Skip to main content

Ciliophora

  • Living reference work entry
  • First Online:
  • 2493 Accesses

Abstract

The ciliated protists (Phylum Ciliophora) are typically longer than 50 μm in body length and so are conspicuous microbial eukaryotes. There are over 8,000 species of these usually quickly moving protists, which locomote using files of cilia organized on the cell surface. In addition to the files of cilia or kineties on the cell surface, ciliates are also characterized by nuclear dimorphism or the possession of two kinds of nuclei: (1) the micronucleus, which is not transcriptionally active and which is considered the equivalent of the germ line in multicellular organisms and (2) a macronucleus, which is transcriptionally active and which is typically a developmental product of the amplification of the micronuclear or germ-line DNA. The micronucleus participates in conjugation, which is the sexual process of ciliates, and the third major feature to characterize this phylum. Ciliates as large cells are the top predators or heterotrophs in microbial food webs when metazoans are absent. As heterotrophs, they feed upon bacteria, smaller protists, and even other ciliates in ecosystems from the poles to the tropics and from terrestrial soils to the sediments around deep-sea hydrothermal vents. The genus Mesodinium includes the only “autotrophic” ciliate species, but many species are mixotrophic, capturing the chloroplasts of prey or hosting autotrophic protists as endosymbionts. Ciliates can also be symbionts of other organisms, ranging from commensals found in the stomachs of ruminants to parasites of fish. Ciliates, such as Tetrahymena and Paramecium, whose genomes have been sequenced, serve as model organisms for cell and molecular biology.

This is a preview of subscription content, log in via an institution.

References

  • Acosta-Mercado, D., & Lynn, D. H. (2003). The edaphic quantitative protargol stain: A sampling protocol for assessing soil ciliate abundance and diversity. Journal of Microbiological Methods, 53, 365–375.

    Article  PubMed  Google Scholar 

  • Adl, S. M. (2003). The ecology of soil decomposition. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Alabouvette, C., Couteaux, M. M., Old, K. M., Pussard, M., Reisinger, O., & Toutain, F. (1981). Les protozoaires du sol: Aspects écologiques et methodologiques. Année Biologique, 20, 255–303.

    Google Scholar 

  • Allen, R. D. (2000). The contractile vacuole and its membrane dynamics. BioEssays, 22, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  • Allen, R. D., & Fok, A. K. (2000). Membrane trafficking and processing in Paramecium. International Review of Cytology, 198, 277–318.

    Article  CAS  PubMed  Google Scholar 

  • Allen, S. L., Rushford, C. L., Nerad, T. A., & Lau, E. T. (1983). Intraspecies variability in the esterases and acid phosphatases of Paramecium jenningsi and Paramecium multimicronucleatum: Assignment of unidentified paramecia; comparison with the P. aurelia complex. Journal of Protozoology, 30, 155–163.

    Article  CAS  Google Scholar 

  • American Type Culture Collection. (1982). Catalogue of strains I (15th ed., p. 556). Bethesda: American Type Culture Collection.

    Google Scholar 

  • Anderson, S. A., Hulston, D. A., McVeagh, S. M., Webb, V. L., & Smith, P. J. (2009). In vitro culture and cryopreservation of Uronema marinum isolated from farmed New Zealand groper (Polyprion oxygeneios). Journal of Microbiological Methods, 79, 62–66.

    Article  CAS  PubMed  Google Scholar 

  • Arnaiz, O., & Sperling, L. (2011). ParameciumDB in 2011: New tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia. Nucleic Acids Research, 39, D632–D636.

    Article  CAS  PubMed  Google Scholar 

  • Asai, D. J., & Forney, J. D. (Eds.). (2000). Tetrahymena thermophila (Methods in cell biology, Vol. 62). New York: Academic.

    Google Scholar 

  • Aufderheide, K. J. (1982). An improvement in the protargol technique of Ng and Nelsen. Transactions of the American Microscopical Society, 101, 100–104.

    Article  Google Scholar 

  • Augustin, H., Foissner, W., & Adam, H. (1984). An improved pyridinated silver carbonate method which needs few specimens and yields permanent slides of impregnated ciliates (Protozoa, Ciliophora). Mikroskopie (Wien), 41, 134–137.

    Google Scholar 

  • Azovsky, A., & Mazei, Y. (2013). Do microbes have macroecology? Large-scale patterns in diversity and distribution of marine benthic ciliates. Global Ecology and Biogeography, 22, 163–172.

    Article  Google Scholar 

  • Barth, D., Tischer, K., Berger, H., Schlegel, M., & Berendonk, T. U. (2008). High mitochondrial haplotype diversity of Coleps sp. (Ciliophora: Prostomatida). Environmental Microbiology, 10, 626–634.

    Article  CAS  PubMed  Google Scholar 

  • Batson, B. S. (1983). Tetrahymena dimorpha sp. nov. (Hymenostomatida: Tetrahymenidae), a new ciliate parasite of Simuliidae (Diptera) with potential as a model for the study of ciliate morphogenesis. Philosophical Transactions of the Royal Society, London B, 301, 345–363.

    Article  Google Scholar 

  • Beale, G. H., & Preer, J. R. (2008). Paramecium: Genetics and epigenetics. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Beaver, J. R., & Crisman, T. L. (1989). The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology, 17, 111–136.

    Article  CAS  PubMed  Google Scholar 

  • Berger, H. (2011). Monograph of the Gonostomatidae and Kahliellidae (Ciliophora, Hypotricha). Dordrecht: Springer.

    Book  Google Scholar 

  • Bick, H. (1972). Ciliated protozoa: An illustrated guide to the species used as biological indicators in freshwater biology. Geneva: World Health Organization.

    Google Scholar 

  • Blackburn, E. H. (1992). Telomerase. Annual Reviews of Biochemistry, 61, 113–129.

    Article  CAS  Google Scholar 

  • Blackburn, E. H., Budarf, M. L., Challoner, P. B., Cherry, J. M., Howard, E. A., Katzen, A. L., Pan, W.-C., & Ryan, T. (1983). DNA termini in ciliate macronuclei. Cold Spring Harbor Symposia on Quantitative Biology, 47, 1195–1207.

    Article  PubMed  Google Scholar 

  • Borror, A. C. (1973). Marine flora and fauna of the northeastern United States. Protozoa: Ciliophora (NOAA Technical Report NMFS CIRC–378).

    Google Scholar 

  • Bulit, C., Díaz-Avalos, C., Signoret, M., & Montagnes, D. J. S. (2009). Scaling patterns of plankton diversity: A study of ciliates in a tropical coastal lagoon. Hydrobiologia, 624, 29–44.

    Article  Google Scholar 

  • Burkovsky, I. V. (1978). Structure, dynamics and production of a community of marine psammophilous ciliates. Zoologicheskiĭ Zhurnal, 57, 325–337 (in Russian with English summary).

    Google Scholar 

  • Cairns, J., Jr., & Yongue, W. H., Jr. (1977). Factors affecting the number of species in freshwater protozoan communities. In J. Cairns (Ed.), Aquatic microbial communities (pp. 257–303). New York: Garland.

    Google Scholar 

  • Cairns, J., Jr., Lanza, G. R., & Parker, B. C. (1972). Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proceedings of the Academy of Natural Sciences of Philadelphia, 124, 79–127.

    Google Scholar 

  • Caron, D. A., Davis, P. G., Madin, L. P., & Sieburth, J. M. N. (1982). Heterotrophic bacteria and bactivorous protozoa in oceanic macroaggregates. Science, 218, 795–797.

    Article  CAS  PubMed  Google Scholar 

  • Chalker, D. L. (2008). Dynamic nuclear reorganization during genome remodeling of Tetrahymena. Biochimica et Biophysica Acta, Molecular Cell Research, 1783, 2130–2136.

    Article  CAS  Google Scholar 

  • Chen, T.-T. (Ed.). (1967). Research in protozoology (Vol. 1). New York: Pergamon Press, Vol. 2 (1967), Vol. 3 (1969), Vol. 4 (1972).

    Google Scholar 

  • Coats, W., & Heinbokel, J. (1982). A study of reproduction and other life cycle phenomena in planktonic protists using an acridine orange fluorescence technique. Marine Biology, 67, 71–79.

    Article  Google Scholar 

  • Collins, K. (Ed.). (2012). Tetrahymena thermophila (Methods in cell biology, Vol. 109). Amsterdam/London: Elsevier/Academic.

    Google Scholar 

  • Committee on Cultures, Society of Protozoologists. (1958). A catalogue of laboratory strains of free-living and parasitic protozoa. Journal of Protozoology, 5, 1–38.

    Article  Google Scholar 

  • Cooper, J. K., Li, J. Q., & Montagnes, D. J. S. (2012). Intermediate fragmentation per se provides stable predator–prey metapopulation dynamics. Ecology Letters, 15, 856–863.

    Article  PubMed  Google Scholar 

  • Corliss, J. O. (1979). The ciliated protozoa. Characterization, classification and guide to the literature (2nd ed.). New York: Pergamon Press.

    Google Scholar 

  • Corliss, J. O. (1986). The development of ciliate systematics from the era of József Gelei until the present time. Symposia Biologica Hungarica, 33, 67–86.

    Google Scholar 

  • Coyne, R. S., Thiagarajan, M., Jones, K. M., Wortman, J. R., Tallon, L. J., Haas, B. J., Cassidy-Hanley, D. M., Wiley, E. A., Smith, J. J., Collins, K., Lee, S. R., Couvillion, M. T., Liu, Y. F., Garg, J., Pearlman, R. E., Hamilton, E. P., Orias, E., Eisen, J. A., & Methe, B. A. (2008). Refined annotation and assembly of the Tetrahymena thermophila genome sequence through EST analysis, comparative genomic hybridization, and targeted gap closure. BMC Genomes, 9, 1471–2164.

    Google Scholar 

  • Curds, C. R. (1982). British and other freshwater ciliated protozoa. Part I. Ciliophora: Kinetofragminophora. Keys and notes for identification of the free-living genera. In D. M. Kermack & R. S. K. Barnes (Eds.), Synopses of the British Fauna (Vol. 22). New York: Cambridge University Press.

    Google Scholar 

  • Curds, C. R., Gates, M. A., & Roberts, D. M. L. (1983). British and other freshwater ciliated protozoa. Part II. Ciliophora: Oligohymenophora and Polyhymenophora. Keys and notes for identification of the free-living genera. In D. M. Kermack & R. S. K. Barnes (Eds.), Synopses of the British Fauna (Vol. 23). New York: Cambridge University Press.

    Google Scholar 

  • Dale, T., & Burkhill, P. H. (1982). Live counting – A quick and simple technique for enumerating pelagic ciliates. Annales de l’Institut Oceanographique, 58, 267–276.

    Google Scholar 

  • Damaj, R., Pomel, S., Bricheux, G., Coffe, G., Vigues, B., Ravet, V., & Bouchard, P. (2009). Cross-study analysis of genomic data defines the ciliate multigenic epiplasmin family: Strategies for functional analysis in Paramecium tetraurelia. BMC Evolutionary Biology, 9, 125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dayeh, V. R., Chow, S. L., Schirmer, K., Lynn, D. H., & Bols, N. C. (2004). Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. Ecotoxicology and Environmental Safety, 57, 375–382.

    Article  CAS  PubMed  Google Scholar 

  • de Figueiredo, G. M., Nash, R. D. M., & Montagnes, D. J. S. (2007). Do protozoa contribute significantly to the diet of larval fish in the Irish Sea? Journal of the Marine Biological Association of the United Kingdom, 87, 843–850.

    Article  Google Scholar 

  • De Graaf, R. M., Ricard, G., van Alen, T. A., Duarte, I., Dutilh, B. E., Burgtorf, C., Kuiper, J. W. P., van der Staay, G. W. M., Tielens, A. G. M., Huynen, M. A., & Hackstein, J. P. (2011). The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Molecular Biology and Evolution, 28, 2379–2391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Puytorac, P. (Ed.). (1994). Traité de Zoologie, Infusoires Ciliés (Vol. 2). Paris: Masson.

    Google Scholar 

  • de Puytorac, P., Grain, J., Legendre, P., & Devaux, J. (1984). Essai d’application de l’analyse phénétique à la classification du phylum des Ciliophora. Journal of Protozoology, 31, 496–507.

    Article  Google Scholar 

  • Dolan, J. R., Ritchie, M. E., & Ras, J. (2007). The “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the S.E. Tropical Pacific Ocean. Biogeosciences, 4, 297–310.

    Article  CAS  Google Scholar 

  • Dolan, J. R., Montagnes, D. J. S., Agatha, S., Coats, D. W., & Stoecker, D. K. (2013). The biology and ecology of tintinnid ciliates: Models for marine plankton. Oxford: Wiley-Blackwell.

    Google Scholar 

  • Dye, A. H. (1979). Quantitative estimation of protozoa from sandy substrates. Estuarine and Coastal Marine Science, 8, 199–204.

    Article  Google Scholar 

  • Eisler, K. (1992). Somatic kineties or paroral membrane: Which came first in ciliate evolution? BioSystems, 26, 239–254.

    Article  CAS  PubMed  Google Scholar 

  • Elliott, A. M. (Ed.). (1973). Biology of Tetrahymena. Stroudsburg: Dowden, Hutchinson and Ross.

    Google Scholar 

  • Esteban, G. F., Fenchel, T., & Finlay, B. J. (2010). Mixotrophy in ciliates. Protist, 161, 621–641.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel, T. (1969). The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated protozoa. Ophelia, 6, 1–182.

    Article  Google Scholar 

  • Fenchel, T. (1987). Ecology of protozoa. Berlin: Springer.

    Google Scholar 

  • Fenchel, T., & Finlay, B. J. (1991a). The biology of free-living anaerobic ciliates. European Journal of Protistology, 26, 210–215.

    Article  Google Scholar 

  • Fenchel, T., & Finlay, B. J. (1991b). Synchronous division of an endosymbiotic methanogenic bacterium in the anaerobic ciliate Plagiopyla frontata Kahl. Journal of Eukaryotic Microbiology, 38, 22–28.

    Google Scholar 

  • Fenchel, T., & Harrison, P. (1976). The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In J. M. Anderson & A. MacFadyen (Eds.), The role of terrestrial and aquatic organisms in decomposition processes (pp. 285–299). London: Blackwell.

    Google Scholar 

  • Finlay, B. J., & Ochsenbein-Gattlen, C. (1982). Ecology of free-living protozoa. A bibliography of published research concerning freshwater and terrestrial forms 1910–1981 (Freshwater Biological Association, Occasional Publication No. 17).

    Google Scholar 

  • Finlay, B. J., Hetherington, N. B., & Davison, W. (1983). Active biological participation in lacustrine barium chemistry. Geochimica et Cosmochimica Acta, 47, 1325–1329.

    Article  CAS  Google Scholar 

  • Foissner, W. (1988). Taxonomic and nomenclatural revision of Sladeek’s lists of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiologia, 166, 1–64.

    Article  Google Scholar 

  • Foissner, W. (1991). Basic light and electron microscopic methods for taxonomic studies of ciliated protozoa. European Journal of Protistology, 27, 313–330.

    Article  CAS  PubMed  Google Scholar 

  • Foissner, W., Franz, H., & Adam, H. (1982). Terrestrische Protozoen als Bioindikatoren im Boden einer planierten Ski-Piste. Pedobiologia, 24, 45–56.

    Google Scholar 

  • Foissner, W., Berger, H., & Kohmann, F. (1994). Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems – Band III: Hymenostomata, Prostomatida Nassulida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft. Heft 1/94.

    Google Scholar 

  • Foissner, W., Berger, H., & Schaumburg, J. (1999). Identification and ecology of limnetic plankton ciliates. Munich: Bavarian State Office of Water Management.

    Google Scholar 

  • Foissner, W., Chao, A., & Katz, L. A. (2008). Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation, 17, 345–363.

    Article  Google Scholar 

  • Fok, A. K., & Allen, R. D. (1979). Axenic Paramecium caudatum. I. Mass culture and structure. Journal of Protozoology, 26, 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Frankel, J. (1989). Pattern formation. Ciliate studies and models. Oxford: Oxford University Press.

    Google Scholar 

  • Frankel, J., & Heckmann, K. (1968). A simplified Chatton-Lwoff silver impregnation procedure for use in experimental studies with ciliates. Transactions of the American Microscopical Society, 87, 317–321.

    Article  Google Scholar 

  • Fukami, T., & Morin, P. J. (2003). Productivity-diversity relationships depend on the history of community assembly. Nature, 424, 423–426.

    Article  CAS  PubMed  Google Scholar 

  • Galbraith, L. M., & Burns, C. W. (2010). Drivers of ciliate and phytoplankton community structure across a range of water bodies in southern New Zealand. Journal of Plankton Research, 32, 327–339.

    Article  Google Scholar 

  • Gao, F., Warren, A., Zhang, Q., Gong, J., Miao, M., Sun, P., Xu, D., Huang, J., Yi, Z., & Song, W. (2016). The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the Phylum Ciliophora (Eukaryota, Alveolata). Scientific Reports, 6, 24874. doi:10.1038/sreps24874.

    Article  PubMed  PubMed Central  Google Scholar 

  • Garst, V., & Horstmann, U. (1983). N-remineralization of phyto- and bacterioplankton by the marine ciliate Euplotes vannus. Marine Ecology-Progress Series, 13, 55–60.

    Article  Google Scholar 

  • Gates, M. A. (1977). Analysis of positional information applied to cirral pattern of the ciliate Euplotes. Nature, 268, 362–364.

    Article  Google Scholar 

  • Gause, G. F. (1934). The struggle for existence. Reprint 1964. New York: Hafner.

    Google Scholar 

  • Gentekaki, E., & Lynn, D. H. (2012). Spatial genetic variation, phylogeography and barcoding of the peritrichous ciliate Carchesium polypinum. European Journal of Protistology, 48, 305–313.

    Article  PubMed  Google Scholar 

  • Gentekaki, E., Kolisko, M., Boscaro, V., Bright, K. J., Dini, F., Di Giuseppe, G., Gong, Y., Miceli, C., Modeo, L., Molestina, R. E., Petroni, G., Pucciarelli, S., Roger, A. J., Strom, S. L., & Lynn, D. H. (2014). Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Molecular Phylogenetics and Evolution, 78, 36–42.

    Article  CAS  PubMed  Google Scholar 

  • Gentekaki, E., Kolisko, M., Gong, Y., & Lynn, D. H. (2017). Phylogenomics solves a long-standing evolutionary puzzle in the ciliate world: The subclass Peritrichia is monophyletic. Molecular Phylogenetics and Evolution, 106, 1–5.

    Article  PubMed  Google Scholar 

  • Giese, A. C. (Ed.). (1973). Blepharisma: The biology of a light-sensitive protozoan. Stanford: Stanford University Press.

    Google Scholar 

  • Gill, D. E. (1972). Intrinsic rates of increase, saturation densities, and competitive ability. I. An experiment with Paramecium. The American Naturalist, 106, 461–471.

    Article  Google Scholar 

  • Giller, P. S., Hillebrand, H., Berninger, U.-G., Gessner, M. O., Hawkins, S., Inchausti, P., Inglis, C., Leslie, H., Malmquist, B., Monaghan, M. T., Morin, P. J., & O’Mullan, G. (2004). Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments. Oikos, 104, 423–436.

    Article  Google Scholar 

  • Gilron, G. L., & Lynn, D. H. (1996). Ciliated protozoa as test organisms in toxicity assessments, Ch. 21. In P. Wells, C. Blaise & K. Lee (Eds.). Microscale testing in aquatic toxicology – Advances, techniques and practise (pp. 323–336). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Gold, K. (1973). Methods for growing Tintinnida in continuous culture. American Zoologist, 13, 203–208.

    Article  Google Scholar 

  • Gomez-Gutierrez, J., Strüder-Kypke, M. C., Lynn, D. H., Shaw, T. C., Aguilar-Mendez, M. J., Lopez-Cortes, A., Martinez-Gomez, S., & Robinson, C. J. (2012). Pseudocollinia brintoni gen. nov., sp. nov. (Apostomatida: Colliniidae), a parasitoid ciliate infecting the euphausiid Nyctiphanes simplex. Diseases of Aquatic Organisms, 99, 57–78.

    Article  CAS  PubMed  Google Scholar 

  • Goodey, T. (1915). Note on the remarkable retention of vitality by protozoa from old stored soils. Annals of Applied Biology, 1, 395–399.

    Article  Google Scholar 

  • Görtz, H.-D. (Ed.). (1988). Paramecium. Berlin: Springer.

    Google Scholar 

  • Gould, S. B., Tham, W. H., Cowman, A. F., McFadden, G. I., & Waller, R. F. (2008). Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Molecular Biology and Evolution, 25, 1219–1230.

    Article  CAS  PubMed  Google Scholar 

  • Grassé, P.-P. (Ed.). (1984). Traité de Zoologie (Fasc. 1, Infusoires ciliés, Vol. 2). Paris: Masson.

    Google Scholar 

  • Grell, K. G. (1973). Protozoology. New York: Springer.

    Book  Google Scholar 

  • Grolière, C.-A. (1978). Contribution à l’étude des ciliés des sphaignes. III. Étude mathématique des resultat. Protistologica, 14, 295–311.

    Google Scholar 

  • Guggiari, M., & Peck, R. (2008). The bacterivorous ciliate Cyclidium glaucoma, isolated from a sewage treatment plant: Molecular and cytological descriptions for barcoding. European Journal of Protistology, 44, 168–180.

    Article  PubMed  Google Scholar 

  • Harikrishnan, R., Balasundaram, C., & Heo, M.-S. (2010). Scuticociliatosis and its recent prophylactic measures in aquaculture with special reference to South Korea. Taxonomy, diversity and diagnosis of scuticociliatosis: Part I; Control strategies of scuticociliatosis: Part II. Fish & Shellfish Immunology, 29, 15–31.

    Article  CAS  Google Scholar 

  • Hausmann, K. (1978). Extrusive organelles in protists. International Review of Cytology, 52, 197–276.

    Article  CAS  PubMed  Google Scholar 

  • Hausmann, K., & Bradbury, P. C. (Eds.). (1996). Ciliates. Cells as organisms. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Hausmann, K., Hülsmann, N., & Radek, R. (2003). Protistology (3rd ed.). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller).

    Google Scholar 

  • Heckmann, K. (1983). Endosymbionts of Euplotes. International Review of Cytology. Supplement, 14, 111–144.

    Google Scholar 

  • Hill, D. L. (1972). The biochemistry and physiology of Tetrahymena. New York: Academic.

    Google Scholar 

  • Hutner, S. H. (Ed.). (1964). Biochemistry and physiology of protozoa (Vol. 3). New York: Academic.

    Google Scholar 

  • Hutner, S. H., & Lwoff, A. (Eds.). (1955). Biochemistry and physiology of protozoa (Vol. 2). New York: Academic.

    Google Scholar 

  • Jankowski, A. W. (2007). Phylum Ciliophora Doflein, 1901. In A. F. Alimov (Ed.), Protista. Part 2, Handbook on zoology (pp. 415–993). St. Petersburg: Russian Academy of Sciences, Zoological Institute (in Russian with English summary).

    Google Scholar 

  • Johnson, M. D. (2011). Acquired phototrophy in ciliates: A review of cellular interactions and structural adaptations. Journal of Eukaryotic Microbiology, 58, 185–195.

    Article  PubMed  Google Scholar 

  • Jones, A. R. (1974). The ciliates. London: Hutchinson.

    Google Scholar 

  • Juranek, S. A., & Lipps, H. J. (2007). New insights into the macronuclear development of ciliates. International Review of Cytology, 262, 219–251.

    Article  CAS  PubMed  Google Scholar 

  • Kahl, A. (1930–1935). Urtiere oder protozoa. I: Wimpertiere oder Ciliata (Infusoria), eine Bearbeitung der freilebenden und ectocommen-salen Infusorien der Erde, unter Ausschluss der marinen Tintinnidae. In F. Dahl (Ed.), Die TierweltDeutschlands (Parts 18 (year 1930), 21 (1931), 25 (1932), 30 (1935), pp. 1–886). Jena: G. Fischer.

    Google Scholar 

  • Katz, L. A., DeBerardinis, J., Hall, M. S., Kovner, A. M., Dunthorn, M., & Muse, S. V. (2011). Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata. Journal of Molecular Evolution, 73, 266–272.

    Article  CAS  PubMed  Google Scholar 

  • Keenan, K., Erlich, E., Donnelly, K. H., Basel, M. B., Hutner, S. H., Kassoff, R., & Crawford, S. A. (1978). Particle-based axenic media for tetrahymenids. Journal of Protozoology, 25, 385–387.

    Article  CAS  PubMed  Google Scholar 

  • Kher, C. P., Doerder, F. P., Cooper, J., Ikonomi, P., Achilles-Day, U., Küpper, F. C., & Lynn, D. H. (2011). Barcoding Tetrahymena: Discriminating species and identifying unknowns using the cytochrome c oxidase subunit 1 (cox-1) barcode. Protist, 162, 2–13.

    Article  CAS  PubMed  Google Scholar 

  • Kidder, G. W. (Ed.). (1967). Protozoa. In: M. Florkin, B. T. Scheer (Eds.), Chemical zoology (Vol. 1). New York: Academic.

    Google Scholar 

  • Kofoid, C. A., & Campbell, A. S. (1939). The Ciliata: The Tintinnoinea. Reports on the scientific results of the expedition to the eastern tropical Pacific. 1904–1905. Bulletin of the Museum of Comparative Zoology Harvard, 84, 1–473.

    Google Scholar 

  • Kosinski, R. J. (1979). A method of sterilizing ciliates without special equipment. BioScience, 29, 306–307.

    Article  Google Scholar 

  • Kreier, J. P. (Ed.). (1978). Parasitic protozoa (Vol. II). New York: Academic.

    Google Scholar 

  • Kreier, J. P. (Ed.). (1994). Parasitic protozoa (2nd ed., Vol. VIII). New York: Academic.

    Google Scholar 

  • Kreier, J. P., & Baker, J. R. (1993). Parasitic protozoa (Vol. III). New York: Academic.

    Google Scholar 

  • Krenek, S., & Berendonk, T. U. (2009). A long-term cryopreservation tool for cell characteristics: Cryopreservation of Paramecium caudatum. Protist, 160, 355–363.

    Article  PubMed  Google Scholar 

  • Krumins, J. A., Long, Z. T., Steiner, C. F., & Morin, P. J. (2006). Indirect effects of food web diversity and productivity on bacterial community function and composition. Functional Ecology, 20, 514–521.

    Article  Google Scholar 

  • Laughlin, T. J., Henry, J. M., Phares, E. F., Long, M. V., & Olins, D. E. (1983). Methods for the large-scale cultivation of an Oxytricha (Ciliophora: Hypotrichida). Journal of Protozoology, 30, 63–64.

    Article  Google Scholar 

  • Levandowsky, M., & Hutner, S. H. (Eds.). (1980). Biochemistry and physiology of protozoa (2nd ed.). New York: Academic.

    Google Scholar 

  • Li, J. Q., & Montagnes, D. J. S. (2015). Restructuring fundamental predator–prey models by recognising prey-dependent conversion efficiency and mortality rates. Protist, 166, 211–223.

    Article  PubMed  Google Scholar 

  • Li, L. F., Stoeck, T., Shin, M. K., AL-Rasheid, K. A. S., AL-Khedhairy, B. A., & Song, W. B. (2010). Protocruzia, a highly ambiguous ciliate (Protozoa: Ciliophora): Very likely an ancestral form for Heterotrichea, Colpodea or Spirotrichea? With reevaluation of its evolutionary position based on multigene analyses. Science China Life Sciences, 53, 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Limberger, R., & Wickham, S. A. (2012). Transitory versus persistent effects of connectivity in environmentally homogeneous metacommunities. Plos One, 7(8), e44555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindholm, T. (1985). Mesodinium rubrum – A unique photosynthetic ciliate. Advances in Aquatic Microbiology, 3, 1–48.

    Google Scholar 

  • Luckinbill, L. S. (1979). Selection and the r/K continuum in experimental populations of protozoa. The American Naturalist, 113, 427–437.

    Article  Google Scholar 

  • Luckinbill, L. S., & Fenton, M. M. (1978). Regulation and environmental variability in experimental populations of protozoa. Ecology, 59, 1271–1276.

    Article  Google Scholar 

  • Lwoff, A. (Ed.). (1951). Biochemistry and physiology of protozoa (Vol. 1). New York: Academic.

    Google Scholar 

  • Lynn, D. H. (1981). The organization and evolution of microtubular organelles in ciliated protozoa. Biological Reviews, 56, 243–292.

    Article  Google Scholar 

  • Lynn, D. H. (2008). The ciliated protozoa: Characterization, classification, and guide to the literature (3rd ed.). New York: Springer.

    Google Scholar 

  • Lynn, D. H., & Malcolm, J. R. (1983). A multivariate study of morphometric variation in species of the ciliate genus Colpoda (Ciliophora: Colpodida). Canadian Journal of Zoology, 61, 307–316.

    Article  Google Scholar 

  • Lynn, D. H., & Small, E. B. (2002). Phylum Ciliophora, Doflein, 1901. In: J. J. Lee, G. F. Leedale, & P. C. Bradbury (Eds.), An illustrated guide to the protozoa (Vol. 1 (2000), pp. 371–656). Lawrence: Society of protozoologists.

    Google Scholar 

  • Martín-González, A., Wierzchos, J., Gutiérrez, J. C., Alonso, J., & Ascaso, C. (2008). Morphological stasis of protists in lower cretaceous amber. Protist, 159, 251–257.

    Article  PubMed  Google Scholar 

  • Matthes, D., & Wenzel, F. (1966). Die Wimpertiere (Ciliata). Stuttgart: Kosmos-Verlag.

    Google Scholar 

  • Michalowski, T., Szczepkowski, P., & Muszynski, P. (1985). The factors affecting the cultivation of the rumen ciliate protozoan Entodinium exiguum in vitro. Acta Protozoologica, 24, 297–305.

    Google Scholar 

  • Montagnes, D. J. S., & Lynn, D. H. (1993). A quantitative protargol stain (QPS) for ciliates and other protists. In P. F. Kemp, B. F. Sherr, E. B. Sherr, & J. J. Cole (Eds.), Aquatic microbial ecology (pp. 229–240). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Montagnes, D., Roberts, E., Lukes, J., & Lowe, C. (2012). The rise of model protozoa. Trends in Microbiology, 20, 184–191.

    Article  CAS  PubMed  Google Scholar 

  • Morado, J. F., & Small, E. B. (1995). Ciliate parasites and related diseases of Crustacea: A review. Reviews in Fisheries Science, 3, 275–354.

    Article  Google Scholar 

  • Morin, P. J., & McGrady-Steed, J. (2004). Biodiversity and ecosystem functioning in aquatic microbial systems: A new analysis of temporal variation and species richness-predictability relations. Oikos, 104, 458–466.

    Article  Google Scholar 

  • Nanney, D. L. (1980). Experimental ciliatology. An introduction to genetic and developmental analysis in ciliates. New York: Wiley.

    Google Scholar 

  • Narayan, N., Priya, M., Haridas, A., & Manilai, V. B. (2007). Isolation and culturing of a most common anaerobic ciliate Metopus sp. Anaerobe, 13, 14–20.

    Article  CAS  Google Scholar 

  • Ng, S. F. (1986). The somatic function of the micronucleus of ciliated protozoa. Progress in Protozoology, 1, 215–286.

    Google Scholar 

  • Nowacki, M., Haye, J. E., Fang, W. W., Vijayan, V., & Landweber, L. F. (2010). RNA-mediated epigenetic regulation of DNA copy number. Proceedings of the National Academy of Sciences USA, 107, 22140–22144.

    Article  CAS  Google Scholar 

  • Nyberg, D. (1981). Three new ‘biological’ species of Tetrahymena (T. hegewischi n. sp., T. sonneborni n. sp., T. nipissingi n. sp.) and temperature tolerance of members of the pyriformis complex. Journal of Protozoology, 28, 65–69.

    Article  Google Scholar 

  • Orsi, W., Edgcomb, V., Faria, J., Foissner, W., Fowle, W. H., Hohmann, T., Suarez, P., Taylor, C., Taylor, G. T., Vd’ačný, P., & Epstein, S. S. (2012). Class Cariacotrichea, a novel ciliate taxon from the anoxic Cariaco Basin, Venezuela. International Journal of Systematic and Evolutionary Microbiology, 62, 1425–1433.

    Article  CAS  PubMed  Google Scholar 

  • Patterson, D. J. (1980). Contractile vacuoles and associated structures: Their organization and function. Biological Reviews, 55, 1–46.

    Article  CAS  Google Scholar 

  • Patterson, D. J., & Brugerolle, G. (1988). The ultrastructural identity of Stephanopogon apogon and the relatedness of the genus to other kinds of protists. European Journal of Protistology, 23, 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Perriss, S. J., Laybourn-Parry, J., & Jones, R. I. (1994). Chlorophyll contents and photosynthetic rates of the freshwater mixotrophic ciliate Strombidium viride (Ciliophora: Oligotrichida). Archiv für Hydrobiologie, 130, 473–483.

    CAS  Google Scholar 

  • Pierce, R. W., & Turner, J. T. (1992). Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Science, 6, 139–181.

    Google Scholar 

  • Prescott, D. M. (1994). The DNA of ciliated protozoa. Microbiological Reviews, 58, 233–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raikov, I. B. (1982). The protozoan nucleus. Morphology and evolution. Vienna: Springer.

    Google Scholar 

  • Rølle, G. (1980). Tetrahymena pyriformis W and rats as test organisms for the evaluation of protein quality. Acta Agriculturae Scandinavica, 30, 193–200.

    Article  Google Scholar 

  • Salt, G. W. (1967). Predation in a experimental protozoa population (Woodruffia-Paramecium). Ecological Monographs, 37, 113–144.

    Article  Google Scholar 

  • Salt, G. W. (1974). Predator and prey densities as controls of the rate of capture by the predator Didinium nasutum. Ecology, 55, 434–439.

    Article  Google Scholar 

  • Salt, G. W. (1979). Density, starvation, and swimming rate in Didinium populations. The American Naturalist, 113, 135–143.

    Article  Google Scholar 

  • Sanders, R. W., & Wickham, S. A. (1993). Planktonic protozoa and metazoa: Predation, food quality and population control. Marine Microbial Food Webs, 7, 197–223.

    Google Scholar 

  • Schmidt, H. J. (1982). New methods for cultivating, harvesting, and purifying mass cultures of the hypotrich ciliate Euplotes aediculat us. Journal of Protozoology, 29, 132–135.

    Article  Google Scholar 

  • Schmidt, A. R., Ragazzi, E., Coppellotti, O., & Roghi, G. (2006). A microworld in Triassic amber. Nature, 444, 835.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, T. W., Dumont, J. N., & Kyte, L. M. (1978). Cytotoxicity of synthetic fuel products on Tetrahymena pyriformis. II. Shale oil retort water. Journal of Protozoology, 25, 502–509.

    Article  CAS  PubMed  Google Scholar 

  • Schuster, F. L., & Ramirez-Avila, L. (2008). Current world status of Balantidium coli. Clinical Microbiology Reviews, 21, 626–638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Segade, P., Kher, C. P., Lynn, D. H., & Iglesias, R. (2009). Morphological and molecular characterization of renal ciliates infecting farmed snails in Spain. Parasitology, 136, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Shatilovich, A., Stoupin, D., & Rivkina, E. (2015). Ciliates from ancient permafrost: Assessment of cold resistance of the resting cysts. European Journal of Protistology, 51, 230–240.

    Article  PubMed  Google Scholar 

  • Sherr, E., & Sherr, B. (1988). Role of microbes in pelagic food webs: A revised concept. Limnology and Oceanography, 35, 1225–1227.

    Article  Google Scholar 

  • Singh, D. P., Saudemont, B., Guglielmi, G., Arnaiz, O., Gout, J. F., Prajer, M., Potekhin, A., Przybos, E., Aubusson-Fleury, A., Bhullar, S., Bouhouche, K., Lhuillier-Akakpo, M., Tanty, V., Blugeon, C., Alberti, A., Labadie, K., Aury, J. M., Sperling, L., Duharcourt, S., & Meyer, E. (2014). Genome-defence small RNAs exapted for epigenetic mating-type inheritance. Nature, 509, 447. doi:10.1038/nature13318.

    Article  CAS  PubMed  Google Scholar 

  • Skovorodkin, I. N. (1990). A device for immobilization of small biological objects during light microscopical observation. Tsitologiya, 32, 87–91 (in Russian with English summary).

    Google Scholar 

  • Slabbert, J. L., Smith, R., & Morgan, W. S. G. (1983). Application of a Tetrahymena pyriformis bioassay system for the rapid detection of toxic substances in waste waters. Water SA, 9, 81–87.

    CAS  Google Scholar 

  • Sleigh, M. A. (1989). Protozoa and other protists (2nd ed.). London: Edward Arnold.

    Google Scholar 

  • Small, E. B., & Gross, M. (1985). Preliminary observations of ciliated protozoa from the 21°N hydrothermal vent site. Biological Society of Washington Bulletin, 6, 401–410.

    Google Scholar 

  • Smith-Sonneborn, J. (1981). Genetics and aging in protozoa. International Review of Cytology, 73, 319–354.

    Article  CAS  Google Scholar 

  • Soldo, A. T., Godoy, G. A., & Brickson, S. (1974). Infectious particles in a marine ciliate. Nature, 249, 284–286.

    Article  CAS  PubMed  Google Scholar 

  • Stoecker, D. K., Taniguchi, A., & Michaels, A. E. (1989). Abundance of autotrophic, mixotrophic and heterotrophic planktonic ciliates in shelf and slope waters. Marine Ecology Progress Series, 50, 241–254.

    Article  Google Scholar 

  • Strueder-Kypke, M. C., & Lynn, D. H. (2010). Comparative analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. Systematics and Biodiversity, 8, 131–148.

    Article  Google Scholar 

  • Takishita, K., Kakizoe, N., Yoshida, T., & Maruyama, T. (2010). Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. Journal of Eukaryotic Microbiology, 57, 76–86.

    Article  CAS  PubMed  Google Scholar 

  • Tan, X. L., Shi, X. L., Liu, G. J., Xu, H. L., & Nie, P. (2010). An approach to analyzing taxonomic patterns of protozoan communities for monitoring water quality in Songhua River, northeast China. Hydrobiologia, 638, 193–201.

    Article  CAS  Google Scholar 

  • Tappan, H., & Loeblich, A. R., Jr. (1973). Evolution of the oceanic plankton. Earth-Science Reviews, 9, 207–240.

    Article  Google Scholar 

  • Tartar, V. (1961). The biology of Stentor. New York: Pergamon Press.

    Book  Google Scholar 

  • Taylor, W. D., & Berger, J. (1980). Microspatial heterogeneity in the distribution of ciliates in a small pond. Microbial Ecology, 6, 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, J. B. (1978). Endocytosis and streaming of highly gelated cytoplasm alongside rows of arm-bearing microtubules in the ciliate Nassula. Journal of Cell Science, 29, 213–232.

    CAS  PubMed  Google Scholar 

  • Uhlig, G. (1972). Protozoa. In C. Schlieper (Ed.), Research methods in marine biology (pp. 129–141). Seattle: University of Washington Press.

    Google Scholar 

  • Vd’ačný, P., & Foissner, W. (2012). Monograph of the dileptids: (Protista, Ciliophora, Rhynchostomatia) (Denisia). Linz: Land Oberösterreich, Biologiezentrum/Oberösterreichische Landesmuseen.

    Google Scholar 

  • Vd’ačný, P., Orsi, W., & Foissner, W. (2010). Molecular and morphological evidence for a sister group relationship of the classes Armophorea and Litostomatea (Ciliophora, Intramacronucleata, Lamellicorticata infraphyl. nov.), with an account on basal litostomateans. European Journal of Protistology, 46, 298–309.

    Article  Google Scholar 

  • Vd’ačný, P., Bourland, W. A., Orsi, W., Epstein, S. S., & Foissner, W. (2012). Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea). Molecular Phylogenetics and Evolution, 65, 397–411.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagener, S., & Pfennig, N. (1987). Monoxenic culture of the anaerobic ciliate Trimyema compressum Lackey. Archives of Microbiology, 149, 4–11.

    Article  CAS  Google Scholar 

  • Wang, Y.-Y. D., Miller, J., & Beuchat, L. R. (1980). Tetrahymena thermophila as an organism for bioassay of protein quality. Nutrition Reports International, 21, 645–651.

    CAS  Google Scholar 

  • Weis, D. S., & Ayala, A. (1979). Effect of exposure period and algal concentration on the frequency of infection of aposymbiotic ciliates by symbiotic algae from Paramecium bursaria. Journal of Protozoology, 26, 245–248.

    Article  Google Scholar 

  • Wickham, S., Gieseke, A., & Berninger, U. G. (2000). Benthic ciliate identification and enumeration: An improved methodology and its application. Aquatic Microbial Ecology, 22, 79–91.

    Article  Google Scholar 

  • Woo, P. T. K. (Ed.). (2006). Fish diseases and disorders, Volume 1: Protozoan and metazoan infections (2nd ed.). Cambridge, MA: CAB International.

    Google Scholar 

  • Zinskie, J. A., Shribak, M., Bruist, M. E., Aufderheide, K. J., & Janetopoulos, C. (2015). A mechanical microcompressor for high resolution imaging of motile specimens. Experimental Cell Research, 337, 249–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis H. Lynn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Lynn, D.H. (2016). Ciliophora. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics