Skip to main content

Advances in Immunosuppression

  • Living reference work entry
  • First Online:
Contemporary Heart Transplantation

Part of the book series: Organ and Tissue Transplantation ((OTT))

  • 175 Accesses

Abstract

Immunosuppression in heart transplantation has been managed with a roughly unchanged milieu of therapy over the last decade. In order to continue the advancement of long-term patient outcomes, new therapeutic options should be explored that have enhanced efficacy or reduced toxicity over current agents as well as better ways to monitor current therapeutic options. Additionally, there has been an increased interest in modulating antibody production as a result of increased insight and experience in treating antibody-mediated rejection (AMR). This has also afforded the opportunity to explore novel therapy in patients with either AMR or elevated panel reactive antibodies prior to transplant. In this chapter, advances in maintenance therapy will be discussed including delayed-release tacrolimus, elevating the role of mammalian target of rapamycin (mTOR) inhibitors, and novel targets. Discussion of a wide variety of agents in development is also included, with a focus on effects on antibody production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams AB, Goldstein J, Garrett C et al (2017) Belatacept combined with transient calcineurin inhibitor therapy prevents rejection and promotes improved long-term renal allograft function. Am J Transplant 17: 2922–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrassy J, Hoffman VS, Rentsch M et al (2012) Is cytomegalovirus prophylaxis dispensable in patients receiving an mTOR inhibitor-based immunosuppression? A systematic review and meta-analysis. Transplantation 94:1208–1217

    Article  CAS  PubMed  Google Scholar 

  • Astragraf (tacrolimus XL) (2015) [Package Insert]. Astellas Pharma US, Northbrook

    Google Scholar 

  • Ben Gal T, Israeli M, Yaari V et al (2014) Utility of immune monitoring in heart transplant recipients on everolimus-based immune suppression. Clin Transplant 28: 428–433

    Article  PubMed  Google Scholar 

  • Björck L (2016) IdeS, a bacterial IgG-cleaving proteinase, as a drug in transplantation and autoimmune conditions. J Clin Cell Immunol 7:2

    Article  Google Scholar 

  • Burbach M, Suberbielle C, Brocheriou I et al (2014) Report of the inefficacy of eculizumab in two cases of severe antibody-mediated rejection of renal grafts. Transplantation 98(10):1056–9

    Article  PubMed  Google Scholar 

  • Busque S, Leventhal J, Brennan DC et al (2009) Calcineurin-inhibitor-free immunosuppression based on the JAK inhibitor CP690, 550: a pilot study in de novo kidney allograft recipients. Am J Transplant 9:1936–1945

    Article  CAS  Google Scholar 

  • Durrbach A, Pestana JM, Pearson T et al (2010) A phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant 10:547–557

    Article  CAS  PubMed  Google Scholar 

  • Eisen H, Tuzcu EM, Dorent R et al (2003) Everolimus for the prevention of allograft rejection and vasculopathy in cardiac transplant recipients. N Engl J Med 349:847–858

    Article  CAS  PubMed  Google Scholar 

  • Enderby CY, Habib P, Patel PC et al (2014) Belatacept maintenance in a heart transplant recipient. Transplantation 98:74–75

    Article  Google Scholar 

  • Ensor CR, Yousem SA, Marrari M et al (2017) Proteasome inhibitor carfilzomib-based therapy for antibody-mediated rejection of the pulmonary allograft: use and short-term findings. Am J Transplant 17:1380–1388

    Article  CAS  PubMed  Google Scholar 

  • Envarsus (tacrolimus ER) (2017) [Package Insert]. Veloxis Pharmaceuticals, Edison

    Google Scholar 

  • Florman S, Becker T, Bresnahan B et al (2017) Efficacy and safety outcomes of extended criteria donor kidney by subtype: subgroup analysis of BENEFIT-EXT at 7 years after transplant. Am J Transplant 17:180–190

    Article  CAS  PubMed  Google Scholar 

  • Gupta G, Regmi A, Kumar D et al (2015) Safe conversion from tacrolimus to belatacept in high immunologic risk kidney transplant recipients with allograft dysfunction. Am J Transplant 15:2726–2731

