Skip to main content

Evo-Devo of the Fin-to-Limb Transition

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Tetrapod limbs evolved from paired fins. Although the limbs and fins share similar sets of tissue components, structure, and developmental processes, some characteristics of the skeletal morphology of fins are distinct from those of limbs. Fin rays, the distal-most components of the fin, consist of several types of tissues not seen in tetrapods. The fin ray skeletons of teleosts have the same developmental origin (lateral plate mesoderm, LPM) as that of the basal endoskeleton that also develops in the fin bud. The ectodermal jacket of the fin bud has a ridge along the dorsoventral border called the apical ectodermal ridge (AER), which elongates into the apical fold (AF) during development. Tetrapod limb buds never undergo this transformation, suggesting that epithelial changes might be the key to understanding the evolutionary developmental mechanism behind the fin-to-limb transition. The epithelial transformation involves a change in cell shape, which may have played a role in the fin-to-limb evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahn D, Ho RK (2008) Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implications for the evolution of vertebrate paired appendages. Dev Biol 322:220–233

    Article  CAS  Google Scholar 

  • Akimenko MA, Ekker M (1995) Anterior duplication of the sonic hedgehog expression pattern in the pectoral fin buds of zebrafish treated with retinoic acid. Dev Biol 170:243–247

    Article  CAS  Google Scholar 

  • Bogdanović O, Delfino-Machín M, Nicolás-Pérez M et al (2012) Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev Cell 23:782–795

    Article  Google Scholar 

  • Breau MA, Schneider-Maunoury S (2015) Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev Biol 401:25–36

    Article  CAS  Google Scholar 

  • Coates MI (1996) The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod interrelationships and patterns of skeletal evolution. Trans R Soc Edinb Earth Sci 87:363–421

    Article  Google Scholar 

  • Coates MI (2003) The evolution of paired fins. Theory Biosci 122:266–287

    Article  Google Scholar 

  • Compagno LJ (1973) Interrelationships of living elasmobranchs. Zool J Linnean Soc 53:15–61

    Google Scholar 

  • Dane PJ, Tucker JB (1985) Modulation of epidermal cell shaping and extracellular matrix during caudal fin morphogenesis in the zebra fish Brachydanio rerio. J Embryol Exp Morphol 87:145–161

    CAS  PubMed  Google Scholar 

  • Davis MC, Shubin NH, Force A (2004) Pectoral fin and girdle development in the basal actinopterygians Polyodon spathula and Acipenser transmontanus. J Morphol 262:608–628

    Article  Google Scholar 

  • Davis MC, Dahn RD, Shubin NH (2007) An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447:473–476

    Article  CAS  Google Scholar 

  • Ede BDA, Bellairs R, Bancroft M (1974) A scanning electron microscope study of the early limb-bud in normal and talpid 3 mutant chick embryos. J Embryol Exp Morphol 31:761–785

    CAS  PubMed  Google Scholar 

  • Francillon-Vieillot H, de Buffrénil V, Castanet J et al (1990) Microstructure and mineralization of vertebrate skeletal tissues. In: Skeletal biomineralization: patterns, processes and evolutionary trends. Van Nostrand Reinhold, New York, pp 103–124

    Google Scholar 

  • Freitas R, Gomez-Marin C, Wilson JM et al (2012) Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell 23:1219–1229

    Article  CAS  Google Scholar 

  • Gehrke AR, Schneider I, de la Calle-Mustienes E et al (2015) Deep conservation of wrist and digit enhancers in fish. Proc Natl Acad Sci U S A 112:803–808

    Article  CAS  Google Scholar 

  • Gilbert S, Barresi M (2016) Developmental biology 11th. Sinauer Associates, Sunderland

    Google Scholar 

  • Grandel H, Schulte-Merker S (1998) The development of the paired fins in the zebrafish (Danio rerio). Mech Dev 79:99–120

    Article  CAS  Google Scholar 

  • Grandel H, Draper BW, Schulte-Merker S (2000) Dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development 127:4169–4178

    CAS  PubMed  Google Scholar 

  • Gutzman JH, Graeden EG, Lowery LA et al (2008) Formation of the zebrafish midbrain-hindbrain boundary constriction requires laminin-dependent basal constriction. Mech Dev 125:974–983

    Article  CAS  Google Scholar 

  • Helms J, Thaller C, Eichele G (1994) Relationship between retinoic acid and sonic hedgehog, two polarizing signals in the chick wing bud. Development 120:3267–3274

    CAS  PubMed  Google Scholar 

  • Hirasawa T, Kuratani S (2015) Evolution of the vertebrate skeleton: morphology, embryology, and development. Zool Lett 1:2

    Article  Google Scholar 

  • Hirasawa T, Kuratani S (2018) Evolution of the muscular system in tetrapod limbs. Zool Lett 4:27

    Article  Google Scholar 

  • Johanson Z, Joss J, Boisvert CA et al (2007) Fish fingers: digit homologues in sarcopterygian fish fins. J Exp Zool Part B Mol Dev Evol 308B:757–768

    Article  Google Scholar 

  • Kherdjemil Y, Lalonde RL, Sheth R et al (2016) Evolution of Hoxa11 regulation in vertebrates is linked to the pentadactyl state. Nature 539:89–92

    Article  CAS  Google Scholar 

  • Krauss S, Concordet JP, Ingham PW (1993) A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 75:1431–1444

    Article  CAS  Google Scholar 

  • Lalonde RL, Akimenko MA (2018) Contributions of 5'HoxA/D regulation to actinodin evolution and the fin-to-limb transition. Int J Dev Biol 62:705–716

    Article  CAS  Google Scholar 

  • Lau K, Tao H, Liu H et al (2015) Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nat Cell Biol 17:569–579

    Article  CAS  Google Scholar 

  • Martin AC, Goldstein B (2014) Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141:1987–1998

    Article  CAS  Google Scholar 

  • Nakamura T, Gehrke AR, Lemberg J et al (2016) Digits and fin rays share common developmental histories. Nature 537:225–228

    Article  CAS  Google Scholar 

  • Neumann CJ, Grandel H, Gaffield W et al (1999) Transient establishment of anteroposterior polarity in the zebrafish pectoral fin bud in the absence of sonic hedgehog activity. Development 126:4817–4826

    CAS  PubMed  Google Scholar 

  • Shimada A, Kawanishi T, Kaneko T et al (2013) Trunk exoskeleton in teleosts is mesodermal in origin. Nat Commun 4:1639

    Article  Google Scholar 

  • Shubin NH, Daeschler EB, Jenkins FA (2006) The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440:764–771

    Article  CAS  Google Scholar 

  • Sordino P, van der Hoeven F, Duboule D (1995) Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375:678–681

    Article  CAS  Google Scholar 

  • Takamatsu N, Kurosawa G, Takahashi M et al (2007) Duplicated Abd-B class genes in medaka hoxAa and hoxAb clusters exhibit differential expression patterns in pectoral fin buds. Dev Genes Evol 217:263–273

    Article  CAS  Google Scholar 

  • Thorogood P (1991) The development of the teleost fin and implications for our understanding of tetrapod evolution. In: Hinchliffe J, Hurle J, Summerbell D (eds) Developmental patterning of the vertebrate limb. Springer, Boston, pp 347–354

    Chapter  Google Scholar 

  • Yano T, Tamura K (2013) The making of differences between fins and limbs. J Anat 222:100–113

    Article  Google Scholar 

  • Yano T, Abe G, Yokoyama H et al (2012) Mechanism of pectoral fin outgrowth in zebrafish development. Development 139:2916–2925

    Article  CAS  Google Scholar 

  • Zhang J, Wagh P, Guay D et al (2010) Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466:234–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of Tamura laboratory for helpful discussions on the manuscript. We would also like to thank Editage (www.editage.com) for English language editing. This work was supported by JSPS KAKENHI [grant numbers 18H04756, 18H04811, 18H02446, and 19H03289].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tamura .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tanaka, Y., Kudoh, H., Abe, G., Yonei-Tamura, S., Tamura, K. (2020). Evo-Devo of the Fin-to-Limb Transition. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_193-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_193-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics