Skip to main content

FDA Premarket Review of Orthopedic Spinal Devices

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Spinal implants are regulated by the Food and Drug Administration (FDA) in the Center for Devices and Radiological Health (CDRH). This chapter focuses on the premarket activities at CDRH that help determine the safety and effectiveness of orthopedic spinal devices prior to reaching the market. The specific topics discussed in this chapter include:

  • FDA organizational structure and medical device classification

  • The main FDA premarket submission types

  • The types of evaluations used to assess the performance of spinal devices prior to reaching the market including mechanical testing, cadaver testing, computational modeling, animal testing, and clinical trials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The electronic code of federal regulations can be accessed here: www.eCFR.gov

  2. 2.

    All medical devices are subjected to general controls which include, for example, registration and listing, medical device reporting, and good manufacturing practices

  3. 3.

    Special controls can include activities such as special labeling requirements, demonstration that the device components are biocompatible, or non-clinical performance testing such as mechanical testing or electromagnetic compatibility

  4. 4.

    Certain types of devices classified into Class III that were in commercial distribution in the United States prior to May 28, 1976 (i.e., preamendment devices), may be cleared through the 510(k) process until the FDA issues an order requiring them to go through the premarket approval process or reclassifying them into Class I or Class II

  5. 5.

    Information on orthopedic HDE approvals can be found in the searchable HDE database on the FDA website: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfHDE/hde.cfm

  6. 6.

    ISO and ASTM standards mentioned in this chapter are published on an annual basis and are available via the organizations’ websites: www.astm.org and www.iso.org

  7. 7.

    Coefficient of variation for a given test result is the standard deviation normalized to the mean. This parameter allows for comparisons of variability across tests

References

  • Abbah SA, Lam CX, Hutmacher DW, Goh JC, Wong H-K (2009) Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials 30:5086–5093

    Article  CAS  PubMed  Google Scholar 

  • Anderson PA, Sasso RC, Rouleau JP, Carlson CS, Goffin J (2004) The Bryan Cervical Disc: wear properties and early clinical results. Spine J 4:S303–S309

    Article  Google Scholar 

  • ASTM Standard F2077 2014 Test methods for intervertebral body fusion devices (2014). ASTM International, West Conshohocken. https://doi.org/10.1520/F2077-14

  • Beaubien BP, Freeman AL, Turner JL, Castro CA, Armstrong WD, Waugh LG, Dryer RF (2010) Evaluation of a lumbar intervertebral spacer with integrated screws as a stand-alone fixation device. J Spinal Disord Tech 23:351–358

    Article  PubMed  Google Scholar 

  • Bianco R-J, Arnoux P-J, Wagnac E, Mac-Thiong J-M, Aubin C-É (2017) Minimizing pedicle screw pullout risks: a detailed biomechanical analysis of screw design and placement. Clinic Spine Surg 30:E226–E232

    Article  Google Scholar 

  • Briski DC et al (2017) Does spanning a lateral lumbar interbody cage across the vertebral ring apophysis increase loads required for failure and mitigate endplate violation. Spine 42:E1158–E1164

    Article  PubMed  Google Scholar 

  • Cain CM, Schleicher P, Gerlach R, Pflugmacher R, Scholz M, Kandziora F (2005) A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Spine 30:2631–2636

    Article  PubMed  Google Scholar 

  • Campbell J, Coombs D, Rao M, Rullkoetter P, Petrella A (2016) Automated finite element meshing of the lumbar spine: verification and validation with 18 specimen-specific models. J Biomech 49:2669–2676

    Article  CAS  PubMed  Google Scholar 

  • Cho W, Wu C, Mehbod AA, Transfeldt EE (2008) Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clin Biomech 23:979–985

    Article  Google Scholar 

  • Cook DJ, Yeager MS, Oh MY, Cheng BC (2015) Lumbar intrafacet bone dowel fixation. Neurosurgery 76:470–478

    Article  PubMed  Google Scholar 

  • Crawford NR, Peles JD, Dickman CA (1998) The spinal lax zone and neutral zone: measurement techniques and parameter comparisons. J Spinal Disord 11:416–429

    Article  CAS  PubMed  Google Scholar 

  • Cunningham BW, Sefter JC, Shono Y, PC MA (1993) Static and cyclical biomechanical analysis of pedicle screw spinal constructs. Spine 18:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Cunningham BW, Orbegoso CM, Dmitriev AE, Hallab NJ, Sefter JC, Asdourian P, PC MA (2003) The effect of spinal instrumentation particulate wear debris: an in vivo rabbit model and applied clinical study of retrieved instrumentation cases. Spine J 3:19–32

    Article  PubMed  Google Scholar 

  • Cunningham BW et al (2004) Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model. In: Arthroplasty of the Spine. Springer, Berlin, pp 59–67

    Chapter  Google Scholar 

  • Cunningham BW, Hallab NJ, Hu N, PC MA (2013) Epidural application of spinal instrumentation particulate wear debris: a comprehensive evaluation of neurotoxicity using an in vivo animal model. J Neurosurg Spine 19:336–350

    Article  PubMed  Google Scholar 

  • Di Martino A, Vaccaro AR, Lee JY, Denaro V, Lim MR (2005) Nucleus pulposus replacement: basic science and indications for clinical use. Spine 30:S16–S22

    Article  PubMed  Google Scholar 

  • Dixon D, Darden B, Casamitjana J, Weissmann KA, Cristobal S, Powell D, Baluch D (2017) Accuracy of a dynamic surgical guidance probe for screw insertion in the cervical spine: a cadaveric study. Eur Spine J 26:1149–1153

    Article  PubMed  Google Scholar 

  • Dreischarf M et al (2014) Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech 47:1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Drespe IH, Polzhofer GK, Turner AS, Grauer JN (2005) Animal models for spinal fusion. Spine J 5:S209–S216

    Article  Google Scholar 

  • Fact Sheet: FDA at a Glance. https://www.fda.gov/AboutFDA/Transparency/Basics/ucm553038.htm. Accessed 27 Feb 2018

  • Fairbank JC, Pynsent PB (2000) The Oswestry disability index. Spine 25:2940–2953

    Article  CAS  PubMed  Google Scholar 

  • FDA (2000) Guidance Document for the Preparation of IDEs for Spinal Systems. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm073772.pdf

  • FDA (2004) Guidance for Industry and FDA Staff: Spinal System 510(k)s. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm072459.htm

  • FDA (2007) FDA Guidance for Industry and FDA Staff – Class II Special Controls Guidance Document: Intervertebral Body Fusion Device. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071408.htm

  • FDA (2008) Guidance for Industry and FDA Staff: Preparation and Review of Investigational Device Exemption Applications (IDEs) for Total Artificial Discs. https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071154.htm

  • FDA (2011) Guidance for Industry and FDA Staff: 30-Day Notices, 135-Day Premarket Approval (PMA) Supplements and 75 Day Humanitarian Device Exemption (HDE) Supplements for Manufacturing Method or Process Changes. https://www.fda.gov/downloads/MedicalDevices/.../ucm080194.pdf

  • FDA (2014a) The 510(k) Program: Evaluating Substantial Equivalence in Premarket Notifications [510(k)] – Guidance for Industry and Food and Drug Administration Staff. http://www.fda.gov/downloads/MedicalDevices/.../UCM284443.pdf

  • FDA (2014b) Guidance for Industry and Food and Drug Administration Staff: Annual Reports for Approved Premarket Approval Applications (PMA). https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm089398.pdf

  • FDA (2016) Reporting of Computational Modeling Studies in Medical Device Submissions – Guidance for Industry and Food and Drug Administration Staff

    Google Scholar 

  • FDA (2017) Deciding When to Submit a 510(k) for a Change to an Existing Device: Guidance for Industry and Food and Drug Administration Staff. https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm514771.pdf

  • Ferrara LA, Secor JL, Jin B-H, Wakefield A, Inceoglu S, Benzel EC (2003) A biomechanical comparison of facet screw fixation and pedicle screw fixation: effects of short-term and long-term repetitive cycling. Spine 28:1226–1234

    PubMed  Google Scholar 

  • Frankel BM, D’Agostino S, Wang C (2007) A biomechanical cadaveric analysis of polymethylmethacrylate-augmented pedicle screw fixation. J Neurosurg 7:47–53

    Google Scholar 

  • Freeman AL, Camisa WJ, Buttermann GR, Malcolm JR (2016) Flexibility and fatigue evaluation of oblique as compared with anterior lumbar interbody cages with integrated endplate fixation. J Neurosurg Spine 24:54–59

    Article  PubMed  Google Scholar 

  • Goel VK et al (2005) Effects of Charite artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol. Spine 30:2755–2764

    Article  PubMed  Google Scholar 

  • Goel VK, Panjabi MM, Patwardhan AG, Dooris AP, Serhan H (2006) Test protocols for evaluation of spinal implants. JBJS 88:103–109

    Google Scholar 

  • Graham J, Estes BT (2009) What standards can (and can’t) tell us about a spinal device. SAS J 3:178–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham JH, Anderson PA, Spenciner DB (2014) Letter to the editor in response to Villa T, La Barbera L, Galbusera F,“Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems”. Spine J 14:3067–3068

