

    Article  Google Scholar 

  • Shoji T, Nakasa T, Yamasaki K, Kodama A, Miyaki S, Niimoto T, Okuhara A, Kamei N, Adachi N, Ochi M (2012) The effect of intra-articular injection of MicroRNA-210 on ligament healing in a rat model. Am J Sports Med 40:2470

    Article  Google Scholar 

  • Silahtaroglu AN, Nolting D, Dyrskjøt L, Berezikov E, Møller M, Tommerup N, Kauppinen S (2007) Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification. Nat Protoc 2:2520

    Article  Google Scholar 

  • Sinha M, Ghatak S, Roy S, Sen CK (2015) microRNA-200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal 22:1257

    Article  Google Scholar 

  • Slack FJ, Basson M, Liu Z, Ambros V, Horvitz HR, Ruvkun G (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol Cell 5:659

    Article  Google Scholar 

  • Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30:859

    Article  Google Scholar 

  • Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404

    Article  Google Scholar 

  • Stappert L, Borghese L, Roese-Koerner B, Weinhold S, Koch P, Terstegge S, Uhrberg M, Wernet P, Brustle O (2013) MicroRNA-based promotion of human neuronal differentiation and subtype specification. PLoS One 8:e59011

    Article  Google Scholar 

  • Stappert L, Roese-Koerner B, Brüstle O (2015) The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res 359:47

    Article  Google Scholar 

  • Stenberg J, de Windt TS, Synnergren J, Hynsjö L, van der Lee J, Saris DB, Brittberg M, Peterson L, Lindahl A (2014) Clinical outcome 3 years after autologous chondrocyte implantation does not correlate with the expression of a predefined gene marker set in chondrocytes prior to implantation but is associated with critical signaling pathways. Orthop J Sports Med 2:2325967114550781

    Article  Google Scholar 

  • Stevanato L, Sinden JD (2014) The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem Cell Res Ther 5:49

    Article  Google Scholar 

  • Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135

    Article  Google Scholar 

  • Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442

    Article  Google Scholar 

  • Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100:1164

    Article  Google Scholar 

  • Suh EJ, Remillard MY, Legesse-Miller A, Johnson EL, Lemons JM, Chapman TR, Forman JJ, Kojima M, Silberman ES, Coller HA (2012) A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 13:R121

    Article  Google Scholar 

  • Sun Q, Zhang Y, Yang G, Chen X, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X (2008) Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 36:2690

    Article  Google Scholar 

  • Sun Q, Mao S, Li H, Zen K, Zhang CY, Li L (2013) Role of miR-17 family in the negative feedback loop of bone morphogenetic protein signaling in neuron. PLoS One 8:e83067

    Article  Google Scholar 

  • Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, Lim TC, Tanavde V, Lane EB, Sampath P (2013) ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495:103

    Article  Google Scholar 

  • Sung LY, Chen CL, Lin SY, Hwang SM, Lu CH, Li KC, Lan AS, Hu YC (2013) Enhanced and prolonged baculovirus-mediated expression by incorporating recombinase system and in cis elements: a comparative study. Nucleic Acids Res 41:e139

    Article  Google Scholar 

  • Svaren J (2014) MicroRNA and transcriptional crosstalk in myelinating glia. Neurochem Int 77:50

    Article  Google Scholar 

  • Takeda K (2009) Delivery of magic bullets: on the still rocky road to gene therapy. Br J Pharmacol 157:151

    Article  Google Scholar 

  • Tan J, Yang L, Liu C, Yan Z (2017) MicroRNA-26a targets MAPK6 to inhibit smooth muscle cell proliferation and vein graft neointimal hyperplasia. Sci Rep 7:46602

    Article  Google Scholar 

  • TargetScan Release 6.2 (2012) In: Computing B.a. R., ed. © 2006–2012 Whitehead Institute for Biomedical Research, Cambridge, MA

    Google Scholar 

  • Tay YM, Tam WL, Ang YS, Gaughwin PM, Yang H, Wang W, Liu R, George J, Ng HH, Perera RJ, Lufkin T, Rigoutsos I, Thomson AM, Lim B (2008a) MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26:17

    Article  Google Scholar 

  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008b) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455:1124

    Article  Google Scholar 

  • Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21:3269

    Article  Google Scholar 

  • Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, Snitow M, Morley M, Li D, Petrenko N, Zhou S, Lu M, Gao E, Koch WJ, Stewart KM, Morrisey EE (2015) A microRNA-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med 7:279ra38

    Article  Google Scholar 

  • Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303:359

    Article  Google Scholar 

  • Ulrich-Vinther M, Maloney MD, Schwarz EM, Rosier R, O’keefe RJ (2003) Articular cartilage biology. J Am Acad Orthop Surg 11:421

    Article  Google Scholar 

  • van Amerongen MJ, Engel FB (2008) Features of cardiomyocyte proliferation and its potential for cardiac regeneration. J Cell Mol Med 12:2233

    Article  Google Scholar 

  • van Rooij E (2011) The art of microRNA research. Circ Res 108:219

    Article  Google Scholar 

  • van Rooij E (2012) Introduction to the series on microRNAs in the cardiovascular system. Circ Res 110:481

    Article  Google Scholar 

  • van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851

    Article  Google Scholar 

  • van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110:496

    Article  Google Scholar 

  • Várallyay E, Burgyán J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190

    Article  Google Scholar 

  • Varkonyi-Gasic E, Hellens RP (2011) Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol Biol 744:145

    Article  Google Scholar 

  • Vimalraj S, Saravanan S, Vairamani M, Gopalakrishnan C, Sastry TP, Selvamurugan N (2016) A combinatorial effect of carboxymethyl cellulose based scaffold and microRNA-15b on osteoblast differentiation. Int J Biol Macromol 93:1457

    Article  Google Scholar 

  • Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64:1292

    Article  Google Scholar 

  • Vuorimaa E, Ketola TM, Green JJ, Hanzlikova M, Lemmetyinen H, Langer R, Anderson DG, Urtti A, Yliperttula M (2011) Poly(beta-amino ester)-DNA complexes: time-resolved fluorescence and cellular transfection studies. J Control Release 154:171

    Article  Google Scholar 

  • Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T (2011) Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 286:38456

    Article  Google Scholar 

  • Wang S, Olson EN (2009) AngiomiRs – key regulators of angiogenesis. Curr Opin Genet Dev 19:205

    Article  Google Scholar 

  • Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261

    Article  Google Scholar 

  • Wang D, Zhang Z, O’Loughlin E, Lee T, Houel S, O’Carroll D, Tarakhovsky A, Ahn NG, Yi R (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev 26:693

    Article  Google Scholar 

  • Wang Z, Zhang D, Hu Z, Cheng J, Zhuo C, Fang X, Xing Y (2015) MicroRNA-26a-modified adipose-derived stem cells incorporated with a porous hydroxyapatite scaffold improve the repair of bone defects. Mol Med Rep 12:3345

    Article  Google Scholar 

  • Wang XW, He XJ, Lee KC, Huang C, Hu JB, Zhou R, Xiang XY, Feng B, Lu ZQ (2016) MicroRNA-221 sponge therapy attenuates neointimal hyperplasia and improves blood flows in vein grafts. Int J Cardiol 208:79

    Article  Google Scholar 

  • Wang Y, Malcolm DW, Benoit DSW (2017a) Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing. Biomaterials 139:127

    Article  Google Scholar 

  • Wang H, Xie Z, Hou T, Li Z, Huang K, Gong J, Zhou W, Tang K, Xu J, Dong S (2017b) MiR-125b regulates the osteogenic differentiation of human mesenchymal stem cells by targeting BMPR1b. Cell Physiol Biochem 41:530

    Article  Google Scholar 

  • Watt FM, Jensen KB (2009) Epidermal stem cell diversity and quiescence. EMBO Mol Med 1:260

    Article  Google Scholar 

  • Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F, Gabriel C, Dovjak P, Pietschmann P, Grillari-Voglauer R, Grillari J, Hackl M (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43

    Article  Google Scholar 

  • Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K, Micutkova L, Fortschegger K, Maier AB, Westendorp R, Resch H, Wolbank S, Redl H, Jansen-Durr P, Pietschmann P, Grillari-Voglauer R, Grillari J (2016) Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 15:744

    Article  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855

    Article  Google Scholar 

  • Wilson KD, Hu S, Venkatasubrahmanyam S, Fu JD, Sun N, Abilez OJ, Baugh JJ, Jia F, Ghosh Z, Li RA, Butte AJ, Wu JC (2010) Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499. Circ Cardiovasc Genet 3:426

    Article  Google Scholar 

  • Wu Q, Chen D, Zuscik MJ, O’Keefe RJ, Rosier RN (2008) Overexpression of Smurf2 stimulates endochondral ossification through upregulation of beta-catenin. J Bone Miner Res 23:552

    Article  Google Scholar 

  • Wu K, Song W, Zhao L, Liu M, Yan J, Andersen MO, Kjems J, Gao S, Zhang Y (2013) MicroRNA functionalized microporous titanium oxide surface by lyophilization with enhanced osteogenic activity. ACS Appl Mater Interfaces 5:2733