    Article  CAS  PubMed  Google Scholar 

  • Harland R, Klintmalm G, Yang H et al (2015) ASKP1240 in de novo kidney transplant recipients [abstract]. Am J Transplant 15(Suppl 3). http://atcmeetingabstracts.com/abstract/askp1240-in-de-novo-kidney-transplant-recipients/. Accessed 28 Oct 2017

  • Jordan SC, Choi J, Vo A (2015) Kidney transplantation in highly sensitized patients. Br Med Bull 114:113–125

    Article  CAS  PubMed  Google Scholar 

  • Jordan SC, Lorant T, Choi J et al (2017) IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med 377:442–453

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek I, Zaruba MM, Beiras-Fernandez A et al (2013) Tacrolimus with mycophenolate mofetil or sirolimus compared with calcineurin inhibitor-free immunosuppression (sirolimus/mycophenolate mofetil) after heart transplantation: 5-year results. J Heart Lung Transplant 32:277–284

    Article  PubMed  Google Scholar 

  • Karia PS, Azzi JR, Heher EC, Hills VM, Schmults CD (2016) Association of sirolimus use with risk for skin cancer in a mixed-organ cohort of solid-organ transplant recipients with a history of cancer. JAMA Dermatol 152(5):533–540

    Article  PubMed  Google Scholar 

  • Kniepeiss D, Renner W, Trummer O et al (2011) The role of CYP3A5 genotypes in dose requirements of tacrolimus and everolimus after heart transplantation. Clin Transplant 25:146–150

    Article  CAS  PubMed  Google Scholar 

  • Kobashigawa JA, Kiyosaki KK, Patel JK et al (2010) Benefit of immune monitoring in heart transplant patients using ATP production in lymphocytes. J Heart Lung Transplant 29:504–508

    Article  PubMed  Google Scholar 

  • Kowalski R, Post D, Schneider MC et al (2003) Immune cell function testing: an adjunct to therapeutic drug monitoring in transplant patient management. Clin Transplant 17:77–88

    Article  PubMed  Google Scholar 

  • Kowalski RJ, Post DR, Mannon RB et al (2006) Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation 82(5):663–668

    Article  PubMed  Google Scholar 

  • Langone A, Steinberg SM, Gedaly R et al (2015) Switching study of kidney transplant patients with tremor to LCP-TacrO (STRATO): an open-label, multicenter, prospective phase 3b study. Clin Transplant 29(9):796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leca N, Muczynski K (2013) Belimumab (anti-BAFF/BLyS) effective in a case of resistant antibody mediated rejection [abstract]. Am J Transplant 13(Suppl 5). http://atcmeetingabstracts.com/abstract/belimumab-anti-baffblys-effective-in-a-case-of-resistant-antibody-mediated-rejection/. Accessed 20 Dec 2017

  • Lund LH, Khush KK, Cherikh WS et al (2017) The Registry of the International Society for Heart and Lung Transplantation: thirty-fourth adult heart transplantation report – 2017; focus theme: allograft ischemic time. J Heart Lung Transplant 36(10):1037–1046

    Article  PubMed  Google Scholar 

  • MacPhee IAM, Fredericks S, Tai T et al (2004) The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 4:914–919

    Article  CAS  PubMed  Google Scholar 

  • Mancini D, Pinney S, Burkhoff D et al (2003) Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation 108:48–53

    Article  CAS  PubMed  Google Scholar 

  • Moore CA, Iasella CJ, Venkataramanan R et al (2017) Janus kinase inhibition for immunosuppression in solid organ transplantation: is there a role in complex immunologic challenges? Hum Immunol 78:64–71

    Article  CAS  PubMed  Google Scholar 

  • Oetting WS, Schladt DP, Guan W et al (2016) Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A4 alleles. Am J Transplant 16:574–582

    Article  CAS  PubMed  Google Scholar 

  • Okimura K, Maeta K, Kobayahsi N et al (2014) Characterization of ASKP1240, a fully human antibody targeting human CD40 with potent immunosuppressive effects. Am J Transplant 14:1290–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons RF, Vivek K, Redfield RR et al (2010) B-lymphocyte homeostasis and BLyS-directed immunotherapy in transplantation. Transplant Rev 24: 207–221

    Article  Google Scholar 

  • Patel J, Everly M, Chang D et al (2011) Reduction of alloantibodies via proteasome inhibition in cardiac transplantation. J Heart Lung Transplant 30:1320–1326

    Article  PubMed  Google Scholar 

  • Ravaioli M, Neri F, Lazzarotto T et al (2015) Immunosuppression modifications based on an immune response assay: results of a randomized, controlled trial. Transplantation 99:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Sadaka B, Alloway RR, Shields AR et al (2012) Proteasome inhibitor for antibody-mediated allograft rejection. Semin Hematol 49:263–269

    Article  CAS  PubMed  Google Scholar 

  • Sethi S, Choi J, Toyoda M et al (2017) Desensitization: overcoming the immunologic barriers to transplantation. J Immunol Res. https://doi.org/10.1155/2017/6804678

    Article  Google Scholar 

  • Staatz CE, Goodman LK, Tett SE (2010) Effect of CYp3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet 46(3): 141–175

    Article  Google Scholar 

  • Stegall MD, Diwan T, Raghavaiah S et al (2011) Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am J Transplant 11:2405–2413

    Article  CAS  PubMed  Google Scholar 

  • Stegall MD, Morris RE, Alloway RR et al (2016) Developing new immunosuppression for the next generation of transplant recipients: the path forward. Am J Transplant 16:1094–1101

    Article  CAS  PubMed  Google Scholar 

  • Thai NL, Blisard D, Tom K et al (2006) Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: correlation between low T-cell response and infection. Transplantation 82:1649–1652

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Boucher A, Collette S et al (2016) Eculizumab for the treatment of severe antibody-mediated rejection: a case report and review of the literature. Case Rep Transplant 2016:9874261

    Article  Google Scholar 

  • Trofe-Clark J, Brennan DC, West-Thielke P et al (2017) Results of ASERTAA, a randomized prospective crossover pharmacogenetic study of immediate-release versus extended-release tacrolimus in African American kidney transplant recipients. Am J Kidney Dis 20:1–12

    Google Scholar 

  • Vincenti F, Charpentier B, Vanrenterghem Y et al (2010) A phase III study of belatacept based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant 10: 535–546

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F, Tedesco Silva H, Busque S et al (2012) Randomized phase 2b trial of tofacitinib (CP-690, 550) in de novo kidney transplant patients: efficacy, renal function, and safety at 1 year. Am J Transplant 12(9):2446–2456

    Article  CAS  PubMed  Google Scholar 

  • Vincenti F, Silva HT, Busque S et al (2015) Evaluation of the effect of tofacitinib exposure on outcomes in kidney transplant patients. Am J Transplant 15:1644–1653

    Article  CAS  PubMed  Google Scholar 

  • Vo AA, Zeevi A, Choi J et al (2015a) A phase I/II placebo-controlled trial of C1-inhibitor for prevention of antibody-mediated rejection in HLA sensitized patients. Transplantation 99(2):299–308

    Article  CAS  PubMed  Google Scholar 

  • Vo AA, Choi JC, Kim I et al (2015b) A phase I/II trial of interleukin-6 receptor specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation 99:2356–2363

    Article  CAS  PubMed  Google Scholar 

  • Walsh RC, Alloway RR, Girnita AL, Woodle ES (2012) Proteasome inhibitor-based therapy for antibody mediated rejection. Kidney Int 81:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Wojciechowski D, Vincenti F (2013) Tofacitinib in kidney transplanation. Expert Opin Investig Drugs 22(9):1193–9

    Article  CAS  PubMed  Google Scholar 

  • Xeljanz (tofacitinib) (2015) [Package Insert]. Pfizer Labs, New York

    Google Scholar 

  • Zuckermann A, Keogh A, Crespo-Leiro MG et al (2012) Randomized controlled trial of sirolimus conversion in cardiac transplant recipients with renal insufficiency. Am J Transplant 12:2487–2497

    Article  CAS  PubMed  Google Scholar 

  • Zuckermann A, Eisen H, See Tai S et al (2014) Sirolimus conversion after heart transplant: risk factors for acute rejection and predictors of renal function response. Am J Transplant 14:2048–2054

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Horn, E., Demehin, M. (2019). Advances in Immunosuppression. In: Bogar, L., Mountis, M. (eds) Contemporary Heart Transplantation. Organ and Tissue Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-33280-2_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33280-2_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33280-2

  • Online ISBN: 978-3-319-33280-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics