Encyclopedia of Wireless Networks

Living Edition
| Editors: Xuemin (Sherman) Shen, Xiaodong Lin, Kuan Zhang

Millimeter Wave Channel Access

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-32903-1_113-1

Synonyms

Definition

Millimeter wave (mmWave) channel access is the technology that enables more than one users connected to the same system resource block for concurrent transmission in wireless communications networks operating at mmWave band.

Historical Background

Channel-access technologies are used for supporting multiple-user wireless communication over networks. Several fundamental types of channel access schemes have been widely investigated in Sub-6 GHz microwave wireless communications. For example, in frequency division multiple access (FDMA), time division multiple access (TDMA), and code division multiple access (CDMA), multiple users utilize different frequency bands, time slots, and codes, to establish their own links with the base station (BS), respectively (Goldsmith 2005). These orthogonal multiple access (OMA) technologies have been already utilized in Sub-6 GHz communications systems such as 3G/4G mobile communications systems. They...
This is a preview of subscription content, log in to check access.

References

  1. 802.11ad 2012 – IEEE Standard for Information technology – Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. [Online] Available: http://ieeexplore.ieee.org/document/6178212/
  2. Alkhateeb A, Leus G, Heath RW (2015) Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun 14(11):6481–6494CrossRefGoogle Scholar
  3. Barati CN et al (2015) Directional cell discovery in millimeter wave cellular networks. IEEE Trans Wirel Commun 14(12):6664–6678CrossRefGoogle Scholar
  4. Baykas T et al (2011) IEEE 802.15. 3c: the first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun Mag 49(7):114–121CrossRefGoogle Scholar
  5. Complete Proposal for IEEE 802.11aj (45 GHz). [Online] Available: https://mentor.ieee.org/802.11/documents?is_dcn=0707
  6. Dai L, Wang B, Yuan Y, Han S, L IC, Wang Z (2015) Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun Mag 53(9):74–81CrossRefGoogle Scholar
  7. Desai V, Krzymien L, Sartori P, Xiao W, Soong A, Alkhateeb A (2014) Initial beamforming for mmWave communications. In: Proceedings of 48th Asilomar conference signals, system and computers. pp 1926–1930Google Scholar
  8. Ding Z, Yang Z, Fan P, Poor HV (2014) On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process Lett 21(12):1501–1505CrossRefGoogle Scholar
  9. Ding Z, Fan P, Poor HV (2017) Random beamforming in millimeter-wave NOMA networks. IEEE Access 5:7667–7681CrossRefGoogle Scholar
  10. Goldsmith A (2005) Wireless communications. Cambridge University Press, New YorkCrossRefGoogle Scholar
  11. Hany A, Widmer J (2017) Extending the IEEE 802.11 ad model: scheduled access, spatial reuse, clustering, and relayingGoogle Scholar
  12. He S, Wang J, Huang Y, Ottersten B, Hong W (2017a) Codebook based hybrid precoding for millimeter wave multiuser systems. IEEE Trans Signal Process 65(20):5289–5304MathSciNetCrossRefGoogle Scholar
  13. He S, Wu Y et al (2017b) Joint optimization of analog beam and user scheduling for millimeter wave communications. IEEE Commun Lett 21(12):2638–2641CrossRefGoogle Scholar
  14. Hong W, He S, Wang H, Yang G, Huang Y, Chen J, Yang L (2018) An overview of China millimeter-wave multiple gigabit wireless local area network system. IEICE Trans Commun 101(2):262–276CrossRefGoogle Scholar
  15. Huang Y, Zhang C, Wang J, Jing Y, Yang L, You X Signal processing for MIMO-NOMA: present and future challenges. IEEE Wireless Commun Mag, to be published. [Online] Available: https://arxiv.org/abs/1802.00754
  16. Jeong C, Park J, Yu H (2015) Random access in millimeter-wave beamforming cellular networks: issues and approaches. IEEE Commun Mag 53(1):180–185CrossRefGoogle Scholar
  17. Li Z, Han S, Molisch AF (2017) Optimizing channel-statistics-based analog beamforming for millimeter-wave multi-user massive MIMO downlink. IEEE Trans Wirel Commun 16(7):4288–4303CrossRefGoogle Scholar
  18. Naqvi SAR, Hassan SA (2016) Combining NOMA and mmWave technology for cellular communication. In: Proceedings of the IEEE vehicular technology conference (VTC Fall)Google Scholar
  19. Pisinger D (2005) Where are the hard knapsack problems? Comput Oper Res 32:2271–2284MathSciNetCrossRefGoogle Scholar
  20. Polese M, Giordani M, Mezzavilla M, Rangan S, Zorzi M (2017) Improved handover through dual connectivity in 5G mmWave mobile networks. IEEE J Sel Areas Commun 35(9):2069–2084CrossRefGoogle Scholar
  21. Qiao J, Cai LX, Shen X, Mark JW (2012) STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks. In: 2012 IEEE International Conference on Communications (ICC)Google Scholar
  22. Roy RH III Ottersten B Spatial division multiple access wireless communication systems, U.S. Patent 5515378, 7 May 1991Google Scholar
  23. Rusek F et al (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag 30(1):40–60CrossRefGoogle Scholar
  24. Shokri-Ghadikolaei H, Fischione C, Fodor G, Popovski P, Zorzi M (2015) Millimeter wave cellular networks: a MAC layer perspective. IEEE Trans Commun 63(10):3437–3458CrossRefGoogle Scholar
  25. Sum C, Lan Z, Funada R, Wang J, Baykas T, Rahman MA, Harada H (2009) Virtual time-slot allocation scheme for throughput enhancement in a millimeter-wave multi-Gbps WPAN system. IEEE J Sel Areas Commun 27(8):1379–1389CrossRefGoogle Scholar
  26. Sun S, Rappaport TS, Heath RW, Nix A, Rangan S (2016) MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag 52(12):110–121CrossRefGoogle Scholar
  27. Technical Specifications and Technical Reports for a UTRAN-based 3GPP system, 3GPP TR 21.101Google Scholar
  28. Wang J, Peng Q, Huang Y, Wang H, You X (2017a) Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process Lett 24(9):1323–1327CrossRefGoogle Scholar
  29. Wang B, Dai L, Wang Z, Ge N, Zhou S (2017b) Spectrum and energy efficient beamspace MIMO-NOMA for millimeter-wave communications using lens antenna array. IEEE J Sel Areas Commun 35(10):2370–2382CrossRefGoogle Scholar
  30. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: enhancements for very high throughput for operation in bands below 6GHz, standard IEEE P802.11ac, Draft 0.1, IEEE Computer Society, Jan 2011Google Scholar
  31. Xiao Z, Dai L, Xia P, Choi J, Xia X Millimeter-wave communication with non-orthogonal multiple access for 5G, IEEE Wireless Commun Mag, to be published. [Online] Available: https://arxiv.org/abs/1709.07980
  32. Zhang C, Jing Y, Huang Y, Yang L (2017a) Performance scaling law for multi-cell multi-user massive MIMO. IEEE Trans Veh Technol 66(11):9890–9903CrossRefGoogle Scholar
  33. Zhang C, Huang Y, Jing Y, Jin S, Yang L (2017b) Sum-rate analysis for massive MIMO downlink with joint statistical beamforming and user scheduling. IEEE Trans Wirel Commun 16:2181–2194CrossRefGoogle Scholar
  34. Zhang D, Zhou Z, Xu C, Zhang Y, Rodriguez J, Sato T (2017c) Capacity analysis of non-orthogonal multiple access with mmwave massive MIMO systems. IEEE J Sel Areas Commun 35(7):1606–1618CrossRefGoogle Scholar
  35. Zhang C, Jing Y, Huang Y, Yang L Interleaved training and training-based transmission design for hybrid massive antenna downlink. J Select Topics Signal Process, online published.  https://doi.org/10.1109/JSTSP.2018.2818648
  36. Zhu J, Wang J, Huang Y, He S, You X, Yang L (2017) On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J Sel Areas Commun 35(12):2744–2757Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Southeast UniversityNanjingChina

Section editors and affiliations

  • Ming Xiao
    • 1
  1. 1.Department of Information Science and Engineering, EECSRoyal Institute of Technology, KTHStockholmSweden