Skip to main content

Millimeter Wave Channel Access

  • Living reference work entry
  • First Online:
Encyclopedia of Wireless Networks
  • 149 Accesses

Synonyms

Millimeter wave multiple access

Definition

Millimeter wave (mmWave) channel access is the technology that enables more than one users connected to the same system resource block for concurrent transmission in wireless communications networks operating at mmWave band.

Historical Background

Channel-access technologies are used for supporting multiple-user wireless communication over networks. Several fundamental types of channel access schemes have been widely investigated in Sub-6 GHz microwave wireless communications. For example, in frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA), multiple users utilize different frequency bands, time slots, and codes, to establish their own links with the base station (BS), respectively (Goldsmith 2005). These orthogonal multiple access (OMA) technologies have been already utilized in Sub-6 GHz communications systems such as 3G/4G mobile communications systems. They...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • 802.11ad 2012 – IEEE Standard for Information technology – Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. [Online] Available: http://ieeexplore.ieee.org/document/6178212/

  • Alkhateeb A, Leus G, Heath RW (2015) Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun 14(11):6481–6494

    Article  Google Scholar 

  • Barati CN et al (2015) Directional cell discovery in millimeter wave cellular networks. IEEE Trans Wirel Commun 14(12):6664–6678

    Article  Google Scholar 

  • Baykas T et al (2011) IEEE 802.15. 3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun Mag 49(7):114–121

    Article  Google Scholar 

  • Complete Proposal for IEEE 802.11aj (45 GHz). [Online] Available: https://mentor.ieee.org/802.11/documents?is_dcn=0707

  • Dai L, Wang B, Yuan Y, Han S, L IC, Wang Z (2015) Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag 53(9):74–81

    Article  Google Scholar 

  • Desai V, Krzymien L, Sartori P, Xiao W, Soong A, Alkhateeb A (2014) Initial beamforming for mmWave communications. In: Proceedings of 48th Asilomar conference signals, system and computers. pp 1926–1930

    Google Scholar 

  • Ding Z, Yang Z, Fan P, Poor HV (2014) On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett 21(12):1501–1505

    Article  Google Scholar 

  • Ding Z, Fan P, Poor HV (2017) Random beamforming in millimeter-wave NOMA networks. IEEE Access 5:7667–7681

    Article  Google Scholar 

  • Goldsmith A (2005) Wireless communications. Cambridge University Press, New York

    Book  Google Scholar 

  • Hany A, Widmer J (2017) Extending the IEEE 802.11 ad model: scheduled access, spatial reuse, clustering, and relaying

    Google Scholar 

  • He S, Wang J, Huang Y, Ottersten B, Hong W (2017a) Codebook based hybrid precoding for millimeter wave multiuser systems. IEEE Trans Signal Process 65(20):5289–5304

    Article  MathSciNet  Google Scholar 

  • He S, Wu Y et al (2017b) Joint optimization of analog beam and user scheduling for millimeter wave communications. IEEE Commun Lett 21(12):2638–2641

    Article  Google Scholar 

  • Hong W, He S, Wang H, Yang G, Huang Y, Chen J, Yang L (2018) An overview of China millimeter-wave multiple gigabit wireless local area network system. IEICE Trans Commun 101(2):262–276

    Article  Google Scholar 

  • Huang Y, Zhang C, Wang J, Jing Y, Yang L, You X Signal processing for MIMO-NOMA: present and future challenges. IEEE Wireless Commun Mag, to be published. [Online] Available: https://arxiv.org/abs/1802.00754

  • Jeong C, Park J, Yu H (2015) Random access in millimeter-wave beamforming cellular networks: issues and approaches. IEEE Commun Mag 53(1):180–185

    Article  Google Scholar 

  • Li Z, Han S, Molisch AF (2017) Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink. IEEE Trans Wirel Commun 16(7):4288–4303

    Article  Google Scholar 

  • Naqvi SAR, Hassan SA (2016) Combining NOMA and mmWave technology for cellular communication. In: Proceedings of the IEEE vehicular technology conference (VTC Fall)

    Google Scholar 

  • Pisinger D (2005) Where are the hard knapsack problems? Comput Oper Res 32:2271–2284

    Article  MathSciNet  Google Scholar 

  • Polese M, Giordani M, Mezzavilla M, Rangan S, Zorzi M (2017) Improved handover through dual connectivity in 5G mmWave mobile networks. IEEE J Sel Areas Commun 35(9):2069–2084

    Article  Google Scholar 

  • Qiao J, Cai LX, Shen X, Mark JW (2012) STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In: 2012 IEEE International Conference on Communications (ICC)

    Google Scholar 

  • Roy RH III Ottersten B Spatial division multiple access wireless communication systems, U.S. Patent 5515378, 7 May 1991

    Google Scholar 

  • Rusek F et al (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 30(1):40–60

    Article  Google Scholar 

  • Shokri-Ghadikolaei H, Fischione C, Fodor G, Popovski P, Zorzi M (2015) Millimeter wave cellular networks: a MAC layer perspective. IEEE Trans Commun 63(10):3437–3458

    Article  Google Scholar 

  • Sum C, Lan Z, Funada R, Wang J, Baykas T, Rahman MA, Harada H (2009) Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE J Sel Areas Commun 27(8):1379–1389

    Article  Google Scholar 

  • Sun S, Rappaport TS, Heath RW, Nix A, Rangan S (2016) MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag 52(12):110–121

    Article  Google Scholar 

  • Technical Specifications and Technical Reports for a UTRAN-based 3GPP system, 3GPP TR 21.101

    Google Scholar 

  • Wang J, Peng Q, Huang Y, Wang H, You X (2017a) Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process Lett 24(9):1323–1327

    Article  Google Scholar 

  • Wang B, Dai L, Wang Z, Ge N, Zhou S (2017b) Spectrum and energy efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J Sel Areas Commun 35(10):2370–2382

    Article  Google Scholar 

  • Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: enhancements for very high throughput for operation in bands below 6GHz, standard IEEE P802.11ac, Draft 0.1, IEEE Computer Society, Jan 2011

    Google Scholar 

  • Xiao Z, Dai L, Xia P, Choi J, Xia X Millimeter-wave communication with non-orthogonal multiple access for 5G, IEEE Wireless Commun Mag, to be published. [Online] Available: https://arxiv.org/abs/1709.07980

  • Zhang C, Jing Y, Huang Y, Yang L (2017a) Performance scaling law for multi-cell multi-user massive MIMO. IEEE Trans Veh Technol 66(11):9890–9903

    Article  Google Scholar 

  • Zhang C, Huang Y, Jing Y, Jin S, Yang L (2017b) Sum-rate analysis for massive MIMO downlink with joint statistical beamforming and user scheduling. IEEE Trans Wirel Commun 16:2181–2194

    Article  Google Scholar 

  • Zhang D, Zhou Z, Xu C, Zhang Y, Rodriguez J, Sato T (2017c) Capacity analysis of non-orthogonal multiple access with mmwave massive MIMO systems. IEEE J Sel Areas Commun 35(7):1606–1618

    Article  Google Scholar 

  • Zhang C, Jing Y, Huang Y, Yang L Interleaved training and training-based transmission design for hybrid massive antenna downlink. J Select Topics Signal Process, online published. https://doi.org/10.1109/JSTSP.2018.2818648

  • Zhu J, Wang J, Huang Y, He S, You X, Yang L (2017) On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J Sel Areas Commun 35(12):2744–2757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Huang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, C., Huang, Y., Xia, Y. (2018). Millimeter Wave Channel Access. In: Shen, X., Lin, X., Zhang, K. (eds) Encyclopedia of Wireless Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-32903-1_113-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32903-1_113-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32903-1

  • Online ISBN: 978-3-319-32903-1

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics