Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Millimeter Wave Massive MIMO

  • Wei Xu
  • Yongming Huang
  • Ming Xiao
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_114-1



Millimeter wave massive multiple-input multiple-output (MIMO) is a wireless communication technique that transmits and receives millimeter-length electromagnetic wave signals through massive antenna arrays at transmitters and receivers. Multiantenna arrays in MIMO enable simultaneous transmissions of multiple data streams through wireless channels. In most cases, massive MIMO implicitly implies that multiple users are served simultaneously, that is, a multiuser massive MIMO. If only the transmitter deploys a multiantenna array while each receiver equips a single antenna, the terminology MIMO refers to, more formally, multiple-input single-output (MISO). If only the receiver deploys an antenna array while the transmitter equips a single antenna, the terminology MIMO refers to, more formally, single-input multiple-output (SIMO). In literature, millimeter wave massive MIMO can also represent millimeter wave massive MISO or millimeter...

This is a preview of subscription content, log in to check access.


  1. Ayach O et al (2014) Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun 13(3):1499–1513CrossRefGoogle Scholar
  2. Brady J, Behdad N, Sayeed A (2013) Beamspace MIMO for millimeter-wave communications: system architecture, modeling, analysis, and measurements. IEEE Trans Antennas Propag 61(7):3814–3827CrossRefGoogle Scholar
  3. Emerson D (1997) The work of Jagadis Chandra Bose: 100 years of mm-wave research. In: IEEE MTT-S international microwave symposium digest, DenverGoogle Scholar
  4. Foschini G (1996) Layered space–time architecture for wireless communication in a fading environment when using multiple antennas. Labs Syst Tech J Bell 1:41–59CrossRefGoogle Scholar
  5. Foschini G, Gans M (1998) On limits of wireless communications in a fading environment when using multiple antennas. Wirel Pers Commun 6(3):311–335CrossRefGoogle Scholar
  6. He S, Wang J, Huang Y, Ottersten B, Hong W (2017) Codebook based hybrid precoding for millimeter wave multiuser systems. IEEE Trans Signal Process 65(7):5289–5304MathSciNetCrossRefGoogle Scholar
  7. Heath R et al (2016) An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Sign Proces 10(3):436–453MathSciNetCrossRefGoogle Scholar
  8. Huang Y, Zhang J, Xiao M (2018) Constant envelope hybrid precoding for directional millimeter-wave communications. IEEE J Sel Areas CommunGoogle Scholar
  9. Liang L, Xu W, Dong X (2014) Low-complexity hybrid precoding in massive multiuser MIMO systems. IEEE Wireless Commun Lett 3(6):653–656CrossRefGoogle Scholar
  10. Liu J, Xu J, Xu W, Jin S, Dong X (2016) Multiuser massive MIMO relaying with mixed-ADC receiver. IEEE Signal Process Lett 24(1):76–80CrossRefGoogle Scholar
  11. Marzetta T (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans Wirel Commun 9(11):3590–3600CrossRefGoogle Scholar
  12. Ngo H, Larsson E, Marzetta T (2013) Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans Commun 61(4):1436–1449CrossRefGoogle Scholar
  13. Rappaport T et al (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349CrossRefGoogle Scholar
  14. Rappaport T et al (2017) Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Trans Antennas Propag 65(12):6213–6230CrossRefGoogle Scholar
  15. Rusek F et al (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 30(1):40–60CrossRefGoogle Scholar
  16. Saxena A, Fijalkow I, Swindlehurst A (2017) Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink. IEEE Trans Signal Process 65(17):4624–4463MathSciNetCrossRefGoogle Scholar
  17. Wi-Fi Alliance (2016) Wi-Fi Certificated WiGig: Wi-Fi expands to 60 GHz. https://www.wi-fi.org/
  18. Xiao Z, Xia P, Xia X (2016) Enabling UAV cellular with millimeter-wave communication: potentials and approaches. IEEE Commun Mag 54(5):66–73CrossRefGoogle Scholar
  19. Xiao M et al (2017) Millimeter wave communications for future mobile networks. IEEE J Sel Areas Commun 35(9):1909–1935CrossRefGoogle Scholar
  20. Xu W, Liu J, Jin S, Dong X (2017) Spectral and energy efficiency of multi-pair massive MIMO relay network with hybrid processing. IEEE Trans Commun 65(9):3794–3809CrossRefGoogle Scholar
  21. Xue C, He S, Huang Y, Wu Y, Yang L (2017) An efficient beam-training scheme for the optimally designed subarray structure in mmWave LoS MIMO systems. EURASIP J Wirel Commun Netw 2017:31CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Southeast UniversityNanjingChina
  2. 2.KTH Royal Institute of TechnologyStockholmSweden

Section editors and affiliations

  • Ming Xiao
    • 1
  1. 1.Department of Information Science and Engineering, EECSRoyal Institute of Technology, KTHStockholmSweden