    Article  Google Scholar 

  • Xie Q, Wang Z, Zhou H, Yu Z, Huang Y, Sun H, Bi X, Wang Y, Shi W, Gu P, Fan X (2016) The role of miR-135-modified adipose-derived mesenchymal stem cells in bone regeneration. Biomaterials 75:279

    Article  Google Scholar 

  • Xie Q, Wei W, Ruan J, Ding Y, Zhuang A, Bi X, Sun H, Gu P, Wang Z, Fan X (2017) Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration. Sci Rep 7:42840

    Article  Google Scholar 

  • Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu XD (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell 152:82

    Article  Google Scholar 

  • Yang F, Green JJ, Dinio T, Keung L, Cho SW, Park H, Langer R, Anderson DG (2009) Gene delivery to human adult and embryonic cell-derived stem cells using biodegradable nanoparticulate polymeric vectors. Gene Ther 16:533

    Article  Google Scholar 

  • Yau WW, Rujitanaroj PO, Lam L, Chew SY (2012) Directing stem cell fate by controlled RNA interference. Biomaterials 33:2608

    Article  Google Scholar 

  • Yi R, Qin Y, Macara IG, Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011

    Article  Google Scholar 

  • Yi R, O’Carroll D, Pasolli HA, Zhang Z, Dietrich FS, Tarakhovsky A, Fuchs E (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38:356

    Article  Google Scholar 

  • Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452:225

    Article  Google Scholar 

  • Yihai C (2003) Angiogenesis inhibitors and their therapeutic potentials. Adv Exp Med Biol 532:109

    Article  Google Scholar 

  • Yin Q, Gao Y, Zhang Z, Zhang P, Li Y (2011) Bioreducible poly (beta-amino esters)/shRNA complex nanoparticles for efficient RNA delivery. J Control Release 151:35

    Article  Google Scholar 

  • Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228

    Article  Google Scholar 

  • Yoshizuka M, Nakasa T, Kawanishi Y, Hachisuka S, Furuta T, Miyaki S, Adachi N, Ochi M (2016) Inhibition of microRNA-222 expression accelerates bone healing with enhancement of osteogenesis, chondrogenesis, and angiogenesis in a rat refractory fracture model. J Orthop Sci: Off J Jpn Orthop Assoc 21:852

    Article  Google Scholar 

  • Yuan X, Liu H, Huang H, Liu H, Li L, Yang J, Shi W, Liu W, Wu L (2016) The key role of canonical Wnt/β-catenin signaling in cartilage chondrocytes. Curr Drug Targets 17:475

    Article  Google Scholar 

  • Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9:112

    Article  Google Scholar 

  • Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66

    Article  Google Scholar 

  • Zhang M, Ishii A, Nishiyama N, Matsumoto S, Ishii T, Yamasaki Y, Kataoka K (2009) PEGylated calcium phosphate nanocomposites as smart environment-sensitive carriers for siRNA delivery. Adv Mater 21:3520

    Article  Google Scholar 

  • Zhang S, Chen L, Jung EJ, Calin GA (2010) Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87:754

    Article  Google Scholar 

  • Zhang Y, Wang Z, Gemeinhart RA (2013) Progress in microRNA delivery. J Control Release 172:962

    Article  Google Scholar 

  • Zhang Z, Hou C, Meng F, Zhao X, Zhang Z, Huang G, Chen W, Fu M, Liao W (2015) MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2. FEBS Lett 589:3671

    Article  Google Scholar 

  • Zhang X, Li Y, Chen YE, Chen J, Ma PX (2016a) Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun 7:10376

    Article  Google Scholar 

  • Zhang Z, Chen W, Zhang Z, Kang Y, Kang Y, Liao W (2016b) MIR-455-3P and HDACs co-regulate chondrogenesis. Osteoarthr Cartil 24:S224

    Article  Google Scholar 

  • Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16:365

    Article  Google Scholar 

  • Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D (2011) NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci U S A 108:9184

    Article  Google Scholar 

  • Zhou F, Jia X, Yang Y, Yang Q, Gao C, Hu S, Zhao Y, Fan Y, Yuan X (2016) Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomater 43:303

    Article  Google Scholar 

  • Zuo K, Zhi K, Zhang X, Lu C, Wang S, Li M, He B (2015) A dysregulated microRNA-26a/EphA2 axis impairs endothelial progenitor cell function via the p38 MAPK/VEGF pathway. Cell Physiol Biochem 35:477

    Article  Google Scholar 

Download references

Acknowledgments

Work supported by the European Research Council (ERC) Grant Agreement n° 239685 and 665777 and the Science Foundation Ireland (SFI) funded AMBER Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fergal J. O’Brien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Castaño, I.M., Raftery, R.M., Curtin, C.M., Grillari, J., Redl, H., O’Brien, F.J. (2019). microRNA Modulation. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics