Skip to main content

Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae

  • Living reference work entry
  • First Online:
Book cover Handbook of the Protists

Abstract

The freshwater and terrestrial green algal lineages discussed in this chapter include the scaly flagellate Mesostigma, the sarcinoid form Chlorokybus, the unbranched filamentous members of the Klebsormidiophyceae, and the branched filamentous members of the Coleochaetophyceae. The lineages discussed here, together with two other green algal lineages (Charophyceae and Zygnematophyceae) and the land plants (embryophytes), form a monophyletic group known as Streptophyta or Charophyta. The streptophyte algae share cytological and biochemical characteristics with plants and may shed light on the evolution of plant features. Of special interest is the evolution of mechanisms associated with the transition from freshwater to dry land, a topic currently being energized by whole-genome analyses. Metagenomic studies of these organisms have revealed surprising features that might also have characterized the microbiomes of early streptophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Becker, B. (2012). Snow ball earth and the split of the streptophyta and chlorophyta. Trends in Plant Science, 18, 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Becker, B., & Marin, B. (2009). Streptophyte algae and the origin of embryophytes. Annals of Botany, 103, 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourrelly, P. (1966). Les Algues d’Eau Douce. Algues Vertes. Paris: Boubée.

    Google Scholar 

  • Bower, F. O. (1908). The origin of a land flora; a theory based upon the facts of alternation. London: Macmillan.

    Book  Google Scholar 

  • Bowman, J. L. (2013). Walkabout on the long branches of plant evolution. Current Opinion in Plant Biology, 16, 70–77.

    Article  PubMed  Google Scholar 

  • Brake, S. S., Arango, I., Hasiotis, S. T., & Burch, K. R. (2014). Spatial and temporal distribution and characteristics of eukaryote-dominated microbial biofilms in an acid mine drainage environment: Implications for development of iron-rich stromatolites. Environmental and Earth Sciences, 72, 2779–2796.

    Article  CAS  Google Scholar 

  • Bremer, K. (1985). Summary of green plant phylogeny and classification. Cladistics, 1, 369–385.

    Article  Google Scholar 

  • Brown, R. C., Lemmon, B. E., & Graham, L. E. (1994). Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green alga Coleochaete orbicularis. American Journal of Botany, 81, 127–133.

    Article  Google Scholar 

  • Cain, J. R., Mattox, K. R., & Stewart, K. D. (1973). The cytology of zoosporogenesis in the filamentous green algal genus, Klebsormidium. Transactions of the American Microscopical Society, 92, 398–404.

    Article  Google Scholar 

  • Cain, J. R., Mattox, K. R., & Stewart, K. D. (1974). Conditions of illumination and zoosporogenesis in Klebsormidium flaccidum. Journal of Phycology, 10, 134–136.

    Google Scholar 

  • Cimino, M. T., & Delwiche, C. F. (2002). Molecular and morphological data identify a cryptic species complex in endophytic members of the genus Coleochaete Bréb. Journal of Phycology, 38, 1213–1221.

    Article  CAS  Google Scholar 

  • Civáň, P., Foster, P. G., Embley, M. T., Séneca, A., & Cox, C. J. (2014). Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biology and Evolution, 6, 897–911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cook, M. E. (2004a). Cytokinesis in Coleochaete orbicularis (Charophyceae): An ancestral mechanism inherited by plants. American Journal of Botany, 91, 313–320.

    Article  PubMed  Google Scholar 

  • Cook, M. E. (2004b). Structure and asexual reproduction of the enigmatic charophycean green alga Entransia fimbriata (Klebsormidiales, Charophyceae). Journal of Phycology, 40, 424–431.

    Article  Google Scholar 

  • Cutler, S., & Ehrhardt, D. (2002). Polarized cytokinesis in vacuolated cells of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 99, 2812–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJesus, M. D., Tabatabai, F., & Chapman, D. J. (1989). Taxonomic distribution of copper-zinc superoxide dismutase in green algae and its phylogenetic importance. Journal of Phycology, 25, 767–772.

    Article  Google Scholar 

  • Delaux, P.-M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening, J. D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny, L., Rothfels, C. J., Sederoff, H. W., Stevenson, D. W., Surek, B., Zhango, Y., Sussman, M. R., Dunand, C., Morris, R. J., Roux, C., Wong, G. K.-S., Oldroyd, G. E. D., & Ané, J.-M. (2015). Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 43, 13390–13395.

    Article  CAS  Google Scholar 

  • Delwiche, C. F., & Cooper, E. D. (2015). The evolutionary origin of a terrestrial flora. Current Biology, 25, R899–R910.

    Article  CAS  PubMed  Google Scholar 

  • Delwiche, C. F., Karol, K. G., & Cimino, M. T. (2002). Phylogeny of the genus Coleochaete (Coleochaetales, Charophyta) and related taxa inferred by analysis of the chloroplast gene rbcL. Journal of Phycology, 38, 394–403.

    Article  CAS  Google Scholar 

  • Domozych, D. S., Wells, B., & Shaw, P. J. (1991). Basket scales of the green alga, Mesostigma viride: Chemistry and ultrastructure. Journal of Cell Science, 100, 397–407.

    CAS  Google Scholar 

  • Domozych, D. S., Wells, B., & Shaw, P. J. (1992). Scale biogenesis in the green alga, Mesostigma viride. Protoplasma, 167, 19–32.

    Article  Google Scholar 

  • Doty, K. F., Betzelberger, A. M., Kocot, K. M., & Cook, M. E. (2014). Immunofluorescence localization of the tubulin cytoskeleton during cell division and cell growth in members of the Coleochaetales. Journal of Phycology, 50, 624–639.

    Article  CAS  PubMed  Google Scholar 

  • Finet, C., Timme, R. E., Delwiche, C. F., & Marlétaz, F. (2010). Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 20, 2217–2222.

    Article  CAS  PubMed  Google Scholar 

  • Finet, C., Timme, R. E., Delwiche, C. F., & Marlétaz, F. (2012). Erratum: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Current Biology, 22, 1456–1457.

    Article  PubMed  Google Scholar 

  • Floyd, G. L., Stewart, K. D., & Mattox, K. R. (1972). Cellular organization, mitosis, and cytokinesis in the ulotrichalean alga, Klebsormidium. Journal of Phycology, 8, 176–184.

    Article  Google Scholar 

  • Frederick, S. E., Gruber, P. J., & Tolbert, N. E. (1973). The occurrence of glycolate dehydrogenase and glycolate oxidase in green plants. An evolutionary survey. Plant Physiology, 52, 318–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, L. E. (1982). The occurrence and phylogenetic significance of parenchyma in Coleochaete Bréb. American Journal of Botany, 69, 447–454.

    Article  Google Scholar 

  • Graham, L. E. (1984). Coleochaete and the origin of land plants. American Journal of Botany, 71, 603–608.

    Article  Google Scholar 

  • Graham, L. E. (1985). The origin of the life cycle of land plants. American Scientist, 73, 178–186.

    Google Scholar 

  • Graham, L. E. (1990). Meiospore formation in charophycean algae. In S. Blackmore & R. B. Knox (Eds.), Microspores: Evolution and ontogeny (pp. 43–54). London: Academic.

    Chapter  Google Scholar 

  • Graham, L. E. (1993). Origin of land plants. New York: Wiley.

    Google Scholar 

  • Graham, L. E. (1996). Green algae to land plants: An evolutionary transition. Journal of Plant Research, 109, 241–251.

    Article  Google Scholar 

  • Graham, L. E., & Kaneko, Y. (1991). Subcellular structures of relevance to the origin of land plants (embryophytes) from green algae. Critical Reviews in Plant Science, 10, 323–342.

    Article  Google Scholar 

  • Graham, L. E., & McBride, G. E. (1979). The occurrence and phylogenetic significance of a multilayered structure in Coleochaete spermatozoids. American Journal of Botany, 66, 887–894.

    Article  Google Scholar 

  • Graham, L. E., & Taylor, C. (1986). The ultrastructure of meiospores of Coleochaete pulvinata (Charophyceae). Journal of Phycology, 22, 299–307.

