Skip to main content

Evo-Devo Lessons from the Reproductive Division of Labor in Eusocial Hymenoptera

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

The reproductive division of labor between highly fecund queens and nonreproductive workers is the hallmark of eusociality. This division of labor is analogous to the germ-soma divide in multicellular organisms, and in this way, the colonies of eusocial species can be conceptualized as “superorganisms.” The developmental mechanisms underlying the nonreproductive phenotype of workers are beginning to be identified in eusocial Hymenoptera (ants, bees, and wasps). The reproductive dimorphism between queens and workers can be understood in terms of “reproductive constraints”: developmental mechanisms that reduce or eliminate the ability of workers to reproduce. These constraints can be grouped into five types that act at different stages of development and differentially affect reproductive potential, activity, and success. The degree of queen-worker dimorphism varies considerably among eusocial insect species, allowing us to explore the developmental mechanisms that underlie the evolutionary origin and elaboration of division of labor in superorganisms. Finally, we highlight several open questions about the evolution of reproductive constraints and their relation to the evolution of complexity at the superorganism level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Boleli IC, Paulino-Simões ZL, Bitondi MMG (1999) Cell death in ovarioles causes permanent sterility in Frieseomelitta vari worker bees. J Morphol 242:271–282

    Article  CAS  Google Scholar 

  • Bonner JT (1993) Dividing the labour in cells and societies. Curr Sci 64(7):459–466

    Google Scholar 

  • Bourke AFG (2011) In: Harvey PH, May RM, Godfray CH, Dunne JA (eds) Principles of social evolution. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Chapter  Google Scholar 

  • Caniglia G (2015) Understanding societies form inside the organisms. Leo Pardi’s work on social dominance in Polistes wasps (1937–1952). J Hist Biol 48(3):455–486

    Article  Google Scholar 

  • Duncan EJ, Hyink O, Dearden PK (2016) Notch signalling mediates reproductive constraint in the adult worker honeybee. Nat Commun 7:12427

    Article  CAS  Google Scholar 

  • Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organises the germ plasm and directs localisation of the posterior determinant nanos. Cell 66:37–50

    Article  CAS  Google Scholar 

  • Giehr J et al (2020) Body size and sperm quality in queen- and worker-produced ant males. J Evol Biol 33:842–849

    Article  Google Scholar 

  • Gobin B et al (2007) Degeneration of sperm reservoir and the loss of mating ability in worker ants. Naturwissenschaften 95:1041–1048

    Article  Google Scholar 

  • Gotoh A, Ito F, Billen J (2013) Vestigial spermatheca morphology in honeybee workers, Apis cerana and Apis mellifera, from Japan. Apidologie 44:133–143

    Article  Google Scholar 

  • Gotoh A et al (2016) Degeneration patterns in the worker spermatheca during morphogenesis in ants. Evol Dev 18(2):96–104

    Article  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–16

    Article  CAS  Google Scholar 

  • Hartfelder K et al (2017) The ovary and its genes – developmental processes underlying the establishment and function of a highly divergent reproductive system in the female castes of the honey bee, Apis mellifera. Apidologie 49:49–70

    Article  Google Scholar 

  • Hsu H, Drummond-Barbosa D (2009) Insulin levels control female germline stem cell maintenance via the niche in Drosophila. PNAS 106(4):1117–1121

    Article  CAS  Google Scholar 

  • Khila A, Abouheif E (2008) Reproductive constraint is a developmental mechanism that maintains social harmony in advanced ant societies. PNAS 105(46):17884–17889

    Article  CAS  Google Scholar 

  • Khila A, Abouheif E (2010) Evaluating the role of reproductive constraints in ant social evolution. Philos Trans R Soc Lond Ser B Biol Sci 365(1540):617–630

    Article  Google Scholar 

  • Klepsatel P et al (2013) Reproductive and post-reproductive life history of wild-caught Drosophila melanogaster under laboratory conditions. J Evol Biol 26:1508–1520

    Article  CAS  Google Scholar 

  • Kramer J, Meunier J (2016) Kin and multilevel selection in social evolution: a never-ending controversy? F1000 Res 5:776

    Article  Google Scholar 

  • Kumar T, Blondel L, Extavour CG (2019) Topology-driven analysis of protein-protein interaction networks detects functional genetic modules regulating reproductive capacity. bioRxiv. https://doi.org/10.1101/852897

  • Kuszewska K, Woyciechowski M (2015) Age at which larvae are orphaned determines their development into typical or rebel workers in the honeybee (Apis mellifera L.). PLoS One 10(4):e0123404

    Article  Google Scholar 

  • Nijhout HF, Wheeler DE (1982) Juvenile hormone and the physiological basis of insect polymorphisms. Q Rev Biol 57:109–133

    Article  CAS  Google Scholar 

  • Pamminger T, Hughes WO (2016) Testing the reproductive groundplan hypothesis in ants. Evolution 71(1):153–159

    Article  Google Scholar 

  • Peeters C, Holldobler B (1995) Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest. PNAS 92(24):10977–10979

    Article  CAS  Google Scholar 

  • Peeters C, Liebig L, Holldobler B (2000) Sexual reproduction by both queens and workers in the ponerine ant Harpegnathos saltator. Insect Soc 47:325–332

    Article  Google Scholar 

  • Robinson GE (1992) Regulation of division of labor in insect societies. Annu Rev Entemol 37:637–665

    Article  CAS  Google Scholar 

  • Ronai I et al (2015) Regulation of oogenesis in honey bee workers via programmed cell death. J Insect Physiol 81:36–41

    Article  CAS  Google Scholar 

  • Sarikaya DP et al (2012) The roles of cell size and cell number in determining ovariole number in Drosophila. Dev Biol 363:279–289

    Article  CAS  Google Scholar 

  • Schmidt Capella IC, Hartfelder K (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee ovary. J Insect Physiol 44(5–6):385–391

    Article  Google Scholar 

  • Shukla S, Chandran S, Gadagkar R (2013) Ovarian developmental variation in the primitively eusocial wasp Ropalidia marginata suggests a gateway to worker ontogeny and the evolution of sociality. J Exp Biol 216:181–187

    Article  Google Scholar 

  • Szathmáry E, Maynard Smith J (1995) The major evolutionary transitions. Nature 374:227–232

    Article  Google Scholar 

  • Tanaka ED, Hartfelder K (2004) The initial stages of oogenesis and their relation to differential fertility in the honey bee castes. Arthropod Struct Dev 33(4):431–442

    Article  CAS  Google Scholar 

  • Villet MH, Crewe RM, Duncan FD (1991) Evolutionary trends in the reproductive biology of ponerine ants. J Nat Hist 25(6):1603–1610

    Article  Google Scholar 

  • Wheeler WM (1911) The ant-colony as an organism. J Morphol 22(2):307–325

    Article  Google Scholar 

  • Wheeler DE (1996) The role of nourishment in oogenesis. Annu Rev Entemol 41:407–431

    Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Wilson EO (2008) One giant leap: how insects achieved altruism and colonial life. Bioscience 58(1):17–25

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab Abouheif .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramsay, C., Lasko, P., Abouheif, E. (2020). Evo-Devo Lessons from the Reproductive Division of Labor in Eusocial Hymenoptera. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_173-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_173-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics