Skip to main content

Diplomonadida

  • Living reference work entry
  • First Online:
  • 859 Accesses

Abstract

The diplomonads (“two units”) are characterized by their possession of two nuclei that are similar in appearance, replication, and function. Together with the Carpediemonas-like organisms and retortamonads, the diplomonads are classified within Fornicata. Each “unit” of the diplomonad cell includes a karyomastigont that has one nucleus and (usually) four flagella, which are used for locomotion. Thus, most diplomonads have two karyomastigonts. However, the “enteromonads” present an exception in that they have a single karyomastigont per cell. The diplomonads have anaerobic metabolism and lack conventional mitochondria, so they were thought to be pre-mitochondriate organisms. However, they have subsequently been shown to have highly reduced mitochondria called mitochondrion-related organelles (MRO) that perform some of the functions of conventional mitochondria. The most studied diplomonads are the Giardia species, which are intestinal pathogens or commensals for a variety of vertebrates from amphibians to mammals and include pathogens of humans. Like Giardia spp., the Spironucleus species also replicate in the host intestine, in this case in vertebrates or invertebrates and include notable fish pathogens. In contrast, Hexamita and Trepomonas species can be either free-living or parasitic.

This is a preview of subscription content, log in via an institution.

References

  • Abe, N., Makino, I., & Kojima, A. (2012). Molecular characterization of Giardia psittaci by multilocus sequence analysis. Infection, Genetics and Evolution, 12, 1710–1716.

    Article  CAS  PubMed  Google Scholar 

  • Adam, R. D. (1992). Chromosome-size variation in Giardia lamblia: The role of rDNA repeats. Nucleic Acids Research, 20, 3057–3061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam, R. D. (2001). Biology of Giardia lamblia. Clinical Microbiology Review, 14, 447–475.

    Article  CAS  Google Scholar 

  • Adam, R. D., Nash, T. E., & Wellems, T. E. (1988). The Giardia lamblia trophozoite contains sets of closely related chromosomes. Nucleic Acids Research, 16, 4555–4567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adam, R. D., Nigam, A., Seshadri, V., Martens, C. A., Farneth, G. A., Morrison, H. G., Nash, T. E., Porcella, S. F., & Patel, R. (2010). The Giardia lamblia vsp gene repertoire: Characteristics, genomic organization, and evolution. BMC Genomics, 11, 424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adam, R. D., Dahlstrom, E. W., Martens, C. A., Bruno, D. P., Barbian, K. D., Ricklefs, S. M., Hernandez, M. M., Narla, N. P., Patel, R. B., Porcella, S. F., et al. (2013). Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and pig). Genome Biology and Evolution, 5, 2498–2511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aggarwal, A., & Nash, T. E. (1988). Antigenic variation of Giardia lamblia in vivo. Infection and Immunity, 56, 1420–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, J. O., Sjogren, A. M., Horner, D. S., Murphy, C. A., Dyal, P. L., Svard, S. G., Logsdon Jr., J. M., Ragan, M. A., Hirt, R. P., & Roger, A. J. (2007). A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics, 8, 51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernander, R., Palm, J. E., & Svard, S. G. (2001). Genome ploidy in different stages of the Giardia lamblia life cycle. Cellular Microbiology, 3, 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Biagini, G. A., Suller, M. T., Finlay, B. J., & Lloyd, D. (1997). Oxygen uptake and antioxidant responses of the free-living diplomonad Hexamita sp. The Journal of Eukaryotic Microbiology, 44, 447–453.

    Article  CAS  PubMed  Google Scholar 

  • Biagini, G. A., McIntyre, P. S., Finlay, B. J., & Lloyd, D. (1998). Carbohydrate and amino acid fermentation in the free-living primitive protozoon Hexamita sp. Applied and Environmental Microbiology, 64, 203–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biagini, G. A., Yarlett, N., Ball, G. E., Billetz, A. C., Lindmark, D. G., Martinez, M. P., Lloyd, D., & Edwards, M. R. (2003). Bacterial-like energy metabolism in the amitochondriate protozoon Hexamita inflata. Molecular and Biochemical Parasitology, 128, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Bingham, A. K., & Meyer, E. A. (1979). Giardia excystation can be induced in vitro in acidic solutions. Nature, 277, 301–302.

    Article  CAS  PubMed  Google Scholar 

  • Birky Jr., C. W. (2010). Giardia sex? Yes, but how and how much? Trends in Parasitology, 26, 70–74.

    Article  PubMed  Google Scholar 

  • Brugerolle, G. (1974). Contribution a l’etude cytologique et phyletique des diplozaires (Zoomastigophorea, Diplozoa, Dangered 1910): III. Etude ultrastructurale du Hexamita (Dujardin 1836). Protistologica 10, 83–90.

    Google Scholar 

  • Brugerolle, G. (1975). Ultrastructure of the genus Enteromonas da Fonseca (Zoomastigophorea) and revision of the order of diplomonadida Wenyon. The Journal of Protozoology, 22, 468–475.

    Article  CAS  PubMed  Google Scholar 

  • Brugerolle, G. (1991). Flagellar and cytoskeletal systems in amitochondrial flagellates: Archamoeba, Metamonada and Parabasala. Prototplasma, 164, 70–90.

    Google Scholar 

  • Bui, E. T., Bradley, P. J., & Johnson, P. J. (1996). A common evolutionary origin for mitochondria and hydrogenosomes. Proceedings of the National Academy of Sciences of the United States of America, 93, 9651–9656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler, G., Rasmussen, M. D., Lin, M. F., Santos, M. A., Sakthikumar, S., Munro, C. A., Rheinbay, E., Grabherr, M., Forche, A., Reedy, J. L., et al. (2009). Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459, 657–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccio, S. M., & Ryan, U. (2008). Molecular epidemiology of giardiasis. Molecular and Biochemical Parasitology, 160, 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, M. L., Assaf, Z. J., Gourguechon, S., & Cande, W. Z. (2012). Nuclear inheritance and genetic exchange without meiosis in the binucleate parasite Giardia intestinalis. Journal of Cell Science, 125, 2523–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalier-Smith, T. (1983). A 6-kingdom classification and a unified phylogeny. In W. Schwemmler & H. E. A. Schenk (Eds.), Endocytobiology II (pp. 1027–1034). Berlin: de Gruyter.

    Google Scholar 

  • Cavalier-Smith, T. (2013). Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. European Journal of Protistology, 49, 115–178.

    Article  PubMed  Google Scholar 

  • Cavalier-Smith, T., & Chao, E. E. (1996). Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. Journal of Molecular Evolution, 43, 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, M. A., Adam, R. D., Worobey, M., & Sterling, C. R. (2007). Population genetics provides evidence for recombination in Giardia. Current Biology, 17, 1984–1988.

    Article  CAS  PubMed  Google Scholar 

  • Cooper, M. A., Sterling, C. R., Gilman, R. H., Cama, V., Ortega, Y., & Adam, R. D. (2010). Molecular analysis of household transmission of Giardia lamblia in a region of high endemicity in Peru. Journal of Infectious Diseases, 202, 1713–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dacks, J. B., Davis, L. A., Sjogren, A. M., Andersson, J. O., Roger, A. J., & Doolittle, W. F. (2003). Evidence for Golgi bodies in proposed ‘Golgi-lacking’ lineages. Proceedings of the Biological Sciences, 270(Suppl 2), S168–S171.

    Article  Google Scholar 

  • Davids, B. J., Reiner, D. S., Birkeland, S. R., Preheim, S. P., Cipriano, M. J., McArthur, A. G., & Gillin, F. D. (2006). A new family of giardial cysteine-rich non-VSP protein genes and a novel cyst protein. PLoS ONE, 1, e44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desser, S. S., Hong, H., & Siddall, M. E. (1993). An ultrastructural study of Brugerolleia algonquinensis gen. nov., sp. nov. (Diplomonadina; diplomonadida), a flagellate parasite in the blood of frogs from Ontario, Canada. European Journal Protistol, 29, 72–80.

    Article  CAS  Google Scholar 

  • Dobell, C. (1920). The discovery of the intestinal protozoa of man. Proceedings of the Royal Society of Medicine, 13, 1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobell, C., & Laidlaw, P. P. (1926). On the cultivation of Entamoeba histolytica and some other entozoic amoebae. Parasitology, 18, 283–318.

    Article  Google Scholar 

  • Dujardin, F. (1841). Histoire naturelle des Zoophytes. Infusoires. Paris: Rowan.

    Google Scholar 

  • Edwards, M. R., Schofield, P. J., O’Sullivan, W. J., & Costello, M. (1992). Arginine metabolism during culture of Giardia intestinalis. Molecular and Biochemical Parasitology, 53, 97–103.

    Article  CAS  PubMed  Google Scholar 

  • Elmendorf, H. G., Dawson, S. C., & McCaffery, J. M. (2003). The cytoskeleton of Giardia lamblia. International Journal for Parasitology, 33, 3–28.

    Article  PubMed  Google Scholar 

  • Embley, T. M., & Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature, 440, 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Erlandsen, S. L., & Bemrick, W. J. (1987). SEM evidence for a new species, Giardia psittaci. Journal of Parasitology, 73, 623–629.

    Article  CAS  PubMed  Google Scholar 

  • Erlandsen, S. L., Bemrick, W. J., Wells, C. L., Feely, D. E., Knudson, L., Campbell, S. R., van Keulen, H., & Jarroll, E. L. (1990). Axenic culture and characterization of Giardia ardeae from the great blue heron ( Ardea herodias ). Journal of Parasitology, 76, 717–724.

    Article  CAS  PubMed  Google Scholar 

  • Eyden, B. P., & Vickerman, K. (1975). Ultrastructure and vacuolar movements in the free-living diplomonad Trepomonas agilis Klebs. Journal of Protozoology, 22, 54–66.

    Article  Google Scholar 

  • Fard, M. R., Jorgensen, A., Sterud, E., Bleiss, W., & Poynton, S. L. (2007). Ultrastructure and molecular diagnosis of Spironucleus salmonis (diplomonadida) from rainbow trout Oncorhynchus mykiss in Germany. DisAquatOrgan, 75, 37–50.

    Google Scholar 

  • Feely, D. E., Holberton, D. V., & Erlandsen, S. L. (1990). The biology of Giardia. In E. A. Meyer (Ed.), Giardiasis (pp. 1–49). Amsterdam: Elsevier.

    Google Scholar 

  • Feely, D. E., Gardner, M. D., & Hardin, E. L. (1991). Excystation of Giardia muris induced by a phosphate-bicarbonate medium: Localization of acid phosphatase. Journal of Parasitology, 77, 441–448.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X. M., Cao, L. J., Adam, R. D., Zhang, X. C., & Lu, S. Q. (2008). The catalyzing role of PPDK in Giardia lamblia. Biochemical and Biophysical Research Communications, 367, 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Filice, F. P. (1952). Studies on the cytology and life history of a Giardia from the laboratory rat. Berkeley: University of California Press.

    Google Scholar 

  • Forche, A., Alby, K., Schaefer, D., Johnson, A. D., Berman, J., & Bennett, R. J. (2008). The parasexual cycle in Candida albicans provides an alternative pathway to meiosis for the formation of recombinant strains. PLoS Biology, 6, e110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Franzen, O., Jerlstrom-Hultqvist, J., Castro, E., Sherwood, E., Ankarklev, J., Reiner, D. S., Palm, D., Andersson, J. O., Andersson, B., & Svard, S. G. (2009). Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: Is human giardiasis caused by two different species? PLoS Pathogens, 5, e1000560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh, S., Frisardi, M., Rogers, R., & Samuelson, J. (2001). How Giardia swim and divide. Infection and Immunity, 69, 7866–7872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillin, F. D. (1987). Giardia lamblia: The role of conjugated and unconjugated bile salts in killing by human milk. Experimental Parasitology, 63, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Gottstein, B., & Nash, T. E. (1991). Antigenic variation in Giardia lamblia: Infection of congenitally athymic nude and scid mice. Parasite Immunology, 13, 649–659.

    Article  CAS  PubMed  Google Scholar 

  • Grassi, B. (1881). Di un nouvo parassita dell’uomo Negastoma entericum (mihi). Gazzetta dell’ Ospedale di Milano, 2, 575–580.

    Google Scholar 

  • Holberton, D. V. (1973). Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate, Giardia muris. Journal of Cell Science, 13, 11–41.

    CAS  PubMed  Google Scholar 

  • Holberton, D. V. (1974). Attachment of Giardia -a hydrodynamic model based on flagellar activity. The Journal of Experimental Biology, 60, 207–221.

    CAS  PubMed  Google Scholar 

  • Horner, D. S., & Embley, T. M. (2001). Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Molecular Biology and Evolution, 18, 1970–1975.

    Article  CAS  PubMed  Google Scholar 

  • Hou, G., Le Blancq, S. M., Yaping, E., Zhu, H., & Lee, M. G. (1995). Structure of a frequently rearranged rRNA-encoding chromosome in Giardia lamblia. Nucleic Acids Research, 23, 3310–3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hrdy, I., Mertens, E., & Nohynkova, E. (1993). Giardia intestinalis: Detection and characterization of a pyruvate phosphate dikinase. Experimental Parasitology, 76, 438–441.

    Article  CAS  PubMed  Google Scholar 

  • Inge, P. M., Edson, C. M., & Farthing, M. J. (1988). Attachment of Giardia lamblia to rat intestinal epithelial cells. Gut, 29, 795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Januschka, M. M., Erlandsen, S. L., Bemrick, W. J., Schupp, D. G., & Feely, D. E. (1988). A comparison of Giardia microti and Spironucleus muris cysts in the vole: An immunocytochemical, light, and electron microscopic study. Journal of Parasitology, 74, 452–458.

    Article  CAS  PubMed  Google Scholar 

  • Jerlstrom-Hultqvist, J., Einarsson, E., Xu, F., Hjort, K., Ek, B., Steinhauf, D., Hultenby, K., Bergquist, J., Andersson, J. O., & Svard, S. G. (2013). Hydrogenosomes in the diplomonad Spironucleus salmonicida. Nature Communications, 4, 2493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jirakova, K., Kulda, J., & Nohynkova, E. (2012). How nuclei of Giardia pass through cell differentiation: Semi-open mitosis followed by nuclear interconnection. Protist, 163, 465–479.

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen, A., & Sterud, E. (2006). The marine pathogenic genotype of Spironucleus barkhanus from farmed salmonids redescribed as Spironucleus salmonicida n. sp. Journal of Eukaryotic Microbiology, 53, 531–541.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, A., & Sterud, E. (2007). Phylogeny of Spironucleus (eopharyngia: Diplomonadida: Hexamitinae). Protist, 158, 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Kabnick, K. S., & Peattie, D. A. (1990). In situ analyses reveal that the two nuclei of Giardia lamblia are equivalent. Journal of Cell Science, 95, 353–360.

    PubMed  Google Scholar 

  • Keeling, P. J., & Doolittle, W. F. (1996). A non-canonical genetic code in an early diverging eukaryotic lineage. The EMBO Journal, 15, 2285–2290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keister, D. B. (1983). Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Transactions of the Royal Society of Tropical Medicine and Hygiene, 77, 487–488.

    Article  CAS  PubMed  Google Scholar 

  • van Keulen, H., Gutell, R. R., Gates, M. A., Campbell, S. R., Erlandsen, S. L., Jarroll, E. L., Kulda, J., & Meyer, E. A. (1993). Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp. The FASEB Journal, 7, 223–231.

    PubMed  Google Scholar 

  • van Keulen, H., Feely, D. E., Macechko, P. T., Jarroll, E. L., & Erlandsen, S. L. (1998). The sequence of Giardia small subunit rRNA shows that voles and muskrats are parasitized by a unique species Giardia microti. Journal of Parasitology, 84, 294–300.

    Article  PubMed  Google Scholar 

  • Kolisko, M., Cepicka, I., Hampl, V., Kulda, J., & Flegr, J. (2005). The phylogenetic position of enteromonads: A challenge for the present models of diplomonad evolution. International Journal of Systematic and Evolutionary Microbiology, 55, 1729–1733.

    Article  CAS  PubMed  Google Scholar 

  • Kolisko, M., Cepicka, I., Hampl, V., Leigh, J., Roger, A. J., Kulda, J., Simpson, A. G., & Flegr, J. (2008). Molecular phylogeny of diplomonads and enteromonads based on SSU rRNA, alpha-tubulin and HSP90 genes: Implications for the evolutionary history of the double karyomastigont of diplomonads. BMC Evolutionary Biology, 8, 205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolisko, M., Silberman, J. D., Cepicka, I., Yubuki, N., Takishita, K., Yabuki, A., Leander, B. S., Inouye, I., Inagaki, Y., Roger, A. J., et al. (2010). A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environmental Microbiology, 12, 2700–2710.

    CAS  PubMed  Google Scholar 

  • Kulakova, L., Singer, S. M., Conrad, J., & Nash, T. E. (2006). Epigenetic mechanisms are involved in the control of Giardia lamblia antigenic variation. Molecular Microbiology, 61, 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  • Kulda, J., & Nohynkova, E. (1978). Flagellates of the human intestine and of intestines of other species. In J. P. Kreier (Ed.), Parasitic protozoa (Vol. II, pp. 1–138). New York: Academic.

    Google Scholar 

  • Lambl, W. (1859). Mikroskopische untersuchungen der darmexcrete. Vierteljahrsschrift Prakstische Heikunde, 61, 1–58.

    Google Scholar 

  • Lanfredi-Rangel, A., Attias, M., de Carvalho, T. M., Kattenbach, W. M., & de Souza, W. (1998). The peripheral vesicles of trophozoites of the primitive protozoan Giardia lamblia May correspond to early and late endosomes and to lysosomes. Journal Structural Biology, 123, 225–235.

    Article  CAS  Google Scholar 

  • Lanfredi-Rangel, A., Attias, M., Reiner, D. S., Gillin, F. D., & de Souza, W. (2003). Fine structure of the biogenesis of Giardia lamblia encystation secretory vesicles. Journal of Structural Biology, 143, 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Lasek-Nesselquist, E., Welch, D. M., Thompson, R. C., Steuart, R. F., & Sogin, M. L. (2009). Genetic exchange within and between assemblages of Giardia duodenalis. Journal of Eukaryotic Microbiology, 56, 504–518.

    Article  CAS  PubMed  Google Scholar 

  • Lasek-Nesselquist, E., Welch, D. M., & Sogin, M. L. (2010). The identification of a new Giardia duodenalis assemblage in marine vertebrates and a preliminary analysis of G. duodenalis population biology in marine systems. International Journal for Parasitology, 40, 1063–1074.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich III, A. R., Lom, J., Lynn, D., et al. (1980). A newly revised classification of the protozoa. Journal of Protozoology, 27, 37–58.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Saraiya, A. A., & Wang, C. C. (2012). The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia. Cellular Microbiology, 14, 1455–1473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindmark, D. G., & Muller, M. (1973). Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. Journal of Biological Chemistry, 248, 7724–7728.

    CAS  PubMed  Google Scholar 

  • Lloyd, D., & Williams, C. F. (2014). Comparative biochemistry of Giardia, Hexamita and Spironucleus: Enigmatic diplomonads. Molecular & Biochemical Parasitology, 197, 43–49.

    Article  CAS  Google Scholar 

  • Lujan, H. D., Marotta, A., Mowatt, M. R., Sciaky, N., Lippincott-Schwartz, J., & Nash, T. E. (1995). Developmental induction of Golgi structure and function in the primitive eukaryote, Giardia lamblia. Journal of Biological Chemistry, 270, 4612–4618.

    Article  CAS  PubMed  Google Scholar 

  • Lujan, H. D., Mowatt, M. R., Byrd, L. G., & Nash, T. E. (1996). Cholesterol starvation induces differentiation of the intestinal parasite Giardia lamblia. Proceedings of the National Academy of Sciences of the United States of America, 93, 7628–7633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martincova, E., Voleman, L., Najdrova, V., De Napoli, M., Eshar, S., Gualdron, M., Hopp, C. S., Sanin, D. E., Tembo, D. L., Van Tyne, D., et al. (2012). Live imaging of mitosomes and hydrogenosomes by HaloTag technology. PLoS One, 7, e36314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martincova, E., Voleman, L., Pyrih, J., Zarsky, V., Vondrackova, P., Kolisko, M., Tachezy, J., & Dolezal, P. (2015). Probing the biology of Giardia intestinalis mitosomes using in vivo enzymatic tagging. Molecular and Cellular Biology, 35, 2864–2874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, E. A. (1970). Isolation and axenic cultivation of Giardia trophozoites from the rabbit, chinchilla, and cat. Experimental Parasitology, 27, 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, E. A. (1976). Giardia lamblia: Isolation and axenic cultivation. Experimental Parasitology, 39, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Millet, C. O., Lloyd, D., Coogan, M. P., Rumsey, J., & Cable, J. (2011a). Carbohydrate and amino acid metabolism of Spironucleus vortens. Experimental Parasitology, 129, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Millet, C. O., Lloyd, D., Williams, C., & Cable, J. (2011b). In vitro culture of the diplomonad fish parasite Spironucleus vortens reveals unusually fast doubling time and atypical biphasic growth. Journal of Fish Diseases, 34, 71–73.

    Article  CAS  PubMed  Google Scholar 

  • Millet, C. O., Williams, C. F., Hayes, A. J., Hann, A. C., Cable, J., & Lloyd, D. (2013). Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens. Experimental Parasitology, 135, 262–273.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, H. G., McArthur, A. G., Gillin, F. D., Aley, S. B., Adam, R. D., Olsen, G. J., Best, A. A., Cande, W. Z., Chen, F., Cipriano, M. J., et al. (2007). Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 317, 1921–1926.

    Article  CAS  PubMed  Google Scholar 

  • Nash, T. E., & Keister, D. B. (1985). Differences in excretory-secretory products and surface antigens among 19 isolates of Giardia. Journal of Infectious Diseases, 152, 1166–1171.

    Article  CAS  PubMed  Google Scholar 

  • Nash, T. E., McCutchan, T., Keister, D., Dame, J. B., Conrad, J. D., & Gillin, F. D. (1985). Restriction-endonuclease analysis of DNA from 15 Giardia isolates obtained from humans and animals. Journal of Infectious Diseases, 152, 64–73.

    Article  CAS  PubMed  Google Scholar 

  • Nash, T. E., Merritt Jr., J. W., & Conrad, J. T. (1991). Isolate and epitope variability in susceptibility of Giardia lamblia to intestinal proteases. Infection and Immunity, 59, 1334–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nohynkova, E., Tumova, P., & Kulda, J. (2006). Cell division of Giardia intestinalis: Flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell. Eukaryotic Cell, 5, 753–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega, Y. R., & Adam, R. D. (1997). Giardia: Overview and update. Clinical Infectious Diseases, 25, 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Paget, T. A., Raynor, M. H., Shipp, D. W., & Lloyd, D. (1990). Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Molecular and Biochemical Parasitology, 42, 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Perry, D. A., Morrison, H. G., & Adam, R. D. (2011). Optical map of the genotype A1 WB C6 Giardia lamblia genome isolate. Molecular and Biochemical Parasitology, 180, 112–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poxleitner, M. K., Carpenter, M. L., Mancuso, J. J., Wang, C. J., Dawson, S. C., & Cande, W. Z. (2008). Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis. Science, 319, 1530–1533.

    Article  CAS  PubMed  Google Scholar 

  • Poynton, S. L., & Sterud, E. (2002). Guidelines for species descriptions of diplomonad flagellates from fish. Journal of Fish Diseases, 25, 15–31.

    Article  Google Scholar 

  • Poynton, S. L., Fraser, W., Francis-Floyd, R., Rutledge, P., Reed, P., & Nerad, T. A. (1995). Spironucleus vortens N. Sp. from the freshwater angelfish Pterophyllum scalare: Morphology and culture. Journal of Eukaryotic Microbiology, 42, 731–742.

    Article  Google Scholar 

  • Poynton, S. L., Fard, M. R., Jenkins, J., & Ferguson, H. W. (2004). Ultrastructure of Spironucleus salmonis n. comb. (formerly Octomitus salmonis sensu Moore 1922, Davis 1926, and Hexamita salmonis sensu Ferguson 1979), with a guide to Spironucleus species. Diseases of Aquatic Organisms, 60, 49–64.

    Article  PubMed  Google Scholar 

  • Prucca, C. G., Slavin, I., Quiroga, R., Elias, E. V., Rivero, F. D., Saura, A., Carranza, P. G., & Lujan, H. D. (2008). Antigenic variation in Giardia lamblia is regulated by RNA interference. Nature, 456, 750–754.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh, M. A., Malik, S. B., & Logsdon Jr., J. M. (2005). A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis. Current Biology, 15, 185–191.

    CAS  PubMed  Google Scholar 

  • Reiner, D. S., McCaffery, M., & Gillin, F. D. (1990). Sorting of cyst wall proteins to a regulated secretory pathway during differentiation of the primitive eukaryote, Giardia lamblia. European Journal of Cell Biology, 53, 142–153.

    CAS  PubMed  Google Scholar 

  • Rivero, M. R., Miras, S. L., Feliziani, C., Zamponi, N., Quiroga, R., Hayes, S. F., Ropolo, A. S., & Touz, M. C. (2012). Vacuolar protein sorting receptor in Giardia lamblia. PLoS One, 7, e43712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roger, A. J., Svard, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D., & Sogin, M. L. (1998). A mitochondrial-like chaperonin 60 gene in Giardia lamblia: Evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 95, 229–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roxstrom-Lindquist, K., Jerlstrom-Hultqvist, J., Jorgensen, A., Troell, K., Svard, S. G., & Andersson, J. O. (2010). Large genomic differences between the morphologically indistinguishable diplomonads Spironucleus barkhanus and Spironucleus salmonicida. BMC Genomics, 11, 258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagolla, M. S., Dawson, S. C., Mancuso, J. J., & Cande, W. Z. (2006). Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis. Journal of Cell Science, 119, 4889–4900.

    Article  CAS  PubMed  Google Scholar 

  • Sangmaneedet, S., & Smith, S. A. (2000). In vitro studies on optimal requirements for the growth of Spironucleus vortens, an intestinal parasite of the freshwater angelfish. DisAquatOrgan, 39, 135–141.

    CAS  Google Scholar 

  • Scheltema, R. S. (1962). The relationship between the flagellate protozoon Hexamita and the oyster Crassostrea virginica. The Journal of Parasitology, 48, 137–141.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, P. J., Costello, M., Edwards, M. R., & O’Sullivan, W. J. (1990). The arginine dihydrolase pathway is present in Giardia intestinalis. International Journal for Parasitology, 20, 697–699.

    Article  CAS  PubMed  Google Scholar 

  • Schupp, D. G., Januschka, M. M., Sherlock, L. A., Stibbs, H. H., Meyer, E. A., Bemrick, W. J., & Erlandsen, S. L. (1988). Production of viable Giardia cysts in vitro: Determination by fluorogenic dye staining, excystation, and animal infectivity in the mouse and Mongolian gerbil. Gastroenterology, 95, 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Shiflett, A. M., & Johnson, P. J. (2010). Mitochondrion-related organelles in eukaryotic protists. Annual Review of Microbiology, 64, 409–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson, A. G. (2003). Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). International Journal of Systematic and Evolutionary Microbiology, 53, 1759–1777.

    Article  PubMed  Google Scholar 

  • Singer, S. M., & Nash, T. E. (2000). T-cell-dependent control of acute Giardia lamblia infections in mice. Infection and Immunity, 68, 170–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, P. D., Gillin, F. D., Spira, W. M., & Nash, T. E. (1982). Chronic giardiasis: Studies on drug sensitivity, toxin production, and host immune response. Gastroenterology, 83, 797–803.

    CAS  PubMed  Google Scholar 

  • Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A., & Peattie, D. A. (1989). Phylogenetic meaning of the kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science, 243, 75–77.

    Article  CAS  PubMed  Google Scholar 

  • Spriegel, J. R., Saag, K. G., & Tsang, T. K. (1989). Infectious diarrhea secondary to Enteromonas hominis. The American Journal of Gastroenterology, 84, 1313–1314.

    CAS  PubMed  Google Scholar 

  • Sterud, E. (1998). In vitro cultivation and temperature-dependent growth of two strains of Spironucleus barkhanus (Diplomonadida: Hexamitidae) from Atlantic salmon Salmo salar and grayling Thymallus thymallus. Diseases of Aquatic Organisms, 33, 57–61.

    Article  CAS  PubMed  Google Scholar 

  • Svard, S. G., Meng, T. C., Hetsko, M. L., McCaffery, J. M., & Gillin, F. D. (1998). Differentiation-associated surface antigen variation in the ancient eukaryote Giardia lamblia. Molecular Microbiology, 30, 979–989.

    Article  CAS  PubMed  Google Scholar 

  • Touz, M. C., Rivero, M. R., Miras, S. L., & Bonifacino, J. S. (2012). Lysosomal protein trafficking in Giardia lamblia: Common and distinct features. Frontiers in Bioscience, 4, 1898–1909.

    Article  Google Scholar 

  • Tovar, J., Leon-Avila, G., Sanchez, L. B., Sutak, R., Tachezy, J., van der Giezen, M., Hernandez, M., Muller, M., & Lucocq, J. M. (2003). Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature, 426, 172–176.

    Article  CAS  PubMed  Google Scholar 

  • Tumova, P., Hofstetrova, K., Nohynkova, E., Hovorka, O., & Kral, J. (2007). Cytogenetic evidence for diversity of two nuclei within a single diplomonad cell of Giardia. Chromosoma, 116, 65–78.

    Article  PubMed  Google Scholar 

  • Wiesehahn, G. P., Jarroll, E. L., Lindmark, D. G., Meyer, E. A., & Hallick, L. M. (1984). Giardia lamblia: Autoradiographic analysis of nuclear replication. Experimental Parasitology, 58, 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Williams, C. F., Millet, C. O., Hayes, A. J., Cable, J., & Lloyd, D. (2013). Diversity in mitochondrion-derived organelles of the parasitic diplomonads Spironucleus and Giardia. Trends in Parasitology, 29, 311–312.

    Article  CAS  PubMed  Google Scholar 

  • Wood, A. M., & Smith, H. V. (2005). Spironucleosis (hexamitiasis, Hexamitosis) in the ring-necked pheasant (Phasianus colchicus): Detection of cysts and description of Spironucleus meleagridis in stained smears. Avian Diseases, 49, 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Jerlstrom-Hultqvist, J., & Andersson, J. O. (2012). Genome-wide analyses of recombination suggest that Giardia intestinalis assemblages represent different species. Molecular Biology and Evolution, 29, 2895–2898.

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Jerlstrom-Hultqvist, J., Einarsson, E., Astvaldsson, A., Svard, S. G., & Andersson, J. O. (2014). The genome of Spironucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS Genetics, 10, e1004053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, F., Jerlstrom-Hultqvist, J., Kolisko, M., Simpson, A. G., Roger, A. J., Svard, S. G., & Andersson, J. O. (2016). On the reversibility of parasitism: Adaptation to a free-living lifestyle via gene acquisitions in the diplomonad Trepomonas sp. PC1. [Erratum appears in BMC Biol. 2016;14:77; PMID: 27619515] BMC Biology, 14, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., & Adam, R. D. (1994). Allele-specific expression of a variant-specific surface protein (VSP) of Giardia lamblia. Nucleic Acids Research, 22, 2102–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. M., & Adam, R. D. (1995). Analysis of a repeat-containing family of Giardia lamblia variant-specific surface protein genes: Diversity through gene duplication and divergence. The Journal of Eukaryotic Microbiology, 42, 439–444.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y. M., Ortega, Y., Sterling, C., & Adam, R. D. (1994). Giardia lamblia Trophozoites contain multiple alleles of a variant-specific surface protein gene with 105-base pair tandem repeats. Molecular and Biochemical Parasitology, 68, 267–276.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L. Z., Birky Jr., C. W., & Adam, R. D. (2002). The two nuclei of Giardia each have complete copies of the genome and are partitioned equationally at cytokinesis. Eukaryotic Cell, 1, 191–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yubuki, N., Huang, S. S. C., & Leander, B. S. (2016). Comparative ultrastructure of fornicate excavates, including a novel free-living relative of diplomonads: Aduncisulcus paluster gen. et sp. nov. Protist, 167, 584–596.

    Article  PubMed  Google Scholar 

  • Zwart, P., & Truyens, E. H. A. (1975). Hexamitiasis in tortoises. Veterinary Parasitology, 1, 175–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney D. Adam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Adam, R.D. (2017). Diplomonadida. In: Archibald, J., et al. Handbook of the Protists. Springer, Cham. https://doi.org/10.1007/978-3-319-32669-6_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32669-6_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32669-6

  • Online ISBN: 978-3-319-32669-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics