Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Channel Modeling of Microscale Terahertz Communication

  • Chong Han
  • Yi Chen
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_228-1

Synonyms

Definition

Channel modeling is the characterization of EM wave propagation in a channel, in the forms of channel impulse response and channel transfer function. The channel impulse response is the received signal that propagates through a wireless channel when the transmitted signal is an impulse, while the channel transfer function is the Fourier transformation of the channel impulse response. The channel model depends on distance, frequency, time, and propagation medium.

Historical Background

Terahertz band communication (0.1–10 THz) is envisioned as a key wireless technology to satisfy the growing demand for wireless Terabit-per-second (Tbps) links, by alleviating the spectrum scarcity. Channel modeling that characterizes the THz band is the fundamental of the designs for physical layer and data link layer in the THz communication systems. J.M. Jornet modeled the line-of-sight (LoS) THz channel in nanonetworks and detailedly analyzed the effect of...

This is a preview of subscription content, log in to check access.

References

  1. Ai B, Guan K, He RS, Li JZ, Li GK, He D, Zhong ZD, Huq KMS (2017) On indoor millimeter wave massive MIMO channels: measurement and simulation. IEEE J Sel Areas Commun 35(7):1678–1690CrossRefGoogle Scholar
  2. Akdeniz MR, Liu Y, Samimi MK, Sun S, Rangan S, Rappaport TS, Erkip E (2014) Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun 32(6):1164–1179CrossRefGoogle Scholar
  3. Chen Y, Han C (2018) Channel modeling and analysis for wireless networks-on-chip communications in the millimeter wave and terahertz bands. In: IEEE INFOCOM 2018 Workshops. IEEE, HonoluluGoogle Scholar
  4. Han C, Akyildiz IF (2017) Three-dimensional end-to-end modeling and analysis for graphene-enabled Terahertz band communications. IEEE Trans Veh Technol 66(7):5626–5634CrossRefGoogle Scholar
  5. Han C, Chen Y (2018) Propagation modeling for wireless communications in the terahertz band. IEEE Commun Mag 56(6):96–101CrossRefGoogle Scholar
  6. Han C, Bicen AO, Akyildiz IF (2015) Multi-ray channel modeling and wideband characterization for wireless communications in the Terahertz band. IEEE Trans Wirel Commun 14(5):2402–2412CrossRefGoogle Scholar
  7. Jornet JM, Akyildiz IF (2010) Channel capacity of electromagnetic nanonetworks in the Terahertz band. In: Proceedings of 2010 IEEE International Conference on Communications, pp 1–6, Cape TownGoogle Scholar
  8. Kim S, Zajić A (2016) Statistical modeling and simulation of short-range device-to-device communication channels at sub-THz frequencies. IEEE Trans Wirel Commun 15(9):6423–6433CrossRefGoogle Scholar
  9. Molisch AF (2004) A generic model for MIMO wireless propagation channels in macro- and microcells. IEEE Signal Process Lett 52(1):61–71MathSciNetCrossRefGoogle Scholar
  10. Priebe S, Kurner T (2013) Stochastic modeling of THz indoor radio channels. IEEE Trans Wirel Commun 12(9):4445–4455CrossRefGoogle Scholar
  11. Priebe S, Jacob M, Kuerner T (2011) AoA, AoD and ToA characteristics of scattered multipath clusters for THz indoor channel modeling. In: Proceedings of 17th Europe an Wireless 2011 – Sustainable Wireless Technologies, Vienna, pp 1–9Google Scholar
  12. Thiel M, Sarabandi K (2008) A hybrid method for indoor wave propagation modeling. IEEE Trans Antennas Propag. 56(8):2703–2709CrossRefGoogle Scholar
  13. Wallace JW, Jensen MA (2002) Modeling the indoor MIMO wireless channel. IEEE Trans Antennas Propag 50(5):591–599CrossRefGoogle Scholar
  14. Wu S, Wang CX, Haas H, Aggoune EHM, Alwakeel MM, Ai B (2015) A non-stationary wideband channel model for massive MIMO communication systems. IEEE Trans Wirel Commun 14(3):1434–1446CrossRefGoogle Scholar
  15. You L, Gao X, Li GY, Xia XG, Ma N (2017) BDMA for millimeter-Wave/Terahertz massive MIMO transmission with per-beam synchronization. IEEE J Sel Areas Commun 35(7):1550–1563CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of Michigan-Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)Shanghai Jiao Tong UniversityShanghaiChina

Section editors and affiliations

  • Adam Noel
    • 1
  1. 1.University of Warwick, UKWarwickUK