    Article  Google Scholar 

  • Graham, L. E., & Wedemayer, G. J. (1984). Spermatogenesis in Coleochaete pulvinata (Charophyceae): Sperm maturation. Journal of Phycology, 20, 302–309.

    Article  Google Scholar 

  • Graham, L. E., & Wilcox, L. W. (1983). The occurrence and phylogenetic significance of putative placental transfer cells in the green algae Coleochaete. American Journal of Botany, 70, 113–120.

    Article  Google Scholar 

  • Graham, L. E., & Wilcox, L. W. (2000). The origin of alternation of generations in land plants: A focus on matrotrophy and hexose transport. Philosophical Transactions of the Royal Society of London B, 355, 757–767.

    Article  CAS  Google Scholar 

  • Graham, L. E., Graham, J. M., & Kranzfelder, J. A. (1986). Irradiance, day-length and temperature effects on zoosporogenesis in Coleochaete scutata (Charophyceae). Journal of Phycology, 22, 35–39.

    Article  Google Scholar 

  • Graham, L. E., Cook, M. E., & Busse, J. S. (2000). The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4535–4540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham, L. E., Arancibia-Avila, P., Taylor, W. A., Strother, P. K., & Cook, M. E. (2012). Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. American Journal of Botany, 99, 130–144.

    Article  PubMed  Google Scholar 

  • Graham, L. E., Graham, J. M., Wilcox, L. W., & Cook, M. E. (2016). Algae (3rd ed.). Madison: LJLM Press.

    Google Scholar 

  • Grievink, L. S., Penny, D., & Holland, B. R. (2013). Missing data and influential sites: Choice of sites for phylogenetic analysis can be as important as taxon sampling and model choice. Genome Biology and Evolution, 5, 681–687.

    Article  CAS  Google Scholar 

  • Hoffman, J. P., & Graham, L. E. (1984). Effects of selected physiochemical factors on growth and zoosporogenesis of Cladophora glomerata (Chlorophyta). Journal of Phycology, 20, 1–7.

    Article  Google Scholar 

  • Holzinger, A., Lütz, C., & Karsten, U. (2011). Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from an alpine soil crust. Journal of Phycology, 47, 591–602.

    Article  PubMed  Google Scholar 

  • Honda, M., & Hashimoto, H. (2007). Close association of centrosomes to the distal ends of the microbody during its growth, division and partitioning in the green alga Klebsormidium flaccidum. Protoplasma, 231, 127–135.

    Article  PubMed  Google Scholar 

  • Hori, K., et al. (2014). Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nature Communications. doi:10.1038/ncomms4978.

    PubMed  PubMed Central  Google Scholar 

  • Hughes, E. O. (1948). New fresh-water Chlorophyceae from Nova Scotia. American Journal of Botany, 35, 424–427.

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto, K., & Ikawa, T. (2000). A novel glycolate oxidase requiring flavin mononucleotide as the cofactor in the prasinophycean alga Mesostigma viride. Plant and Cell Physiology, 48, 988–991.

    Article  Google Scholar 

  • Jobson, R. W., & Qiu, Y.-L. (2011). Amino acid compositional shifts during streptophyte transitions to terrestrial habitats. Journal of Molecular Evolution, 72, 204–214.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, F., Lewis, L. A., Wastian, J., & Holzinger, A. (2012). Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma, 249, 789–804.

    Article  PubMed  Google Scholar 

  • Karol, K. G., McCourt, R. M., Cimino, M. T., & Delwiche, C. F. (2001). The closest living relatives of land plants. Science, 294, 2351–2353.

    Article  CAS  PubMed  Google Scholar 

  • Karsten, U., & Holzinger, A. (2014). Green algae in alpine biological soil crust communities: Acclimation strategies against ultraviolet radiation and dehydration. Biodiversity and Conservation, 23, 1845–1858.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karsten, U., Herburger, K., & Holzinger, A. (2014). Dehydration, temperature, and light tolerance in members of the aeroterrestrial green algal genus Interfilum (Streptophyta) from biogeographically different temperate soils. Journal of Phycology, 50, 804–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsaros, C. I., Varvarigos, V., Gachonb, C. M. M., Brand, J., Motomurad, T., Nagasatod, C., & Küpperb, F. C. (2011). Comparative immunofluorescence and ultrastructural analysis of microtubule organization in Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus (Chlorophyta). Protist, 162, 315–331.

    Article  PubMed  Google Scholar 

  • Kim, E., Wilcox, L. W., Fawley, M. W., & Graham, L. E. (2006). Phylogenetic position of the green flagellate Mesostigma vidide based on a-tubulin and b-tubulin gene sequences. International Journal of Plant Sciences, 167, 873–883.

    Article  CAS  Google Scholar 

  • Kitzing, C., & Karsten, U. (2015). Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). European Journal of Phycology, 50, 279–287.

    Article  CAS  Google Scholar 

  • Knack, J. J., Wilcox, L. W., Delaux, P.-M., Ané, J.-M., Piotrowski, M. J., Cook, M. E., Graham, J. M., & Graham, L. E. (2015). Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land. International Journal of Plant Sciences, 176, 405–420.

    Article  Google Scholar 

  • Laenen, B., Shaw, B., Schneider, H., Goffinet, B., Paradis, E., Désamoré, A., Heinrichs, J., Villarreal, J. C., Gradstein, S. R., McDaniel, S. F., Long, D. G., Forrest, L. L., Hollingsworth, M. L., Crandall-Stotler, B., David, E. C., Engel, J., Von Konrat, M., Cooper, E. D., Patiño, J., Cox, C. J., Vanderpoorten, A., & Shaw, A. J. (2014). Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications, 5, 5134. doi:10.1038/ncomms6134.

    Article  CAS  PubMed  Google Scholar 

  • Laurin-Lemay, S., Brinkmann, H., & Philippe, H. (2012). Origin of land plants revisited in the light of sequence contamination and missing data. Current Biology, 22, R593–R594.

    Article  CAS  PubMed  Google Scholar 

  • Leliaert, F., Verbruggen, H., & Zechman, F. W. (2011). Into the deep: New discoveries at the base of the green plant phylogeny. Bioessays, 33, 683–692.

    Article  PubMed  Google Scholar 

  • Leliaert, F., Smith, D. R., Moreau, H., Herron, M. D., Verbruggen, H., Delwiche, C. F., & De Clerck, O. (2012). Phylogeny and molecular evolution of the green algae. Current Research in Plant Sciences, 31, 1–46.

    Google Scholar 

  • Lemieux, C., Otis, C., & Turmel, M. (2000). Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature, 403, 649–652.

    Article  CAS  PubMed  Google Scholar 

  • Lemieux, C., Otis, C., & Turmel, M. (2007). A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biology, 5, 2. doi:10.1186/1741-7007-5-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lewis, L. A., & McCourt, R. M. (2004). Green algae and the origin of land plants. American Journal of Botany, 91, 1535–1556.

    Article  PubMed  Google Scholar 

  • Lokhorst, G. M. (1996). Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies, 5, 1–132.

    Google Scholar 

  • Lokhorst, G. M., & Star, W. (1985). Ultrastructure of mitosis and cytokinesis in Klebsormidium mucosum nov. comb., formerly Ulothrix verrucosa (Chlorophyta). Journal of Phycology, 21, 466–476.

    Article  Google Scholar 

  • Lokhorst, G. M., Sluiman, H. J., & Star, W. (1988). The ultrastructure of mitosis and cytokinesis in the sarcinoid Chlorokybus atmophyticus (Chlorophyta, Charophyceae) revealed by rapid freeze fixation and freeze substitution. Journal of Phycology, 24, 237–248.

    Google Scholar 

  • Lokhorst, G. M., Star, W., & Lukešová, A. (2000). The new species Hormidiella attenuata (Klebsormidiales), notes on morphology and reproduction. Algological Studies, 100, 11–27.

    Google Scholar 

  • Manton, I., & Ettl, H. (1965). Observations on the fine structure of Mesostigma viride Lauterborn. Botanical Journal of the Linnean Society, 59, 175–184.

    Article  Google Scholar 

  • Marchant, H. J., & Pickett-Heaps, J. D. (1973). Mitosis and cytokinesis in Coleochaete scutata. Journal of Phycology, 9, 461–471.

    Google Scholar 

  • Marchant, H. J., & Pickett-Heaps, J. D. (1977). Ultrastructure, development and cytoplasmic rotation of seta-bearing cells of Coleochaete scutata. Journal of Phycology, 13, 28–36.

    Google Scholar 

  • Marchant, H. J., Pickett-Heaps, J. D., & Jacobs, K. (1973). An ultrastructural study of zoosporogenesis and the mature zoospore of Klebsormidium flaccidum. Cytobios, 8, 95–107.

    CAS  PubMed  Google Scholar 

  • Marin, B., & Melkonian, M. (1999). Mesostigmatophyceae, a new class of streptophyte green algae revealed by SSU rRNA sequence comparisons. Protist, 150, 399–417.

    Article  CAS  PubMed  Google Scholar 

  • Mattox, K. R., & Stewart, K. D. (1984). Classification of the green algae: A concept based on comparative cytology. In D. E. G. Irvine & D. M. John (Eds.), Systematics of the green algae (pp. 29–72). London/Orlando: Academic.

    Google Scholar 

  • McCourt, R. M. (1995). Green algal phylogeny. Trends in Ecology & Evolution, 10, 159–163.

    Article  CAS  Google Scholar 

  • McCourt, R. M., Karol, K. G., Bell, J., Helm-Bychowski, K. M., Grajewska, A., Wojciechowski, M. F., & Hoshaw, R. W. (2000). Phylogeny of the conjugating green algae (Zygnemophyceae) based on rbcL sequences. Journal of Phycology, 36, 747–758.

    Article  CAS  Google Scholar 

  • McCourt, R. M., Delwiche, C. F., & Karol, K. G. (2004). Charophyte algae and land plant origins. Trends in Ecology & Evolution, 19, 661–666.

    Article  Google Scholar 

  • Melkonian, M. (1989). Flagellar apparatus ultrastructure in Mesostigma viride (Prasinophyceae). Plant Systematics and Evolution, 164, 93–122.

    Article  Google Scholar 

  • Mikhailyuk, T. I., Sluiman, H. J., Massalski, A., Mudimu, O., Demchenko, E. M., Kondratyuk, S. Y., & Friedl, T. (2008). New Streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta). Journal of Phycology, 44, 1586–1603.

    Article  PubMed  Google Scholar 

  • Mikhailyuk, T. I., Holzinger, A., Massalski, A., & Karsten, U. (2014). Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation. European Journal of Phycology, 49, 395–412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikhailyuk, T. I., Glaser, K., Holzinger, A., & Karsten, U. (2015). Biodiversity of Klebsormidium (Streptophyta) from alpine biological soilcrusts (Alps, Tyrol, Austria, and Italy). Journal of Phycology, 51, 750–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moestrup, Ø. (1974). Ultrastructure of the scale-covered zoospores of the green alga Chaetosphaeridium, a possible ancestor of the higher plants and bryophytes. Biological Journal of the Linnean Society, 6, 111–125.

    Article  Google Scholar 

  • Nedelcu, A. M., Borza, T., & Lee, R. W. (2006). A land plant–specific multigene family in the unicellular Mesostigma argues for its close relationship to Streptophyta. Molecular Biology and Evolution, 23, 1011–1015.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, H. W. (1973). Growth media-freshwater. In J. Stein (Ed.), Handbook of phycological methods (Culture methods and growth measurements, Vol. 1, pp. 7–24). London/New York: Cambridge University Press.

    Google Scholar 

  • Novis, P. M. (2006). Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia, 45, 293–301.

    Article  Google Scholar 

  • Novis, P. M., & Visnovsky, G. (2011). Novel alpine algae for New Zealand: Klebsormidiales. New Zealand Journal of Botany, 49, 339–349.

    Article  Google Scholar 

  • O’Rourke, C., Gregson, T., Murray, L., Sadler, I. H., & Fry, S. C. (2015). Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: Presence of 3-O-methyl-d-galactose residues. Annals of Botany, 116, 225–236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okuda, K., & Brown, R. M. (1992). A new putative cellulose-synthesizing complex of Colechaete scutata. Protoplasma, 168, 51–63.

    Article  CAS  Google Scholar 

  • Orandi, S., & Lewis, D. M. (2013). Biosorption of heavy metals in a photo-rotating biological contactor – a batch process study. Applied Microbiology and Biotechnology, 97, 5113–5123.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, J., Teich, R., Becker, B., Cerff, R., & Binkmann, H. (2006). The Gap A/B gene duplication marks the origin of Streptophyta (Charophytes and land plants). Molecular Biology and Evolution, 23, 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  • Pickett-Heaps, J. D. (1972). Cell division in Klebsormidium subtilissimum (formerly Ulothrix subtillissima) and its possible phylogenetic significance. Cytobios, 6, 167–183.

    CAS  PubMed  Google Scholar 

  • Pickett-Heaps, J. D., & Marchant, H. J. (1972). The phylogeny of the green algae: A new proposal. Cytobios, 6, 255–264.

    Google Scholar 

  • Pringsheim, N. (1860). Beiträge zur Morphologie und Systematik der Algen. III. Die Coleochaeteen. Jahrbuch für Wissenschaftliche Botanik, 2, 1–38.

    Google Scholar 

  • Printz, H. (1964). Die Chaetophoralean der Binnengewässer, Eine systematische Übersicht. Hydrobiologia, 24, 1–376.

    Article  Google Scholar 

  • Qiu, Y.-L., Li, L., Wang, B., Chen, Z., Dombrovska, O., Lee, J., Kent, L., Li, R., Jobson, R. W., Hendry, T. A., Taylor, D. W., Testa, C. M., & Ambros, M. (2007). A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. International Journal of Plant Sciences, 168, 691–708.

    Article  CAS  Google Scholar 

  • Rindi, F., Guiry, M. D., & Lopez-Bautista, J. M. (2008). Distribution, morphology, and phylogeny of Klebsormidium (Klebsormidiales, Charaophyceae) in urban environments in Europe. Journal of Phycology, 44, 1529–1540.

    Article  PubMed  Google Scholar 

  • Rindi, F., Mikhailyuk, T. I., Sluiman, H. J., Friedl, T., & Lopez-Bautista, J. M. (2011). Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Molecular Phylogenetics and Evolution, 58, 218–231.

    Article  PubMed  Google Scholar 

  • Rodríguez-Ezpeleta, N., Philippe, H., Brinkmann, H., Becker, B., & Melkonian, M. (2007). Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Molecular Biology and Evolution, 24, 723–731.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, C. E., Mattox, K. R., & Stewart, K. D. (1980). The zoospore of Chlorokybus atmophyticus, a charophyte with sarcinoid growth habit. American Journal of Botany, 67, 774–783.

    Article  Google Scholar 

  • Rogers, C. E., Domozych, D. S., Stewart, K. D., & Mattox, K. R. (1981). The flagellar apparatus of Mesostigma viride (Prasinophyceae): Multilayered structures in a scaly green flagellate. Plant Systematics and Evolution, 138, 247–258.

    Article  Google Scholar 

  • Schwender, J., Gemunden, C., & Lichtenthaler, H. K. (2001). Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta, 212, 416–423.

    Article  CAS  PubMed  Google Scholar 

  • Silva, P. C., Mattox, K. R., & Blackwell, W. H., Jr. (1972). The generic name Hormidium as applied to green algae. Taxon, 21, 639–645.

    Article  Google Scholar 

  • Simon, A., Glöckner, G., Felder, M., Melkonian, M., & Becker, B. (2006). EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta): Implications for the evolution of green plants (Viridiplantae). BMC Plant Biology, 6, 2. doi:10.1186/1471-2229-6-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Škaloud, P. (2006). Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedwigia, 83, 533–550.

    Article  Google Scholar 

  • Škaloud, P. (2009). Species composition and diversity of aero-terrestrial algae and cyanobacteria of the Boreč Hill ventaroles. Fottea, 9, 65–80.

    Article  Google Scholar 

  • Škaloud, P., & Rindi, F. (2013). Ecological differentiation of cryptic species within an asexual protist morphospecies: A case study of filamentous green alga Klebsormidium (Streptophyta). Journal of Eukaryotic Microbiology, 60, 350–362.

    Article  PubMed  CAS  Google Scholar 

  • Sluiman, H. J. (1983). The flagellar apparatus of the zoospore of the filamentous green algae Coleochaete pulvinata: Absolute configuration and phylogenetic significance. Protoplasma, 115, 160–175.

    Article  Google Scholar 

  • Sluiman, H. J., Guihal, C., & Mudimu, O. (2008). Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): Nuclear-encoded rDNA phylogenies and ITS secondary structure models in Klebsormidium, Hormidiella, and Entransia. Journal of Phycology, 44, 183–195.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. M. (1950). The fresh-water algae of the United States. New York/Toronto/London: McGraw-Hill.

    Google Scholar 

  • Sørensen, I., Pettolino, F. A., Bacic, A., Ralph, J., Lu, F., O’Neill, M. A., Fei, Z., Rose, J. K. C., Domozych, D. S., & Willats, W. G. T. (2011). The charophycean green algae provide insights into the early origins of plant cell walls. The Plant Journal, 68, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Stabenau, H., & Winkler, U. (2005). Glycolate metabolism in green algae. Physiologia Plantarum, 123, 235–245.

    Article  CAS  Google Scholar 

  • Stewart, K. D., & Mattox, K. R. (1975). Comparative cytology, evolution and classification of the green algae, with some consideration of the origin of other organisms with chlorophylls a and b. Botanical Review, 41, 104–135.

    Article  Google Scholar 

  • Thompson, R. H. (1969). Sexual reproduction in Chaetosphaeridium globosum (Nordst.) Klebahn (Chlorophyceae) and description of a species new to science. Journal of Phycology, 5, 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Timme, R. E., Bachvaroff, T. R., & Delwiche, C. F. (2012). Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE, 7, e29696. doi:10.1371/journal.pone.0029696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsekos, I. (1999). The sites of cellulose synthesis in algae: Diversity and evolution of cellulose-synthesizing enzyme complexes. Journal of Phycology, 35, 635–655.

    Article  CAS  Google Scholar 

  • Turmel, M., Ehara, M., Otis, C., & Lemieux, C. (2002). Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. Journal of Phycology, 38, 364–375.

    Article  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2003). The mitochondrial genome of Chara vulgaris: Insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. The Plant Cell, 15, 1888–1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2006). The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Molecular Biology and Evolution, 23, 1324–1338.

    Article  CAS  PubMed  Google Scholar 

  • Turmel, M., Pombert, J.-F., Charlebois, P., Otis, C., & Lemieux, C. (2007). The green algal ancestry of land plants as revealed by the chloroplast genome. International Journal of Plant Sciences, 168, 679–689.

    Article  CAS  Google Scholar 

  • Turmel, M., Otis, C., & Lemieux, C. (2013). Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biology and Evolution, 5, 1817–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viaene, T., Delwiche, C. F., Rensing, S. A., & Friml, J. (2013). Origin and evolution of PIN auxin transporters in the green lineage. Trends in Plant Science, 18, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Wesley, O. (1928). Asexual reproduction in Coleochaete. Botanical Gazette, 86, 1–31.

    Article  Google Scholar 

  • Wickett, N. J., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences of the United States of America, 111, E4859–E4868. doi:10.1073/pnas.1323926111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M., & Becker, B. (2011). Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology, 11, 104. doi:10.1186/1471-2148-11-104.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martha E. Cook or Linda E. Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Cook, M.E., Graham, L.E. (2016). Chlorokybophyceae, Klebsormidiophyceae, Coleochaetophyceae. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics