Skip to main content

Methods and Practices in Paleo-Evo-Devo

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Paleo-evo-devo is the discipline studying the developmental biology of fossil organisms and its evolutionary implications. In adopting a paleo-evo-devo approach, fossils have to be understood as once-living organisms, and the developmental patterns of extant organisms have to be comparatively investigated. For some types of fossils, it is comparably easy to investigate ontogeny, as they preserve earlier portions of the process throughout their entire life, for example as growth lines, or as they have been fossilized while bearing offspring inside their bodies. Yet, in most cases the ontogeny of fossil organisms (and also of some extant ones) has to be reconstructed based on plausibility. Major aspects for this approach are increasing differentiation or number of structures as well as continuity in development. Despite the difficulties in reconstructing the ontogenies of fossil organisms, studying fossilized development can provide important insights into the evolution of developmental patterns not available only from the study of extant organisms. Also the workflow in the practical work in paleo-evo-devo is shortly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • De Baets K, Klug C, Korn D, Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806

    Article  PubMed  Google Scholar 

  • Donoghue MJ, Doyle JA, Gauthier J, Kluge AG, Rowe T (1989) The importance of fossils in phylogeny reconstruction. Ann Rev Ecology Syst 20:431–460

    Article  Google Scholar 

  • Donoghue PCJ, Bengston S, Dong XP, Gostling NJ, Huldtgren T, Cunningham JA, Yin C, Yue Z, Oeng F, Stampanoni M (2006) Synchroton X-ray tomographic microscopy of fossil embryos. Nature 442:680–683

    Article  CAS  PubMed  Google Scholar 

  • Edgecombe GD (2010) Palaeomorphology: fossils and the inference of cladistic relationships. Acta Zool 91:72–80

    Article  Google Scholar 

  • Fortey RA, Theron JN (1994) A new Ordovician arthropod, Soomaspis, and the agnostid problem. Palaeontology 37:841–861

    Google Scholar 

  • Hall BK (2002) Palaeontology and evolutionary developmental biology: a science of the nineteenth and twenty-first centuries. Palaeontology 45:647–669

    Article  Google Scholar 

  • Haug JT, Haug C (2015a) Worm Paleo-Evo-Devo – the ontogeny of Ottoia prolifica from the Burgess Shale. Res Rev J Zool Sci 3(1):3–14

    Google Scholar 

  • Haug JT, Haug C (2015b) “Crustacea”: comparative aspects of larval development. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 4: Ecdysozoa II: Crustacea. Springer, Wien, pp 1–37

    Google Scholar 

  • Haug C, Haug JT (2016a) Developmental paleontology and paleo-evo-devo. In: Kliman RM (ed) Encyclopedia of evolutionary biology, vol 1. Academic, Oxford, pp 420–429

    Chapter  Google Scholar 

  • Haug JT, Haug C (2016b) “Intermetamorphic” developmental stages in 150 million-year-old achelatan lobsters – the case of the species tenera Oppel, 1862. Arthropod Struct Dev 45:108–121

    Article  PubMed  Google Scholar 

  • Haug JT, Waloszek D, Haug C, Maas A (2010a) High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Struct Dev 39:154–173

    Article  CAS  PubMed  Google Scholar 

  • Haug JT, Maas A, Waloszek D (2010b) †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth Environ Sci Trans R Soc Edinb 100:311–350

    Google Scholar 

  • Haug C, Van Roy P, Leipner A, Funch P, Rudkin DM, Schöllmann L, Haug JT (2012) A holomorph approach to xiphosuran evolution: a case study on the ontogeny of Euproops. Dev Genes Evol 222:253–268

    Article  PubMed  Google Scholar 

  • Haug JT, Martin JW, Haug C (2015a) A 150-million-year-old crab larva and its implications for the early rise of brachyuran crabs. Nature Comm 6:art.6417

    Google Scholar 

  • Haug JT, Labandeira CC, Santiago-Blay JA, Haug C, Brown S (2015b) Life habits, hox genes, and affinities of a 311 million-year-old holometabolan larva. BMC Evol Biol 15:art.208

    Google Scholar 

  • Haug JT, Haug C, Garwood R (2016a) Evolution of insect wings and development – new details from Palaeozoic nymphs. Biol Rev 91:53–69

    Article  PubMed  Google Scholar 

  • Haug JT, Audo D, Charbonnier S, Palero F, Petit G, Abi Saad P, Haug C (2016b) The evolution of a key character, or how to evolve a slipper lobster. Arthropod Struct Dev 45:97–107

    Article  PubMed  Google Scholar 

  • Horner JR, Goodwin MB (2009) Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PLoS One 4(10):e7626

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas A, Braun A, Dong X, Donoghue PCJ, Müller KJ, Olempska E, Repetski JE, Siveter DJ, Stein M, Waloszek D (2006) The “Orsten” – more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld 15:266–282

    Article  Google Scholar 

  • Minelli A, Fusco G (2008) Evolving pathways. Key themes in evolutionary developmental biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nel A, Roques P, Nel P, Prokin AA, Bourgoin T, Prokop J, Szwedo J, Azar D, Desutter-Granscolas L, Wappler T, Garrouste R, Coty D, Huang D, Engel MS, Kirejtshuk AG (2013) The earliest known holometabolous insects. Nature 503:257–261

    Article  CAS  PubMed  Google Scholar 

  • Nützel A (2014) Larval ecology and morphology in fossil gastropods. Palaeontology 57:479–503

    Article  Google Scholar 

  • Sánchez-Villagra MR (2012) Embryos in deep time. University of California Press, Berkeley

    Book  Google Scholar 

  • Scholtz G (2004) Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea. AA Balkema, Lisse, pp 3–16

    Google Scholar 

  • Scholtz G (2005) Homology and ontogeny: pattern and process in comparative developmental biology. Theory Biosc 124:121–143

    Article  Google Scholar 

  • Shear WA, Kukalová-Peck J (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can J Zool 68:1807–1834

    Article  Google Scholar 

  • Siveter DJ, Siveter DJ, Sutton MD, DEG B (2007) Brood care in a Silurian ostracod. Proc R Soc B Biol Sci 274(1609):465–469

    Article  Google Scholar 

  • Sumrall CD (2008) The origin of Lovén’s law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology. University of Indiana Press, Bloomington, pp 228–241

    Google Scholar 

  • Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33:149–163

    Article  Google Scholar 

  • Sutton M, Rahman I, Garwood R (2014) Techniques for virtual palaeontology. Wiley-Blackwell, Chichester

    Google Scholar 

  • Urdy S, Wilson LAB, Haug JT, Sánchez-Villagra MR (2013) On the unique perspective of paleontology in the study of developmental evolution and biases. Biol Theory 8:293–311

    Article  Google Scholar 

  • Walossek D (1993) The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Lethaia 26:1–318

    Article  Google Scholar 

  • Wilson LAB (2011) The contribution of developmental palaeontology to extensions of evolutionary theory. Acta Zool 94:254–260

    Article  Google Scholar 

  • Zhang X, Siveter DJ, Waloszek D, Maas A (2007) An epipodite-bearing crown-group crustacean from the lower Cambrian. Nature 449:595–598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank curators and collection managers from different museums providing specimens (see figure captions). Furthermore, we are grateful to Roger Frattigiani, Laichingen, for providing the crab megalopa from Solnhofen limestones. JTH was supported by the German Research Foundation (DFG HA 6300/3-1); CH was supported by the LMU through a Bavarian Equal Opportunities Sponsorship (BGF). Both authors would like to thank J.M. Starck, Munich, for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Haug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Haug, C., Haug, J.T. (2017). Methods and Practices in Paleo-Evo-Devo. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics