Bacillariophyta

  • David G. Mann
  • Richard M. Crawford
  • Frank E. Round
Living reference work entry

Abstract

The diatoms (Bacillariophyta) are the most species-rich group of autotrophic algae, found in fresh, brackish, and marine waters worldwide, and also in damp terrestrial habitats. They are well represented in marine phytoplankton and may account for 20% of global photosynthetic carbon fixation. However, the vast majority of the estimated 100,000 species are benthic, living attached to surfaces or gliding over sediments using a unique organelle, the raphe system. Flagellate cells are absent, except in the sperm of some lineages. Diatoms possess a similar photosynthetic apparatus to that present in several other stramenopile lineages (with fucoxanthin and chlorophyll c as the principal accessory pigments) but are easily recognized by the unique construction and composition of their cell wall, which is usually strongly silicified and consists of two overlapping halves (thecae); these in turn consist of a larger end piece (valve) and a series of narrow strips (girdle bands). Expansion of the cell occurs by sliding apart of the thecae and addition of new bands to the inner, overlapped theca. At cell division, each daughter cell inherits one of the thecae of the parent and forms a new theca internally. Hence, because the silicified wall is inelastic, average cell size usually declines during vegetative growth and has to be restored through expansion of a special cell, the auxospore, usually after sexual reproduction. A few diatoms have lost their plastids and are osmotrophic. Classification has traditionally relied on details of valve structure. There is a rich fossil record.

Keywords

Bacillariophyta Diatoms Frustule Girdle Silicification Valves 

Notes

Acknowledgments

The authors are most grateful to Prof. Linda Medlin for comments on the manuscript, Prof. Masahiko Idei for micrographs of sexual stages and auxospores, and Drs. Shinya Sato and Laia Rovira for SEM images of auxospores.

References

  1. Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, R. A., Barta, J., Bowser, S., Brugerolle, G., Fensome, R., Fredericq, S., James, T. Y., Karpov, S., Kugrens, P., Krug, J., Lane, C., Lewis, L. A., Lodge, J., Lynn, D. H., Mann, D. G., McCourt, R. M., Mendoza, L., Moestrup, Ø., Mozeley-Standridge, S. E., Nerad, T. A., Shearer, C., Spiegel, F., & Taylor, F. J. R. M. (2005). The new higher level classification of eukaryotes and taxonomy of protists. Journal of Eukaryotic Microbiology, 52, 399–451.CrossRefPubMedGoogle Scholar
  2. Agardh, C. A. (1824). Systema Algarum. Lund: Literis Berlingianis.Google Scholar
  3. Agardh, C. A. (1830–1832). Conspectus criticus diatomacearum. Lund: Literis Berlingianis.Google Scholar
  4. Allen, A. E., Dupont, C. L., Obornik, M., Horàk, A., Nunes-Nesi, A., McCrow, J. P., Zheng, H., Johnson, D. A., Hu, H., Fernie, A. R., & Bowler, C. (2011). Evolution and metabolic significance of the urea cycle in photosynthetic diatoms (2011). Nature, 473, 203–207.CrossRefPubMedGoogle Scholar
  5. Alexander, H., Jenkins, B. D., Rynearson, T. A., & Dyrham, S. T. (2015). Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proceedings of the National Academy of Sciences of the United States of America, 112, E2182–E2190.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Alverson, A. J. (2014). Timing marine–freshwater transitions in the diatom order Thalassiosirales. Paleobiology, 40, 91–101.CrossRefGoogle Scholar
  7. Alverson, A. J., Jansen, R. K., & Theriot, E. C. (2007). Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45, 193–210.CrossRefPubMedGoogle Scholar
  8. Amato, A., Kooistra, W. H. C. F., Levialdi Ghiron, J. H., Mann, D. G., Pröschold, T., & Montresor, M. (2007). Reproductive isolation among sympatric cryptic species in marine diatoms. Protist, 158, 193–207.CrossRefPubMedGoogle Scholar
  9. Andersen, R. A. (2004). Biology and systematics of heterokont and haptophyte algae. American Journal of Botany, 91, 1508–1522.CrossRefPubMedGoogle Scholar
  10. Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Amsterdam: Elsevier Academic.Google Scholar
  11. Anonymous. (1703). Two letters from a gentleman in the country, relating to Mr. Leuwenhoeck’s letter in Transaction, No. 283. Philosophical Transactions of the Royal Society, 23(288), 1494.Google Scholar
  12. Anonymous. (1987). Obituary. Hans-Adolf von Stosch 1908–1987. Diatom Research, 2, 289–294.CrossRefGoogle Scholar
  13. Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., Zhou, S., Allen, A. E., Apt, K. E., Bechner, M., Brzezinski, M. A., Chaal, B. K., Chiovitti, A., Davis, A. K., Demarest, M. S., Detter, J. C., Glavina, T., Goodstein, D., Hadi, M. Z., Hellsten, U., Hildebrand, M., Jenkins, B. D., Jurka, J., Kapitonov, V. V., Kröger, N., Lau, W. W., Lane, T. W., Larimer, F. W., Lippmeier, J. C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M. S., Palenik, B., Pazour, G. J., Richardson, P. M., Rynearson, T. A., Saito, M. A., Schwartz, D. C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F. P., & Rokhsar, D. S. (2004). The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science, 306, 79–86.CrossRefPubMedGoogle Scholar
  14. Ashworth, M. P., Ruck, E. C., Lobban, C. S., Romanovicz, D. K., & Theriot, E. C. (2012). A revision of the genus Cyclophora and description of Astrosyne gen. nov. (Bacillariophyta), two genera with the pyrenoids contained within pseudosepta. Phycologia, 51, 684–699.CrossRefGoogle Scholar
  15. Ashworth, M. P., Nakov, T., & Theriot, E. C. (2013). Revisiting Ross and Sims (1971): Toward a molecular phylogeny of the Biddulphiaceae and Eupodiscaceae (Bacillariophyceae). Journal of Phycology, 49, 1207–1222.CrossRefPubMedGoogle Scholar
  16. Aumeier, C., Polinski, E., & Menzel, D. (2015). Actin, actin-related proteins and profilin in diatoms: A comparative genomic analysis. Marine Genomics, 23, 133–142.CrossRefPubMedGoogle Scholar
  17. Ax, P., & Apelt, G. (1965). Die “Zooxanthellen” von Convoluta convoluta (Turbellaria, Acoela) entstehen aus Diatomeen. Erster Nachweis einer Endosymbiose zwischen Tieren und Kieselalgen. Naturwissenschaften, 52, 444–446.CrossRefGoogle Scholar
  18. Barber, H. G., & Haworth, E. Y. (1981). A guide to the morphology of the diatom frustule with a key to the British freshwater genera, Freshwater biological association, scientific publication (Vol. 44). Ambleside: Freshwater Biological Association.Google Scholar
  19. Behre, K. (1956). Die Algenbesiedlung Seen um Bremen und Bremerhaven. Veröffentlichung des Instituts für Meeresforschung Bremerhaven, 4, 221–383.Google Scholar
  20. Beraldi, H., Mann, D. G., & Cevallos-Ferriz, S. R. S. (2015). Life cycle of 70 Ma-old non-marine pennate diatoms. Cretaceous Research, 56, 662–672.CrossRefGoogle Scholar
  21. Berger, W. H. (2007). Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Research Part II, 54, 2399–2421.CrossRefGoogle Scholar
  22. Bondoc, K. G. V., Heuschele, J., Gillard, J., Vyverman, W., & Pohnert, G. (2016). Selective silicate-directed motility in diatoms. Nature Communications, 7, 10540.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Booth, B. C., & Marchant, H. J. (1987). Parmales, a new order of marine chrysophytes, with descriptions of three new genera and seven new species. Journal of Phycology, 23, 245–260.CrossRefGoogle Scholar
  24. Bothwell, M. L., Taylor, B. W., & Kilroy, C. (2014). The Didymo story: The role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Research, 29, 229–236.CrossRefGoogle Scholar
  25. Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R. P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J. A., Brownlee, C., Cadoret, J. P., Chiovitti, A., Choi, C. J., Coesel, S., De Martino, A., Detter, J. C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M. J., Jenkins, B. D., Jiroutova, K., Jorgensen, R. E., Joubert, Y., Kaplan, A., Kroger, N., Kroth, P. G., La Roche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L. K., Montsant, A., Oudot-Le Secq, M. P., Napoli, C., Obornik, M., Parker, M. S., Petit, J. L., Porcel, B. M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T. A., Schmutz, J., Shapiro, H., Siaut, M., Stanley, M., Sussman, M. R., Taylor, A. R., Vardi, A., von Dassow, P., Vyverman, W., Willis, A., Wyrwicz, L. S., Rokhsar, D. S., Weissenbach, J., Armbrust, E. V., Green, B. R., de Peer, Y., & Grigoriev, I. V. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456, 239–244.CrossRefPubMedGoogle Scholar
  26. Boyd, C. M., & Gradmann, D. (2002). Impact of osmolytes on buoyancy of marine phytoplankton. Marine Biology, 141, 605–618.CrossRefGoogle Scholar
  27. Bruder, K., & Medlin, L. K. (2007). Molecular assessment of phylogenetic relationships in selected species/genera in the naviculoid diatoms (Bacillariophyta). I. The genus Placoneis. Nova Hedwigia, 85, 331–352.CrossRefGoogle Scholar
  28. Calvert, S. E. (1977). Marine mineralogy: Mineralogy of silica phases in deep-sea cherts and porcelanites. Philosophical Transactions of the Royal Society of London, ser. A, 239–252.Google Scholar
  29. Canter, H. M., & Jaworski, G. H. M. (1983). A further study on parasitism of the diatom Fragilaria crotonensis Kitton by chytridiaceous fungi in culture. Annals of Botany, 52, 549–563.CrossRefGoogle Scholar
  30. Carpenter, E. J., Montoya, J. P., Burns, J., Mulholland, M. R., Subramaniam, A., & Capone, D. G. (1999). Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Marine Ecology Progress Series, 185, 273–283.CrossRefGoogle Scholar
  31. Cassie, V. (1989). A contribution to the study of New Zealand diatoms. Bibliotheca Diatomologica, 17, 1–266.Google Scholar
  32. Cassie, V., & Cooper, R. C. (1989). Algae of New Zealand thermal areas. Bibliotheca Phycologica, 78, 1–159.Google Scholar
  33. Chepurnov, V. A., Mann, D. G., Sabbe, K., & Vyverman, W. (2004). Experimental studies on sexual reproduction in diatoms. International Review of Cytology, 237, 91–154.CrossRefPubMedGoogle Scholar
  34. Chepurnov, V. A., Chaerle, P., Roef, L., van Meirhaeghe, A., & Vanhoutte, K. (2011). Classical breeding in diatoms: Scientific background and practical perspectives. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 171–194). Dordrecht: Springer.Google Scholar
  35. Chesnick, J. M., Kooistra, W. H. C. F., Wellbrock, U., & Medlin, L. K. (1997). Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). Journal of Eukaryotic Microbiology, 44, 314–320.CrossRefPubMedGoogle Scholar
  36. Cleve, P. T., & Grunow, A. (1880). Beiträge zur Kenntniss der arctischen Diatomeen. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 17, 1–121.Google Scholar
  37. Coleman, A. W. (1985). Diversity of plastid DNA configuration among classes of eukaryote algae. Journal of Phycology, 21, 1–16.CrossRefGoogle Scholar
  38. Coste, M., & Ector, L. (2000). Diatomées invasives exotiques ou rares en France: Principales observations effectuées au cours des dernières décennies. Systematics and Geography of Plants, 70, 373–340.CrossRefGoogle Scholar
  39. Crawford, R. M. (1974a). The structure and formation of the siliceous wall of the diatom Melosira nummuloides (Dillw.) Ag. Nova Hedwigia. Beiheft, 45, 131–141.Google Scholar
  40. Crawford, R. M. (1974b). The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. British Phycological Journal, 9, 9–20.CrossRefGoogle Scholar
  41. Crawford, R. M. (1981). Some considerations of size reduction in diatom cell walls. In R. Ross (Ed.), Proceedings of the 6th symposium on recent and fossil diatoms (pp. 253–265). Koenigstein: Otto Koeltz.Google Scholar
  42. Crawford, R. M. (1995). The role of sex in the sedimentation of a marine diatom bloom. Limnology and Oceanography, 40, 200–204.CrossRefGoogle Scholar
  43. Crawford, R. M., Canter, H. M., & Jaworski, G. H. M. (1985). A study of two morphological variants of the diatom Fragilaria crotonensis Kitton using electron microscopy. Annals of Botany, 55, 473–485.CrossRefGoogle Scholar
  44. Crawford, R. M., Hinz, F., & Honeywill, C. (1998). Three species of the diatom genus Corethron Castracane: Structure, distribution and taxonomy. Diatom Research, 13, 1–28.CrossRefGoogle Scholar
  45. D’Alelio, D., & Ruggiero, M. V. (2015). Interspecific plastidial recombination in the diatom genus Pseudo-nitzschia. Journal of Phycology, 51, 1024–1028.CrossRefPubMedGoogle Scholar
  46. D’Alelio, D., Ribera d’Alcala, M., Dubroca, L., Sarno, D., Zingone, A., & Montresor, M. (2010). The time for sex: A biennial life cycle in a marine planktonic diatom. Limnology and Oceanography, 55, 106–114.CrossRefGoogle Scholar
  47. Daniel, G. F., Chamberlain, A. H. L., & Jones, E. B. G. (1987). Cytological and electron microscopical observations on the adhesive mat of marine fouling diatoms. British Phycological Journal, 22, 101–118.CrossRefGoogle Scholar
  48. Darley, W. M., & Volcani, B. E. (1971). Synchronized cultures: Diatoms. In A. San Pietro (Ed.), Methods in Enzymology 23A (pp. 85–96). New York: Academic.Google Scholar
  49. Davidovich, N. A., Kaczmarska, I., Karpov, S. A., Davidovich, O. I., MacGillivary, M. L., & Mather, L. (2012). Mechanism of male gamete motility in araphid pennate diatoms from the genus Tabularia (Bacillariophyta). Protist, 163, 480–494.CrossRefPubMedGoogle Scholar
  50. Denys, L., & De Smet, W. H. (2010). Epipellis oiketis (Bacillariophyta) on harbor porpoises from the North Sea Channel (Belgium). Polish Botanical Journal, 65, 175–182.Google Scholar
  51. Derelle, R., López-García, P., Timpano, H., & Moreira, D. (2016). A phylogenomic framework to study the diversity and evolution of stramenopiles (= heterokonts). Molecular Biology and Evolution, 33, 2890–2898.Google Scholar
  52. Diaz, J., Ingall, E., Benitez-Nelson, C., Paterson, D., de Jonge, M. D., McNulty, I., & Brandes, J. A. (2008). Marine polyphosphate: A key player in geologic phosphorus sequestration. Science, 320, 652–655.CrossRefPubMedGoogle Scholar
  53. Droop, S. J. M., Mann, D. G., & Lokhorst, G. M. (2000). Spatial and temporal stability of demes in Diploneis smithii/D. fusca (Bacillariophyta) supports a narrow species concept. Phycologia, 39, 527–546.CrossRefGoogle Scholar
  54. Edgar, L. A., & Pickett-Heaps, J. D. (1984). Diatom locomotion. Progress in Phycological Research, 3, 47–88.Google Scholar
  55. Edwards, A. R. (Ed.). (1991). The Oamaru diatomite, New Zealand Geological Survey paleontological bulletin (Vol. 64). Lower Hutt: DSIR Geology & Geophysics.Google Scholar
  56. Egeland, E. S. (2016). Carotenoids. In M. A. Borowitzka, J. Beardall, & J. A. Raven (Eds.), The physiology of microalgae (pp. 507–563). Cham: Springer.CrossRefGoogle Scholar
  57. Ehrenberg, C. G. (1838). Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere Leben der Natur. Leipzig: Leopold Voss.CrossRefGoogle Scholar
  58. Ehrenberg, C. G. (1854). Mikrogeologie. Das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbstständigen Lebens auf der Erde. Leipzig: Leopold Voss.Google Scholar
  59. Ehrlich, A. (1975). The diatoms from the surface sediments of the Bardawil Lagoon (Northern Sinai) – Paleoecological significance. Nova Hedwigia. Beiheft, 53, 253–277.Google Scholar
  60. Evans, K. M., & Mann, D. G. (2009). A proposed protocol for nomenclaturally effective DNA barcoding of microalgae. Phycologia, 48, 70–74.CrossRefGoogle Scholar
  61. Evans, K. M., Wortley, A. H., Simpson, G. E., Chepurnov, V. A., & Mann, D. G. (2008). A molecular systematic approach to explore diversity within the Sellaphora pupula species complex (Bacillariophyta). Journal of Phycology, 44, 215–231.CrossRefPubMedGoogle Scholar
  62. Evans, K. M., Chepurnov, V. A., Sluiman, H. J., Thomas, S. J., Spears, B. M., & Mann, D. G. (2009). Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist, 160, 386–396.CrossRefPubMedGoogle Scholar
  63. Falkowski, P. G., & Knoll, A. H. (Eds.). (2007). Evolution of primary producers in the sea. Burlington: Elsevier Academic Press.Google Scholar
  64. Finkel, Z. V. (2016). Silicification in the microalgae. In M. A. Borowitzka, J. Beardall, & J. A. Raven (Eds.), The physiology of microalgae (pp. 289–297). Cham: Springer.CrossRefGoogle Scholar
  65. Fleming, W. D. (1954). Naphrax: A synthetic mounting medium of high refractive index. New and improved methods of preparation. Journal of the Royal Microscopical Society, 74, 42–44.CrossRefPubMedGoogle Scholar
  66. Foster, R. A., Kuypers, M. M. M., Vagner, T., Paerl, R. W., Musat, N., & Zehr, J. P. (2011). Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME Journal, 65, 1484–1493.CrossRefGoogle Scholar
  67. Fryxell, G. A. (1975). Diatom collections. Nova Hedwigia. Beiheft, 53, 355–365.Google Scholar
  68. Gallagher, J. C. (1982). Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). Journal of Phycology, 18, 148–162.CrossRefGoogle Scholar
  69. Gaul, U., Geissler, U., Henderson, M., Mahoney, R., & Reimer, C. W. (1993). Bibliography on the fine-structure of diatom frustules (Bacillariophyceae). Proceedings of the Academy of Natural Sciences of Philadelphia, 144, 69–238.Google Scholar
  70. Geitler, L. (1932). Der Formwechsel der pennaten Diatomeen (Kieselalgen). Archiv für Protistenkunde, 78, 1–226.Google Scholar
  71. Geitler, L. (1977). Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiotischen Sphäroidkörper. Plant Systematics and Evolution, 128, 259–275.CrossRefGoogle Scholar
  72. Gersonde, R., & Harwood, D. M. (1990). Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea) Part 1: Vegetative cells. Proceeding of the Ocean Drilling Program, Scientific Results, 113, 365–402.Google Scholar
  73. Gillard, J., Frenkel, J., Devos, V., Sabbe, K., Paul, C., Rempt, M., Inz, D., Pohnert, G., Vuylsteke, M., & Vyverman, W. (2013). Metabolomics enables the structure elucidation of a diatom sex pheromone. Angewandte Chemie, International Edition, 52, 854–857.CrossRefGoogle Scholar
  74. Glezer, Z. I., Zhuse, A. P., Makarova, I. V., Proshkina-Lavrenko, A. I., & Sheshukova-Poretzkaya, V. S. (1974). Diatomovye vodorosli SSSR iskopaemye I sovremennye, vol. 1. Leningrad: Izdatel’stvo “Nauka”.Google Scholar
  75. Girard, V., Saint Martin, S., Saint Martin, J.-P., Schmidt, A. R., Struwe, S., Perricht, V., Breton, G., & Néraudeau, D. (2009). Exceptional preservation of marine diatoms in upper Albian amber. Geology, 37, 83–86.Google Scholar
  76. Godhe, A., Egardt, J., Kleinhans, D., Sundqvist, L., Hordoir, R., & Jonsson, P. R. (2013). Seascape analysis reveals regional gene flow patterns among populations of a marine planktonic diatom. Proceedings of the Royal Society of London, B 280: 20131599.Google Scholar
  77. Gollerbakh, M. M., & Krasavina, L. K. (1971). Vodorosli. Svodnyj ukazatel’ k otechestvennym bibliografiyam po vodoroslyam za 1737–1960 gg. Leningrad: Izdatel’skij otdel Biblioteki AN SSSR.Google Scholar
  78. Gómez, F., & Souissi, S. (2010). The diatoms Odontella sinensis, Coscinodiscus wailesii and Thalassiosira punctigera in the European Atlantic: Recent introductions or overlooked in the past? Fresenius Environmental Bulletin, 19, 1424–1433.Google Scholar
  79. Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-specific oligosaccharide and polysaccharide structures help to unravel biosynthetic capabilities in diatoms. Marine Drugs, 13, 5993–6018.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Guillard, R. R. L., & Lorenzen, C. L. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8, 10–14.Google Scholar
  81. Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L. K., Claustre, H., Loiseaux-de Goër, S., & Vaulot, D. (1999). Bolidomonas: A new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology, 35, 368–381.CrossRefGoogle Scholar
  82. Hajós, M. (1986). Stratigraphy of Hungary’s Miocene diatomaceous earth deposits. Geologica Hungarica, ser. Palaeontologica, 49, 1–339.Google Scholar
  83. Hamels, I., Mussche, H., Sabbe, K., Muylaert, K., & Vyverman, W. (2004). Evidence for constant and highly specific active food selection by benthic ciliates in mixed diatoms assemblages. Limnology and Oceanography, 49, 58–68.CrossRefGoogle Scholar
  84. Hamm, C. E., Merkel, R., Springer, O., Jukojc, P., Maier, C., Prechtel, K., & Smetacek, V. (2003). Architectural and material properties of diatom shells provides effective mechanical protection. Nature, 421, 841–843.CrossRefPubMedGoogle Scholar
  85. Hamsher, S. E., & Saunders, G. W. (2014). A floristic survey of marine tube-forming diatoms reveals unexpected diversity and extensive co-habitation among genetic lines of the Berkeleya rutilans complex (Bacillariophyceae). European Journal of Phycology, 49, 47–59.CrossRefGoogle Scholar
  86. Harwood, D. M., & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms. Proceeding of the Ocean Drilling Program, Scientific Results, 113, 403–425.Google Scholar
  87. Harwood, D. M., Nikolaev, V. A., & Winter, D. M. (2007). Cretaceous records of diatom evolution, radiation, and expansion. Paleontological Society Papers, 13, 33–59.Google Scholar
  88. Hasle, G. R., & Syvertsen, E. E. (1996). Marine diatoms. In C. Tomas (Ed.), Identifying marine diatoms and dinoflagellates (pp. 5–385). San Diego: Academic.Google Scholar
  89. Hasle, G. R., von Stosch, H. A., & Syvertsen, E. E. (1983). Cymatosiraceae, a new diatom family. Bacillaria, 6, 9–156.Google Scholar
  90. Heiden, H., & Kolbe, R. W. (1928). Die marinen Diatomeen der Deutschen Südpolar-Expedition 1901–03. Deutsche Südpolar Expedition, 8(5), 450–714.Google Scholar
  91. Helmcke, J. D., & Krieger, W. (1953–1977). Diatomeenschalen im electronen-mikroskopischen Bild. Parts I–X. Weinheim: J. Cramer.Google Scholar
  92. Henderson, M. V., & Reimer, C. W. (2003). Bibliography on the fine structure of diatom frustules (Bacillariophyceae). II (+ deletions, addenda and corrigenda for Bibliography I). In A. Witkowski (Ed.), Diatom Monographs (Vol. 3). Ruggell: A.R.G. Gantner.Google Scholar
  93. Hildebrand, M. (2008). Diatoms, biomineralization processes, and genomics. Chemical Reviews, 108, 4855–4874.CrossRefPubMedGoogle Scholar
  94. Hildebrand, M., & Lerch, S. J. L. (2015). Diatom silica biomineralization: Parallel development of appraoches and understanding. Seminars in Cell and Developmental Biology, 46, 27–35.CrossRefPubMedGoogle Scholar
  95. Hoagland, K. D., Rosowski, J. R., Gretz, M. R., & Roemer, S. C. (1993). Diatom extracellular polymeric substances: Function, fine structure, chemistry, and physiology. Journal of Phycology, 29, 537–566.CrossRefGoogle Scholar
  96. Hofmann, G., Werum, M., & Lange-Bertalot, L. (2013). Diatomeen im Süßwasser-Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häufigsten Arten und ihre Ökologie. 2nd corrected edition. Koenigstein: Koeltz Scientific Books.Google Scholar
  97. Holmes, R. W. (1985). The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two new genera, Bennettella and Epipellis. British Phycological Journal, 20, 43–57.CrossRefGoogle Scholar
  98. Holmes, R. W., & Croll, D. A. (1984). Initial observations on the composition of dense diatom growths in the body feathers of three species of diving seabirds. In D. G. Mann (Ed.), Proceedings of the 7th international diatom symposium (pp. 265–278). Koenigstein: O. Koeltz.Google Scholar
  99. Hünken, M., Harder, J., & Kirst, G. O. (2008). Epiphytic bacteria on the Antarctic ice diatom Amphiprora kufferathii Manguin cleave hydrogen peroxide produced during algal photosynthesis. Plant Biology, 10, 519–526.CrossRefPubMedGoogle Scholar
  100. Hustedt, F. (1927–1966). Die Kieselalgen Deutschlands, Österreichs und der Schweiz. 3 vols. Leipzig: Akademische Verlagsgesellschaft.Google Scholar
  101. Hustedt, F. (1942). Süßwasser-Diatomeen des indomalayischen Archipels und der Hawaii-Inseln. Nach dem Material der Wallacea-Expedition. International Revue der gesamten Hydrobiologie und Hydrographie, 42, 1–252.CrossRefGoogle Scholar
  102. Hustedt, F. (1955). Marine littoral diatoms of Beaufort, North Carolina. Bulletin of the Duke University Marine Station, 6, 1–67.Google Scholar
  103. Hustedt, F. (1959). Die Diatomeenflora des Salzlackengebietes im österreichischen Burgenland. Sitzungsberichte. Österreichische Akademie der Wissenschaften, Math.–Naturwiss. Klasse, Abt. 1, 168, 387–452.Google Scholar
  104. Ichinomiya, M., Yoshikawa, S., Kamiya, M., Ohki, K., Takaichi, S., & Kuwata, A. (2011). Isolation and characterization of Parmales (Heterokonta/Heterokontophyta/Stramenopiles) from the Oyashio region, western North Pacific. Journal of Phycology, 47, 144–151.CrossRefPubMedGoogle Scholar
  105. Idei, M., Sato, S., Watanabe, T., Nagumo, T., & Mann, D. G. (2013b). Sexual reproduction and auxospore structure in Diploneis papula (Bacillariophyta). Phycologia, 52, 295–308.CrossRefGoogle Scholar
  106. Idei, M., Osada, K., Sato, S., Nagumo, T., & Mann, D. G. (2012). Gametogenesis and auxospore development in Actinocyclus (Bacillariophyta). PLoSOne, 7, e41890.CrossRefGoogle Scholar
  107. Idei, M., Osada, K., Sato, S., Nakayama, T., Nagumo, T., & Mann, D. G. (2013a). Sperm ultrastructure in the diatoms Melosira and Thalassiosira and the significance of the 9+0 configuration. Protoplasma, 250, 833–850.CrossRefPubMedGoogle Scholar
  108. Imanian, B., & Keeling, P. J. (2014). Horizontal gene transfer and redundancy of tryptophan biosynthetic enzymes in dinotoms. Genome Biology and Evolution, 6, 333–343.PubMedCentralCrossRefPubMedGoogle Scholar
  109. Janson, S., Rai, A. N., & Bergman, B. (1995). Intracellular cyanobiont Richelia intracellularis: Ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Marine Biology, 124, 1–8.CrossRefGoogle Scholar
  110. Jeffrey, S. W., Wright, S. W., & Zapata, M. (2011). Microalgal classes and their signature pigments. In S. Roy, C. A. Llewellyn, E. S. Egeland, & G. Johnsen (Eds.), Phytoplankton characterization, chemotaxonomy and applications in oceanography (pp. 3–77). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  111. Jewson, D. H. (1992). Life cycle of a Stephanodiscus sp. (Bacillariophyta). Journal of Phycology, 28, 856–866.CrossRefGoogle Scholar
  112. Jewson, D. H., & Granin, N. G. (2015). Cyclical size change and population dynamics of a planktonic diatom, Aulacoseira baicalensis, in Lake Baikal. European Journal of Phycology, 50, 1–19.CrossRefGoogle Scholar
  113. Jones, H. M., Simpson, G. E., Stickle, A. J., & Mann, D. G. (2005). Life history and systematics of Petroneis (Bacillariophyta), with special reference to British waters. European Journal of Phycology, 40, 43–71.CrossRefGoogle Scholar
  114. Kaczmarska, I., Poulíčková, A., Sato, S., Edlund, M. B., Idei, M., Watanabe, T., & Mann, D. G. (2013). Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Research, 28, 263–294.CrossRefGoogle Scholar
  115. Kamikawa, R., Yubuki, N., Yoshida, M., Taira, M., Nakamura, N., Ishida, K., Leander, B. S., Miyashita, H., Hashimoto, T., Mayama, S., & Inagaki, Y. (2015). Multiple losses of photosynthesis in Nitzschia (Bacillariophyceae). Phycological Research, 63, 19–28.CrossRefGoogle Scholar
  116. Karsten, G. (1905–1907). Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, von Carl Chun. Band II, Teil II, Das Phytoplankton des Antarktischen Meeres (pp. 1–136, plates 1–19; 1905); Das Phytoplankton des Atlantischen Oceans (pp. 137–219, plates 20–34; 1906); Das Indische Phytoplankton (pp. 223–544, plates 35–54; 1907). Jena.Google Scholar
  117. Karsten, G. (1912). Über die Reduktionsteilung bei der Auxosporenbildung von Surirella saxonica. Zeitschrift für Botanik, 4, 417–426.Google Scholar
  118. Karsten, G. (1928). Bacillariophyta (Diatomaceae). In A. Engler & K. Prantl (Eds.), Die Natürlichen Pflanzenfamilien (Vol. 2, 2nd ed., pp. 105–203). Leipzig: W. Engelmann.Google Scholar
  119. Kelly, M., Juggins, S., Guthrie, R., Pritchard, S., Jamieson, J., Rippey, B., Hirst, H., & Yallop, M. (2008). Assessment of ecological status in UK rivers using diatoms. Freshwater Biology, 53, 403–422.Google Scholar
  120. Kemp, A. E. S., & Villareal, T. A. (2013). High diatom production and export in stratified waters – A potential negative feedback to global warming. Progress in Oceanography, 119, 4–23.CrossRefGoogle Scholar
  121. Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Frigerio, J.-M., Humbert, J.-F., & Bouchez, A. (2014). A next-generation sequencing approach to river biomonitoring using benthic diatoms. Freshwater Science, 33, 349–363.CrossRefGoogle Scholar
  122. Kociolek, J. P., & Williams, D. M. (2015). How to define a diatom genus? Notes on the creation and recognition of taxa, and a call for revisionary studies of diatoms. Acta Botanica Croatica, 74, 195–210.CrossRefGoogle Scholar
  123. Koeltz, S. (Ed.). (1976). Algological bibliography of the U.S.S.R. from the beginning up to 1960, Collectanea Bibliographia (Vol. 3). Koenigstein: O. Koeltz Scientific Publishers.Google Scholar
  124. Kooistra, W. H. C. F., & Medlin, L. K. (1996). Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. Molecular Phylogenetics and Evolution, 6, 391–407.CrossRefPubMedGoogle Scholar
  125. Kooistra, W. H. C. F., & Pohl, G. (2015). Diatom frustule morphology and its biomimetic applications in architecture and industrial design. In C. E. Hamm (Ed.), Evolution of lightweight structures: Analysis and technical applications (pp. 75–102). Dordrecht: Springer.CrossRefGoogle Scholar
  126. Kooistra, W. H. C. F., De Stefano, M., Mann, D. G., Salma, N., & Medlin, L. K. (2003a). The phylogenetic position of Toxarium, a pennate-like lineage within centric diatoms (Bacillariophyceae). Journal of Phycology, 39, 185–197.CrossRefGoogle Scholar
  127. Kooistra, W. C. H. F., Gersonde, R., Medlin, L. K., & Mann, D. G. (2007). The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In P. G. Falkowski & A. H. Knoll (Eds.), Evolution of primary producers in the sea (pp. 207–249). Amsterdam: Elsevier Academic Press.CrossRefGoogle Scholar
  128. Krammer, K., & Lange-Bertalot, H. (1986–1991). Bacillariophyceae. In H. Ettl, J. Gerloff, H. Heynig & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa, vol. 2, parts 1–5. Stuttgart and New York: G. Fischer.Google Scholar
  129. Krebs, W. N., Gladenkov, A. Y., & Jones, G. D. (2010). Diatoms in oil and gas exploration. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: Applications for the environmental and earth sciences (2nd ed., pp. 525–533). Cambridge: Cambridge University Press.Google Scholar
  130. Kröger, N. (2007). Prescribing diatom morphology: Toward genetic engineering of biological nanomaterials. Current Opinion in Chemical Biology, 11, 662–669.CrossRefPubMedGoogle Scholar
  131. Kuhl, A. (1962). Inorganic phosphorus uptake and metabolism. In R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 211–229). New York: Academic.Google Scholar
  132. Kühn, S. F., & Brownlee, C. (2005). Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii (Bacillariophyceae). Botanica Marina, 48, 297–305.CrossRefGoogle Scholar
  133. Kühn, S. F., Drebes, G., & Schnepf, E. (1996). Five new species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms. Helgoländer Wissenschaftliche Meeresuntersuchungen, 50, 205–222.CrossRefGoogle Scholar
  134. Kuroiwa, T., Suzuki, T., Ogawa, K., & Kawano, S. (1981). The chloroplast nucleus: Distribution, number, size, and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant and Cell Physiology, 22, 381–396.Google Scholar
  135. Kützing, F. T. (1844). Die kieselschaligen Bacillarien oder Diatomeen. Nordhausen: W. Köhne.CrossRefGoogle Scholar
  136. de Lamarck, J. P. B. A., & De Candolle, A. P. (1805). Flore française (Vol. 2, 3rd ed.). Paris: Agasse.Google Scholar
  137. Lauterborn, R. (1896). Untersuchungen über Bau, Kernteilung und Bewegung der Diatomeen. Leipzig: Engelmann.CrossRefGoogle Scholar
  138. Lee, J. J. (2011). Diatoms as endosymbionts. In J. Seckbach & J. P. Kociolek (Eds.), The Diatom World (pp. 439–464). Dordrecht: Springer.Google Scholar
  139. Lee, J. J., McEnery, M. E., Shilo, M., & Reiss, Z. (1979). Isolation and cultivation of diatom symbionts from larger Foraminifera (Protozoa). Nature, 280, 57–58.CrossRefGoogle Scholar
  140. Lenoci, L., & Camp, P. J. (2008). Diatom structures templated by phase-separated fluids. Langmuir, 24, 217–223.CrossRefPubMedGoogle Scholar
  141. Levkov, Z. (2009). Amphora sensu lato. In H. Lange-Bertalot (Ed.), Diatoms of Europe (Vol. 5). Ruggell: A.R.G. Gantner.Google Scholar
  142. Lewin, J., & Lewin, R. A. (1967). Culture and nutrition of some apochlorotic diatoms of the genus Nitzschia. Journal of General Microbiology, 46, 361–367.CrossRefGoogle Scholar
  143. Lewis Jr., W. M. (1983). Interruption of synthesis as a cost of sex in small organisms. American Naturalist, 121, 825–833.CrossRefGoogle Scholar
  144. Li, C.-W., & Volcani, B. E. (1987). Four new apochlorotic diatoms. British Phycological Journal, 22, 375–382.Google Scholar
  145. Li, C. L., Ashworth, M. P., Witkowski, A., Dąbek, P., Medlin, L. K., Kooistra, W. H. C. F., Sato, S., Zgłobicka, I., Kurzydłowski, K. J., Theriot, E. C., Sabir, J. S. M., Khiyami, M. A., Mutwakil, M. H. Z., Sabir, M. J., Alharbi, N. S., Hajarah, N. H., Qing, S., & Jansen, R. K. (2015). New insights into Plagiogrammaceae (Bacillariophyta) based on multigene phylogenies and morphological characteristics with the description of a new genus and three new species. PloS One, 10, e0139300.PubMedCentralCrossRefPubMedGoogle Scholar
  146. Lund, J. W. G. (1949). Studies on Asterionella. I. The origin and nature of the cells producing seasonal maxima. Journal of Ecology, 37, 389–419.CrossRefGoogle Scholar
  147. Lund, J. W. G. (1954). The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kütz. subsp. subarctica O. Müll. Journal of Ecology, 42, 151–179.CrossRefGoogle Scholar
  148. MacDonald, J. D. (1869). On the structure of the diatomaceous frustule and its genetic cycle. Annals and Magazine of Natural History, 3, 1–8.CrossRefGoogle Scholar
  149. Majewska, R., Santoro, M., Bolaños, F., Chaves, G., & De Stefano, M. (2015). Diatoms and other epibionts associated with Olive Ridley (Lepidochelys olivacea) sea turtles from the Pacific coast of Costa Rica. PloS One, 10, e0130351.PubMedCentralCrossRefPubMedGoogle Scholar
  150. Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Winckler, P., Iudicone, D., de Vargas, C., Bittner, J., Zingone, A., & Bowler, C. (2016). Insights into global diatom distribution and diversity in the world’s ocean. Proceedings of the National Academy of Sciences of the United States of America, 113, E1516–E1525.PubMedCentralCrossRefPubMedGoogle Scholar
  151. Mann, D. G. (1988). Why didn’t Lund see sex in Asterionella? A discussion of the diatom life cycle in nature. In F. E. Round (Ed.), Algae and the aquatic environment (pp. 383–412). Bristol: Biopress.Google Scholar
  152. Mann, D. G. (1994). The origins of shape and form in diatoms: The interplay between morphogenetic studies and systematics. In D. S. Ingram & A. J. Hudson (Eds.), Shape and form in plants and fungi (pp. 17–38). London: Academic.Google Scholar
  153. Mann, D. G. (1996). Chloroplast morphology, movements and inheritance in diatoms. In B. Chaudhary & S. B. Agrawal (Eds.), Cytology, genetics and molecular biology of algae (pp. 249–274). Amsterdam: SPB Academic Publishing.Google Scholar
  154. Mann, D. G. (1999a). Crossing the Rubicon: The effectiveness of the marine/freshwater interface as a barrier to the migration of diatom germplasm. In S. Mayama, M. Idei, & I. Koizumi (Eds.), Proceedings of the 14th international diatom symposium (pp. 1–21). Koenigstein: Koeltz Scientific Books.Google Scholar
  155. Mann, D. G. (1999b). The species concept in diatoms. Phycologia, 38, 437–495.CrossRefGoogle Scholar
  156. Mann, D. G. (2006). Specifying a morphogenetic model for diatoms: An analysis of pattern faults in the Voigt zone. Nova Hedwigia. Beiheft, 130, 97–118.Google Scholar
  157. Mann, D. G. (2011). Size and sex. In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 147–166). Dordrecht: Springer.Google Scholar
  158. Mann, D. G., & Marchant, H. (1989). The origins of the diatom and its life cycle. In J. C. Green, B. S. C. Leadbeater, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives, Systematics association special volume (Vol. 38, pp. 305–321). Oxford: Clarendon Press.Google Scholar
  159. Mann, D. G., & Vanormelingen, P. (2013). An inordinate fondness? The number, distributions and origins of diatom species. Journal of Eukaryotic Microbiology, 60, 414–420.CrossRefPubMedGoogle Scholar
  160. Mann, D. G., Sato, S., Trobajo, R., Vanormelingen, P., & Souffreau, C. (2010). DNA barcoding for species identification and discovery in diatoms. Cryptogamie Algologie, 31, 557–577.Google Scholar
  161. Mann, D. G., Sato, S., Rovira, L., & Trobajo, R. (2013). Paedogamy and auxosporulation in Nitzschia sect. Lanceolatae (Bacillariophyta). Phycologia, 52, 204–220.CrossRefGoogle Scholar
  162. Mayama, S., & Shihira-Ishikawa, I. (1994). Putative nucleoids scattered in chloroplast of Pinnularia nobilis (Bacillariophyceae). Japanese Journal of Phycology, 42, 437–441.Google Scholar
  163. Mayama, S., Mayama, N., & Shihira-Ishikawa, I. (2004). Characterization of linear-oblong pyrenoids with cp-DNA along their sides in Nitzschia sigmoidea (Bacillariophyceae). Phycological Research, 52, 129–139.CrossRefGoogle Scholar
  164. McQuoid, M. R., & Hobson, L. A. (1996). Diatom resting stages. Journal of Phycology, 32, 889–902.CrossRefGoogle Scholar
  165. Medlin, L. K. (1983). Community analysis of epiphytic diatom communities attached to selected species of macroalgae collected along the Texas coast of the Gulf of Mexico. Ph.D. dissertation. Texas A&M University, College Station. 150 pp.Google Scholar
  166. Medlin, L. K. (2007). Continued ideas on the evolution of silica. Diatom Research, 22, 217–226.CrossRefGoogle Scholar
  167. Medlin, L. K. (2011). The Permian–Triassic mass extinction forces the radiation of the modern marine phytoplankton. Phycologia, 50, 684–693.CrossRefGoogle Scholar
  168. Medlin, L. K. (2014). Evolution of the diatoms: VIII. Re-examination of the SSU-rRNA gene using multiple outgroups and a cladistic analysis of valve features. Journal of Biodiversity, Bioprospecting and Development, 1, 129. doi:10.4172/2376-0214.1000129.CrossRefGoogle Scholar
  169. Medlin, L. K. (2015). A timescale for diatom evolution based on four molecular markers: Reassessment of ghost lineages and major steps defining diatom evolution. Vie et Milieu, 65, 219–238.Google Scholar
  170. Medlin, L. K. (2016a). Evolution of the diatoms: Major steps in their evolution and a review of the supporting molecular and morphological evidence. Phycologia, 55, 79–103.CrossRefGoogle Scholar
  171. Medlin, L. K. (2016b). Opinion: Can coalescent models explain deep divergences in the diatoms and argue for the acceptance of paraphyletic taxa at all taxonomic hierarchies? Nova Hedwigia, 102, 107–128.CrossRefGoogle Scholar
  172. Medlin, L. K., & Desdevises, Y. (2016). Phylogeny of ‘araphid’ diatoms inferred from SSU and LSU rDNA, rbcL and psbC sequences. Vie et Milieu, 66, 129–154.Google Scholar
  173. Medlin, L. K., & Kaczmarska, I. (2004). Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43, 245–270.Google Scholar
  174. Medlin, L. K., Crawford, R. M., & Andersen, R. A. (1986). Histochemical and ultrastructural evidence for the function of the labiate process in the movement of centric diatoms. British Phycological Journal, 21, 297–301.CrossRefGoogle Scholar
  175. Medlin, L. K., Sato, S., Mann, D. G., & Kooistra, W. H. C. F. (2008). Molecular evidence confirms sister relationship of Ardissonea, Climacosphenia and Toxarium within the bipolar centric diatoms (Bacillariophyta, Mediophyceae) and cladistic analyses confirms that extremely elongated shape has arisen twice in the diatoms. Journal of Phycology, 44, 1340–1348.CrossRefPubMedGoogle Scholar
  176. Mereschkowsky, C. (1902–1903). Les types de l’endochrome. Scripta Botanica Horti Universitatis Imperialialis Petropolitanae, 21, 1–193.Google Scholar
  177. Mereschkowsky, C. (1904). Loi de translation des stades chez les diatomées. Journal de Botanique, 18(17–29), 76–83.Google Scholar
  178. Metzeltin, D., & Lange-Bertalot, H. (2007). Tropical diatoms of South America II. Special remarks on biogeographic disjunction. In H. Lange-Bertalot (Ed.), Iconographia diatomologica. Annotated diatom micrographs, Diversity–taxonomy–biogeography (Vol. 18). Ruggell: A.R.G. Gantner.Google Scholar
  179. Moeys, S., Frenkel, J., Lembke, C., Gillard, J. T. F., Devos, V., Van den Berge, K., Bouillon, B., Huysman, M. J. J., De Decker, S., Scharf, J., Bones, A., Brembu, T., Winge, P., Sabbe, K., Vuylsteke, M., Clement, L., De Veylder, L., Pohnert, G., & Vyverman, W. (2016). A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Scientific Reports, 6, 19252.PubMedCentralCrossRefPubMedGoogle Scholar
  180. Müller, O. (1886). Die Zwischenbänder und Septen der Bacillariaceen. Berichte der Deutschen Botanischen Gesellschaft, 4, 306–316.Google Scholar
  181. Müller, O. (1889). Durchbrechungen der Zellwand in ihren Beziehungen zur Ortsbewegung der Bacillariaceen. Berichte der Deutschen Botanischen Gesellschaft, 7, 169–180.Google Scholar
  182. Müller, O. (1901). Kammern und Poren in der Zellwand der Bacillariaceen. IV. Berichte der Deutschen Botanischen Gesellschaft, 19, 195–210.Google Scholar
  183. Nakayama, T., Ikegami, Y., Nakayama, T., Ishida, K., Inagaki, Y., & Inouye, I. (2011). Spheroid bodies in rhopalodiacean diatoms were derived from a single endosymbiotic cyanobacterium. Journal of Plant Research, 124, 93–97.CrossRefPubMedGoogle Scholar
  184. Nakayama, T., Kamikawa, R., Tanifuji, G., Kashiyama, Y., Ohkouchi, N., Archibald, J. M., & Inagaki, Y. (2014). Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 111, 11407–11412.PubMedCentralCrossRefPubMedGoogle Scholar
  185. Nakov, T., Theriot, E. C., & Alverson, A. J. (2014). Using phylogeny to model cell size evolution in marine and freshwater diatoms. Limnology and Oceanography, 59, 79–86.Google Scholar
  186. Nakov, T., Ashworth, M., & Theriot, E. C. (2015). Comparative analysis of the interaction between habitat and growth form in diatoms. ISME Journal, 9, 246–255.CrossRefPubMedGoogle Scholar
  187. Nanjappa, D., Kooistra, W. H. C. F., & Zingone, A. (2013). A reappraisal of the genus Leptocylindrus (Bacillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. Journal of Phycology, 49, 917–936.PubMedGoogle Scholar
  188. Nanjappa, D., Audic, S., Romac, S., Kooistra, W. H. C. F., & Zingone, A. (2014). Assessment of species dversity and distribution of an ancient diatom lineage using a DNA metabarcoding approach. PloS One, 9, e103810.PubMedCentralCrossRefPubMedGoogle Scholar
  189. Palmer, J. D., & Round, F. E. (1967). Persistent vertical-migration rhythms in benthic microflora VI. Tidal and diurnal nature of rhythm in diatom Hantzschia virgata. Biological Bulletin, 132, 44–55.CrossRefGoogle Scholar
  190. Pascher, A. (1914). Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft, 32, 136–160.Google Scholar
  191. Pascher, A. (1921). Über die Übereinstimmung zwischen den Diatomeen Heterokonten und Chrysomonaden. Berichte der Deutschen Botanischen Gesellschaft, 39, 236–248.Google Scholar
  192. Patil, S., Moeys, S., von Dassow, P., Huysman, M. J. J., Mapleson, D., De Velder, L., Sanges, R., Vyverman, W., Montresor, M., & Ferrante, M. I. (2015). Identification of the meiotic toolkit in diatoms and exploration of meiosis-specific SPO11 and RAD51 homologs in the sexual species Pseudo-nitzschia multistriata and Seminavis robusta. BMC Genomics, 16, 930.PubMedCentralCrossRefPubMedGoogle Scholar
  193. Peragallo, H., & Peragallo, M. (1897–1908). Diatomées marines de France et des districts maritimes voisins. Grez-sur-Loing: M.J. Tempere.CrossRefGoogle Scholar
  194. Pfitzer, E. (1869). Ueber Bau und Zelltheilung der Diatomaceen. Sitzungsberichte der Niederrheinischen Gesellschaft für Natur- und Heilkunde zu Bonn, 1869, pp. 86–89.Google Scholar
  195. Pfitzer, E. (1871). Untersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomeen). Botanische Abhandlungen (Ed Hanstein), 1(2), 1–189.Google Scholar
  196. Pickett-Heaps, J. D. (1991). Cell division in diatoms. International Review of Cytology, 128, 63–108.CrossRefGoogle Scholar
  197. Pickett-Heaps, J. D., Tippit, D. H., & Andreozzi, J. A. (1979). Cell division in the pennate diatom Pinnularia. IV. Valve morphogenesis. Biologie Cellulaire, 35, 199–206.Google Scholar
  198. Pickett-Heaps, J. D., Schmid, A.-M., & Tippit, D. H. (1984). Cell division in diatoms. A translation of part of Robert Lauterborn’s treatise of 1896 with some modern confirmatory observations. Protoplasma, 120, 132–154.CrossRefGoogle Scholar
  199. Pickett-Heaps, J. D., Schmid, A.-M. M., & Edgar, L. A. (1990). The cell biology of diatom valve formation. Progress in Phycological Research, 7, 1–168.Google Scholar
  200. Pienaar, R. N., Sakai, H., & Horiguchi, T. (2007). Description of a new dinoflagellate with a diatom endosymbiont, Durinskia capensis sp. nov. (Peridiniales, Dinophyceae) from South Africa. Journal of Plant Research, 120, 247–258.CrossRefPubMedGoogle Scholar
  201. Poulíčková, A., Mayama, S., Chepurnov, V. A., & Mann, D. G. (2007). Heterothallic auxosporulation, incunabula and perizonium in Pinnularia (Bacillariophyceae). European Journal of Phycology, 42, 367–390.CrossRefGoogle Scholar
  202. Poulíčková, A., Sato, S., Evans, K. M., Chepurnov, V. A., & Mann, D. G. (2015). Repeated evolution of uniparental reproduction in Sellaphora (Bacillariophyceae). European Journal of Phycology, 50, 62–79.CrossRefGoogle Scholar
  203. Raven, J. A. (1983). The transport and function of silicon in plants. Biological Reviews, 58, 179–207.CrossRefGoogle Scholar
  204. Raven, J. A., & Waite, A. M. (2004). The evolution of silicifcation in diatoms: Inescapbale sinking and sinking as escape? New Phytologist, 162, 45–61.CrossRefGoogle Scholar
  205. Raymond, J. A., & Kim, H. J. (2012). Possible role of horizontal gene transfer in the colonization of sea ice by algae. PloS One, 7(5), e35968.PubMedCentralCrossRefPubMedGoogle Scholar
  206. Renaudie, J. (2016). Quantifying the Cenozoic marine diatom deposition history: links to the C and Si cycles. Biogeosciences, 13, 6003–6014.Google Scholar
  207. Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  208. Richthammer, P., Börmel, M., Brunner, E., & van Pée, K.-H. (2011). Biomineralization in diatoms: The role of silacidins. ChemBioChem, 12, 1362–1366.CrossRefPubMedGoogle Scholar
  209. Rimet, F., Trobajo, R., Mann, D. G., Kermarrec, L., Franc, A., Domaizon, I., & Bouchez, A. (2014). When is sampling complete? The effects of geographical range and marker choice on perceived diversity in Nitzschia palea (Bacillariophyta). Protist, 165, 245–259.CrossRefPubMedGoogle Scholar
  210. Rynearson, T. A., & Armbrust, E. V. (2004). Genetic differentiation among populations of the planktonic marine diatom Ditylum brightwellii (Bacillariophyceae). Journal of Phycology, 40, 34–43.CrossRefGoogle Scholar
  211. Roshchin, A. M. (1994). Zhiznennye tsikly diatomovykh vodoroslej. Kiev: Naukova Dumka.Google Scholar
  212. Ross, R., Cox, E. J., Karayeva, N. I., Mann, D. G., Paddock, T. B. B., Simonsen, R., & Sims, P. A. (1979). An amended terminology for the siliceous components of the diatom cell. Nova Hedwigia. Beiheft, 64, 513–533.Google Scholar
  213. Rothpletz, A. (1900). Über einen neuen jurassischen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, 52, 154–160.Google Scholar
  214. Round, F. E. (1981a). The ecology of algae. Cambridge: Cambridge University Press.Google Scholar
  215. Round, F. E. (1981b). Morphology and phyletic relationships of the silicified algae and the archetypal diatom – Monophyly or polyphyly. In T. L. Simpson & B. E. Volcani (Eds.), Silicon and siliceous structures in biological systems (pp. 97–128). New York: Springer.CrossRefGoogle Scholar
  216. Round, F. E., & Crawford, R. M. (1981). The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London B, 211, 237–260.CrossRefGoogle Scholar
  217. Round, F. E., & Crawford, R. M. (1984). The lines of evolution of the Bacillariophyta II. The centric series. Proceedings of the Royal Society of London B, 221, 169–188.CrossRefGoogle Scholar
  218. Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The diatoms. Biology and morphology of the genera. Cambridge: Cambridge University Press.Google Scholar
  219. Ruck, E. C., & Theriot, E. C. (2011). Origin and evolution of the canal raphe system in diatoms. Protist, 162, 723–737.CrossRefPubMedGoogle Scholar
  220. Ruck, E. C., Nakov, T., Alverson, A. J., & Theriot, E. C. (2016). Phylogeny, ecology, morphological evolution, and reclassification of the diatom orders Surirellales and Rhopalodiales. Molecular Phylogenetics and Evolution, 103, 155–171.CrossRefPubMedGoogle Scholar
  221. Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., Muñoz, I., Navarro, E., Real, M., & Romaní, A. (2003). Structure and function of benthic algal communities in an extremely acid river. Journal of Phycology, 39, 481–489.CrossRefGoogle Scholar
  222. Saburova, M., Chomerat, N., & Hoppenrath, M. (2009). Morphology and SSU rDNA phylogeny of Durinskia agilis (Kofoid and Swezy) comb. nov. (Peridiniales, Dinophyceae), a thecate, marine, sand-dwelling dinoflagellate formerly classified within Gymnodinium. Phycologia, 51, 287–302.CrossRefGoogle Scholar
  223. Sapp, J., Carrapiço, F., & Zolotonosov, M. (2002). Symbiogenesis: The hidden face of Constantin Merezhkowsky. History and Philosophy of the Life Sciences, 24, 413–440.CrossRefPubMedGoogle Scholar
  224. Sarno, D., Kooistra, W. H. C. F., Medlin, L. K., Percopo, I., & Zingone, A. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). II. An assessment of the taxonomy of S. costatum-like species with the description of four new species. Journal of Phycology, 41, 151–176.CrossRefGoogle Scholar
  225. Sato, S. (2010). Valve and girdle band morphogenesis in a bipolar centric diatom Plagiogrammopsis vanheurckii (Cymatosiraceae, Bacillariophyta). European Journal of Phycology, 45, 167–176.CrossRefGoogle Scholar
  226. Sato, S., Beakes, G., Idei, M., Nagumo, T., & Mann, D. G. (2011). Novel sex cells and evidence for sex pheromones in diatoms. PloS One, 6(10), e26923.PubMedCentralCrossRefPubMedGoogle Scholar
  227. Schmid, A.-M. M. (1991). Obituary – Prof. Dr Lothar Geitler (1899–1900). Diatom Research, 6, 181–193.CrossRefGoogle Scholar
  228. Schmid, A.-M. M. (2003a). Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-nucleoids” explained: DAPI–DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. Journal of Phycology, 39, 122–138.CrossRefGoogle Scholar
  229. Schmid, A.-M. M. (2003b). Endobacteria in the diatom Pinnularia (Bacillariophyceae). II. Host cell cycle-dependent translocation and transient chloroplast scars. Journal of Phycology, 39, 139–153.CrossRefGoogle Scholar
  230. Schmid, A.-M. M., & Crawford, R. M. (2001). Ellerbeckia arenaria (Bacillariophyceae): Formation of auxospores and initial cells. European Journal of Phycology, 36, 307–320.CrossRefGoogle Scholar
  231. Schmid, A.-M. M., & Volcani, B. E. (1983). Wall morphogenesis in Coscinodiscus wailesii Gran and Angst. I. Valve morphology and developments of its architecture. Journal of Phycology, 19, 387–402.CrossRefGoogle Scholar
  232. Schmidt, A. (1874–1959). Atlas der Diatomaceen-Kunde. Leipzig: O. R. Reisland.CrossRefGoogle Scholar
  233. Schnepf, E. (1969). Leukoplasten bei Nitzschia alba. Österreichische Botanische Zeitung, 116, 65–69.CrossRefGoogle Scholar
  234. Schütt, F. (1896). Bacillariales (Diatomeae). In A. Engler & K. Prantl (Eds.), Die natürlichen Pflanzenfamilien I. lb. Leipzig: Engelmann.Google Scholar
  235. Seckbach, J., & Kociolek, J. P. (2011). The diatom world. Dordrecht: Springer.Google Scholar
  236. Silva, P. C. (1962). Classification of algae. In R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 827–840). New York: Academic.Google Scholar
  237. Simpson, T. L., & Volcani, B. E. (Eds.). (1981). Silicon and siliceous structures in biological systems. New York: Springer.Google Scholar
  238. Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia, 45, 361–402.CrossRefGoogle Scholar
  239. Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., Rampen, S. W., Massé, G., Allard, W. G., Belt, S. T., Robert, J.-M., Rowland, S. J., Moldowan, J. M., Barbanti, S. M., Fago, F. J., Denisevich, P., Dahl, J., Trindade, L. A. F., & Schouten, S. (2004). The rise of the rhizosolenid diatoms. Science, 304, 584–587.CrossRefGoogle Scholar
  240. Siver, P. A., Wolfe, A. P., & Edlund, M. B. (2010). Taxonomic descriptions and evolutionary implications of Middle Eocene pennate diatoms representing the extant genera Oxyneis, Actinella and Nupela (Bacillariophyceae). Plant Ecology and Evolution, 143, 340–351.CrossRefGoogle Scholar
  241. Smetacek, V. (1985). Role of sinking in diatom life-history cycles: Ecological, evolutionary and geological significance. Marine Biology, 84, 239–251.CrossRefGoogle Scholar
  242. Smith, W. (1856). A synopsis of the British Diatomaceae (Vol. 2). London: J. van Voorst.Google Scholar
  243. Smol, J. P., & Stoermer, E. F. (Eds.). (2010). The diatoms, Applications for the environmental and Earth sciences (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  244. Sorhannus, U. (2007). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1–12.CrossRefGoogle Scholar
  245. Souffreau, C., Verbruggen, H., Wolfe, A. P., Vanormelingen, P., Siver, P. A., Cox, E. J., Mann, D. G., Van der Vijver, B., Sabbe, K., & Vyverman, W. (2011). A time-calibrated multi-gene phylogeny of the diatom genus Pinnularia. Molecular Phylogenetics and Evolution, 61, 866–879.CrossRefPubMedGoogle Scholar
  246. Souffreau, C., Vanormelingen, P., Van de Vijver, B., Isheva, T., Verleyen, E., Sabbe, K., & Vyverman, W. (2013). Molecular evidence for distinct Antarctic lineages in the cosmopolitan terrestrial diatoms Pinnularia borealis and Hantzschia amphioxys. Protist, 164, 101–115.CrossRefPubMedGoogle Scholar
  247. von Stosch, H. A. (1950). Oogamy in a centric diatom. Nature, 165, 531.CrossRefGoogle Scholar
  248. von Stosch, H. A., & Fecher, K. (1979). ‘Internal thecae’ of Eunotia soleirolii (Bacillariophyceae): Development, structure and function as resting spores. Journal of Phycology, 15, 233–243.CrossRefGoogle Scholar
  249. Sumper, M., & Brunner, E. (2008). Silica biomineralisation in diatoms: The model organism Thalassiosira pseudonana. ChemBioChem, 9, 1187–1194.CrossRefPubMedGoogle Scholar
  250. Tamura, M., Shimada, S., & Horiguchi, T. (2005). Galeidinium rugatum gen. et sp nov (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of Phycology, 41, 658–671.CrossRefGoogle Scholar
  251. Taylor, F. B. (1929). Notes on diatoms. An introduction to the study of the Diatomaceae. Privately published.Google Scholar
  252. Tempère, J., & Peragallo, H. (1915). Diatomées du monde entier (2nd ed.). Arcachon: J. Tempère [A published collection of 995 microscope slides].Google Scholar
  253. Tesson, B., & Hildebrand, M. (2010). Extensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scale. PloS One, 5, e14300.PubMedCentralCrossRefPubMedGoogle Scholar
  254. Theriot, E. C., Fritz, S. C., Whitlock, C., & Conley, D. J. (2006). Late-Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 23, 38–54.CrossRefGoogle Scholar
  255. Theriot, E. C., Ashworth, M., Ruck, E., Nakov, T., & Jansen, R. K. (2010). A preliminary multigene phylogeny of the diatoms (Bacillariophyta): Challenges for future research. Plant Ecology and Evolution, 143, 278–296.CrossRefGoogle Scholar
  256. Theriot, E. C., Ruck, E., Ashworth, M., Nakov, T., & Jansen, R. K. (2011). Status of the pursuit of the diatom phylogeny: Are traditional view and new molecular paradigms really that different? In J. Seckbach & J. P. Kociolek (Eds.), The diatom world (pp. 123–142). Dordrecht: Springer.Google Scholar
  257. Theriot, E. C., Ashworth, M. P., Nakov, T., Ruck, E., & Jansen, R. K. (2015). Dissecting signal and noise in diatom chloroplast protein encoding genes with phylogenetic information profiling. Molecular Phylogenetics and Evolution, 89, 28–36.CrossRefPubMedGoogle Scholar
  258. Thomas, D. N., & Dieckmann, G. S. (Eds.). (2003). Sea ice: An introduction to its physics, chemistry, biology and geology. Oxford: Blackwell.Google Scholar
  259. Thwaites, G. H. K. (1847). On conjugation in the Diatomaceae. Annals and Magazine of Natural History, ser. 1, 20, 9–11, 343–344.Google Scholar
  260. Trainer, V. L., Bates, S. S., Lundholm, N., Thessen, A. E., Cochlan, W. P., Adams, N. P., & Trick, C. G. (2012). Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae, 14, 271–300.CrossRefGoogle Scholar
  261. Trobajo, R., Mann, D. G., Chepurnov, V. A., Clavero, E., & Cox, E. J. (2006). Auxosporulation and size reduction pattern in Nitzschia fonticola (Bacillariophyta). Journal of Phycology, 42, 1353–1372.CrossRefGoogle Scholar
  262. Underwood, G. J. C., & Paterson, D. M. (2003). The importance of extracellular carbohydrate production by marine epipelic diatoms. Advances in Botanical Research, 40, 183–240.CrossRefGoogle Scholar
  263. van den Hoek, C., Mann, D. G., & Jahns, H. M. (1995). Algae. An introduction to phycology. Cambridge: Cambridge University Press.Google Scholar
  264. VanLandingham, S. L. (1967–1979). Catalogue of the fossil and recent genera and species of diatoms and their synonyms (Vol. 1–8). Vaduz: Cramer.Google Scholar
  265. Vanormelingen, P., Verleyen, E., & Vyverman, W. (2008). The diversity and distribution of diatoms: From cosmopolitanism to narrow endemism. Biodiversity and Conservation, 17, 393–405.CrossRefGoogle Scholar
  266. Vanormelingen, P., Vanelslander, B., Sato, S., Gillard, J., Trobajo, R., Sabbe, K., & Vyverman, W. (2013). Heterothallic sexual reproduction in the model diatom Cylindrotheca. European Journal of Phycology, 48, 93–105.CrossRefGoogle Scholar
  267. Vanormelingen, P., Evans, K. M., Mann, D. G., Lance, S., Debeer, A.-E., D’Hondt, S., Verstraete, T., De Meester, L., & Vyverman, W. (2015). Genotypic diversity and differentiation among populations of two benthic freshwater diatoms as revealed by microsatellites. Molecular Ecology, 24, 4433–4448.CrossRefPubMedGoogle Scholar
  268. Vanstechelman, I., Sabbe, K., Vyverman, W., Vanormelingen, P., & Vuylsteke, M. (2013). Linkage mapping identifies the sex determining region as a single locus in the pennate diatom Seminavis robusta. PloS One, 8(3), e60132.PubMedCentralCrossRefPubMedGoogle Scholar
  269. Walsby, A. E., & Xypolyta, A. (1977). The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt. British Phycological Journal, 12, 215–233.CrossRefGoogle Scholar
  270. Wee, K. M., Rogers, T. N., Altan, B. S., Hackney, S. A., & Hamm, C. (2005). Engineering and medical applications of diatoms. Journal of Nanoscience and Nanotechnology, 5, 88–91.CrossRefPubMedGoogle Scholar
  271. Werner, D. (Ed.). (1977). The biology of diatoms. Oxford: Blackwell.Google Scholar
  272. Yamada, K., Yoshikawa, S., Ichinomiya, M., Kuwata, A., Kamiya, M., & Ohki, K. (2014). Effects of silicon-limitation on growth and morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta). PloS One, 9, e103289.PubMedCentralCrossRefPubMedGoogle Scholar
  273. Yamada, K., Yoshikawa, S., Ohki, K., Ichinomiya, M., Kuwata, A., Motomura, T., & Nagasato, C. (2016). Ultrastructural analysis of siliceous cell wall regeneration in the stramenopile Triparma laevis (Parmales, Bolidophyceae). Phycologia, 55, 602–609.CrossRefGoogle Scholar
  274. Yanagisawa, Y., & Akiba, F. (1990). Taxonomy and phylogeny of the three marine diatom genera, Crucidenticula, Denticulopsis and Neodenticula. Bulletin of the Geological Survey of Japan, 41, 197–301.Google Scholar
  275. Zimmermann, J., Jahn, R., & Gemeinholzer, B. (2011). Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Organisms, Diversity and Evolution, 11, 173–192.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • David G. Mann
    • 1
    • 2
  • Richard M. Crawford
    • 3
  • Frank E. Round
    • 4
  1. 1.Royal Botanic Garden EdinburghEdinburghUK
  2. 2.Aquatic EcosystemsInstitute for Food and Agricultural Research and Technology (IRTA)Sant Carles de la RàpitaSpain
  3. 3.University of BristolBristolUK
  4. 4.University of BristolBristolUK

Personalised recommendations