    Article  PubMed  Google Scholar 

  • Grauer JN et al (2006) Biomechanics of two-level Charite artificial disc placement in comparison to fusion plus single-level disc placement combination. Spine J 6:659–666

    Article  PubMed  Google Scholar 

  • Hanlon AD, Cook DJ, Yeager MS, Cheng BC (2014) Quantitative analysis of the nonlinear displacement–load behavior of the lumbar spine. J Biomech Eng 136:081009

    Article  Google Scholar 

  • Helgeson MD, Kang DG, Lehman RA, Dmitriev AE, Luhmann SJ (2013) Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J 13:957–965

    Article  PubMed  Google Scholar 

  • Heth JA, Hitchon PW, Goel VK, Rogge TN, Drake JS, Torner JC (2001) A biomechanical comparison between anterior and transverse interbody fusion cages. Spine 26:e261–e267

    Article  CAS  PubMed  Google Scholar 

  • Hitchon PW et al (2000) In vitro biomechanical analysis of three anterior thoracolumbar implants. J Neurosurg Spine 93:252–258

    Article  CAS  Google Scholar 

  • Hsu C-C, Chao C-K, Wang J-L, Hou S-M, Tsai Y-T, Lin J (2005) Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 23:788–794

    Article  PubMed  Google Scholar 

  • Kallemeyn N, Gandhi A, Kode S, Shivanna K, Smucker J, Grosland N (2010) Validation of a C2–C7 cervical spine finite element model using specimen-specific flexibility data. Med Eng Phys 32:482–489

    Article  PubMed  Google Scholar 

  • Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD (2004) Free hand pedicle screw placement in the thoracic spine: is it safe? Spine 29:333–342

    Article  PubMed  Google Scholar 

  • Kornblum MB, Turner AW, Cornwall GB, Zatushevsky MA, Phillips FM (2013) Biomechanical evaluation of stand-alone lumbar polyether-ether-ketone interbody cage with integrated screws. Spine J 13:77–84

    Article  PubMed  Google Scholar 

  • Kotani Y et al (2002) Artificial intervertebral disc replacement using bioactive three-dimensional fabric: design, development, and preliminary animal study. Spine 27:929–935

    Article  PubMed  Google Scholar 

  • Kuzhupilly RR, Lieberman IH, McLain RF, Valdevit A, Kambic H, Richmond BJ (2002) In vitro stability of FRA spacers with integrated crossed screws for anterior lumbar interbody fusion. Spine 27:923–928

    Article  PubMed  Google Scholar 

  • Labrom RD, Tan J-S, Reilly CW, Tredwell SJ, Fisher CG, Oxland TR (2005) The effect of interbody cage positioning on lumbosacral vertebral endplate failure in compression. Spine 30:E556–E561

    Article  PubMed  Google Scholar 

  • Lehman RA Jr, Polly DW Jr, Kuklo TR, Cunningham B, Kirk KL, Belmont PJ Jr (2003) Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine 28:2058–2065

    Article  PubMed  Google Scholar 

  • Lu WW, Zhu Q, Holmes AD, Luk K, Zhong S, Leong C (2000) Loosening of sacral screw fixation under in vitro fatigue loading. J Orthop Res 18:808–814

    Article  CAS  PubMed  Google Scholar 

  • Luo J et al (2017) The accuracy of the lateral vertebral notch-referred pedicle screw insertion technique in subaxial cervical spine: a human cadaver study. Arch Orthop Trauma Surg 137:517–522

    Article  PubMed  Google Scholar 

  • Ma T, Xu Y-Q, Cheng Y-B, Jiang M-Y, Xu X-M, Xie L, Lu S (2012) A novel computer-assisted drill guide template for thoracic pedicle screw placement: a cadaveric study. Arch Orthop Trauma Surg 132:65–72

    Article  PubMed  Google Scholar 

  • Mirza S, Konodi M, Martin B, Spratt K (2011) Safety and functional outcome assessment in spine surgery. Orthop Knowl Update Spine 4:589–606

    Google Scholar 

  • Nagaraja S, Palepu V (2016) Comparisons of anterior plate screw pullout strength between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae. J Biomech Eng 138:104505

    Article  Google Scholar 

  • Nagaraja S, Palepu V, Peck JH, Helgeson MD (2015) Impact of screw location and endplate preparation on pullout strength for anterior plates and integrated fixation cages the. Spine Journal 15(11):2425–2432

    Article  PubMed  Google Scholar 

  • Newcomb AG, Baek S, Kelly BP, Crawford NR (2017) Effect of screw position on load transfer in lumbar pedicle screws: a non-idealized finite element analysis. Comput Meth Biomech Biomed Eng 20:182–192

    Article  Google Scholar 

  • O’Leary P et al (2005) Response of Charite total disc replacement under physiologic loads: prosthesis component motion patterns. Spine J 5:590–599

    Article  PubMed  Google Scholar 

  • Oxland TR, Lund T (2000) Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J 9:S095–S101

    Article  PubMed Central  Google Scholar 

  • Palepu V, Peck JH, Simon DD, Helgeson MD, Nagaraja S (2017) Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study. J Neurosurg Spine 26:524–531

    Article  PubMed  Google Scholar 

  • Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. Concept Framew Spine 13:1129–1134

    CAS  Google Scholar 

  • Patwardhan AG et al (2003) Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. J Orthop Res 21:540–546

    Article  PubMed  Google Scholar 

  • Peck JH, Sing DC, Nagaraja S, Peck DG, Lotz JC, Dmitriev AE (2017) Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration. J Biomech 54:26–32

    Article  PubMed  Google Scholar 

  • Peck JH, Kavlock KD, Showalter BL, Ferrell BM, Peck DG, Dmitriev AE (2018) Mechanical performance of lumbar intervertebral body fusion devices: an analysis of data submitted to the Food and Drug Administration. J Biomech 78:87–93

    Article  PubMed  Google Scholar 

  • Pfeiffer M, Hoffman H, Goel V, Weinstein J, Griss P (1997) In vitro testing of a new transpedicular stabilization technique. Eur Spine J 6:249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pishnamaz M et al (2017) The quantity of bone cement influences the anchorage of augmented pedicle screws in the osteoporotic spine: a biomechanical human cadaveric study. Clin Biomech 52:14–19

    Article  Google Scholar 

  • Pitzen T, Geisler FH, Matthis D, Müller-Storz H, Steudel W-I (2000) Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J 9:571–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polikeit A, Ferguson SJ, Nolte LP, Orr TE (2003) Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J 12:413–420

    Article  PubMed  Google Scholar 

  • Rivard CH, Rhalmi S, Coillard C (2002) In vivo biocompatibility testing of peek polymer for a spinal implant system: a study in rabbits. J Biomed Mater Res A 62:488–498

    Article  CAS  Google Scholar 

  • Ryken TC, Clausen JD, Traynelis VC, Goel VK (1995) Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg 83:324–329

    Article  PubMed  Google Scholar 

  • Thompson JD, Benjamin JB, Szivek JA (1997) Pullout strengths of cannulated and noncannulated cancellous bone screws. Clin Orthop Relat Res 341:241–249

    Article  Google Scholar 

  • Trahan J, Morales E, Richter EO, Tender GC (2014) The effects of lumbar facet dowels on joint stiffness: a biomechanical study. Ochsner J 14:44–50

    PubMed  PubMed Central  Google Scholar 

  • Trautwein FT, Lowery GL, Wharton ND, Hipp JA, Chomiak RJ (2010) Determination of the in vivo posterior loading environment of the Coflex interlaminar-interspinous implant. Spine J 10:244–251

    Article  PubMed  Google Scholar 

  • Vadapalli S, Robon M, Biyani A, Sairyo K, Khandha A, Goel VK (2006a) Effect of lumbar interbody cage geometry on construct stability: a cadaveric study. Spine 31:2189–2194

    Article  PubMed  Google Scholar 

  • Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA (2006b) Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine 31:E992–E998

    Article  PubMed  Google Scholar 

  • Vernon H, Mior S (1991) The Neck Disability Index: a study of reliability and validity. J Manip Physiol Ther 14:409–415

    CAS  Google Scholar 

  • Villa T, La Barbera L, Galbusera F (2014) Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems. Spine J 14:695–704

    Article  PubMed  Google Scholar 

  • Voronov LI et al (2014) Biomechanical characteristics of an integrated lumbar interbody fusion device. Int J Spine Surg 8. https://doi.org/10.14444/1001

    Article  PubMed Central  Google Scholar 

  • Wagnac E, Arnoux P-J, Garo A, Aubin C-E (2012) Finite element analysis of the influence of loading rate on a model of the full lumbar spine under dynamic loading conditions. Med Biol Eng Comput 50:903–915

    Article  PubMed  Google Scholar 

  • Wang S-T, Goel VK, Fu C-Y, Kubo S, Choi W, Liu C-L, Chen T-H (2005) Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study. Spine 30:62–67

    Article  PubMed  Google Scholar 

  • Wilke H-J, Wenger K, Claes L (1998a) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998b) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katherine Kavlock , Srinidhi Nagaraja or Jonathan Peck .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kavlock, K., Nagaraja, S., Peck, J. (2020). FDA Premarket Review of Orthopedic Spinal Devices. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics