Skip to main content

Free Convection: Cavities and Layers

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Natural convection in cavities and layers has many applications. These applications range from heat transfer in refrigeration chambers, solar chimneys, and ceiling cooling systems to passive safety systems for nuclear reactor cooling and thermal energy storage with phase change materials. The goal of this chapter is to give an overview of some classical results on natural convection in cavities and layers as well as to introduce some emerging topics that present recent extensions of natural convection models, such as bio-thermal convection, nanofluidic bioconvection, and bioconvective sedimentation. The latter topics manifest growing interest of the research community in bio-related issues and show some areas in which classical thermofluid researchers can contribute to geophysics, nanofluidics, and biomechanics. Interdisciplinary issues that are relevant to these latter topics range from geophysical applications (such as spring contamination) and microfluidics (such as leftward flow in a nodal cavity that determines left-right symmetry breaking in a developing embryo) to zoological fluid dynamics (rotation of pond snail embryos to improve their oxygen supply) and biomimetic devices (e.g., research on Janus particles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi FM, Hayat T, Alsaedi A (2015) Peristaltic transport of magneto-nanoparticles submerged in water: model for drug delivery system. Phys E-Low Dimens Syst Nanostruct 68:123–132

    Article  Google Scholar 

  • Abouali O, Ahmadi G (2012) Computer simulations of natural convection of single phase nanofluids in simple enclosures: a critical review. Appl Therm Eng 36:1–13

    Article  Google Scholar 

  • Ahmed SE, Mahdy A (2016) Laminar MHD natural convection of nanofluid containing gyrotactic microorganisms over vertical wavy surface saturated non-Darcian porous media. Appl Math Mech-Engl Ed 37:471–484

    Article  MathSciNet  Google Scholar 

  • Ahmed SE, Hussein AK, Mohammed HA, Adegun IK, Zhang X, Kolsi L, Hasanpour A, Sivasankaran S (2014) Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nucl Eng Des 266:34–42

    Article  Google Scholar 

  • Ahmed SE, Oztop HF, Al-Salem K (2016) Effects of magnetic field and viscous dissipation on entropy generation of mixed convection in porous lid-driven cavity with corner heater. Int J Numer Methods Heat Fluid Flow 26:1548–1566

    Article  MathSciNet  MATH  Google Scholar 

  • Alchaar S, Vasseur P, Bilgen E (1995a) The effect of a magnetic field on natural convection in a shallow cavity heated from below. Chem Eng Commun 134:195–209

    Article  Google Scholar 

  • Alchaar S, Vasseur P, Bilgen E (1995b) Natural convection heat transfer in a rectangular enclosure with a transverse magnetic field. J Heat Transfer-Trans ASME 117:668–673

    Article  Google Scholar 

  • Alloui Z, Vasseur P (2015) Natural convection of Carreau-Yasuda non-Newtonian fluids in a vertical cavity heated from the sides. Int J Heat Mass Transf 84:912–924

    Article  Google Scholar 

  • Alloui Z, Nguyen TH, Bilgen E (2006) Stability analysis of thermo-bioconvection in suspensions of gravitactic microorganisms in a fluid layer. Int Commun Heat Mass Transfer 33:1198–1206

    Article  Google Scholar 

  • Altac Z, Ugurlubilek N (2016) Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures. Int J Therm Sci 107:237–246

    Article  Google Scholar 

  • Angeli D, Barozzi GS, Collins MW, Kamiyo OM (2010) A critical review of buoyancy-induced flow transitions in horizontal annuli. Int J Therm Sci 49:2231–2241

    Article  Google Scholar 

  • Antohe BV, Lage JL (1994) A dynamic thermal insulator – inducing resonance within a fluid-saturated porous-medium enclosure heated periodically from the side. Int J Heat Mass Transf 37:771–782

    Article  MATH  Google Scholar 

  • Antohe BV, Lage JL (1996a) Amplitude effect on convection induced by time-periodic horizontal heating. Int J Heat Mass Transf 39:1121–1133

    Article  Google Scholar 

  • Antohe BV, Lage JL (1996b) Experimental investigation on pulsating horizontal heating of a water-filled enclosure. J Heat Transfer-Trans ASME 118:889–896

    Article  Google Scholar 

  • Antohe BV, Lage JL (1997) The Prandtl number effect on the optimum heating frequency of an enclosure filled with fluid or with a saturated porous medium. Int J Heat Mass Transf 40:1313–1323

    Article  MATH  Google Scholar 

  • Arbin N, Saleh H, Hashim I, Chamkha AJ (2016) Numerical investigation of double-diffusive convection in an open cavity with partially heated wall via heatline approach. Int J Therm Sci 100:169–184

    Article  Google Scholar 

  • Ashouri M, Shafii MB, Kokande HR (2014) MHD natural convection flow in cavities filled with square solid blocks. Int J Numer Methods Heat Fluid Flow 24:1813–1830

    Article  Google Scholar 

  • Avramenko AA, Kuznetsov AV (2004) Stability of a suspension of gyrotactic microorganisms in superimposed fluid and porous layers. Int Commun Heat Mass Transfer 31:1057–1066

    Article  Google Scholar 

  • Avramenko AA, Kuznetsov AV (2005) Linear instability analysis of a suspension of oxytactic bacteria in superimposed fluid and porous layers. Transp Porous Media 61:157–175

    Article  Google Scholar 

  • Avramenko AA, Kuznetsov AV (2006) The onset of convection in a suspension of gyrotactic microorganisms in superimposed fluid and porous layers: effect of vertical throughflow. Transp Porous Media 65:159–176

    Article  MathSciNet  Google Scholar 

  • Avramenko AA, Kuznetsov AV (2010a) Bio-thermal convection caused by combined effects of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int J Numer Methods Heat Fluid Flow 20:157–173

    Article  Google Scholar 

  • Avramenko AA, Kuznetsov AV (2010b) The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer with an inclined temperature gradient. Int J Numer Methods Heat Fluid Flow 20:111–129

    Article  Google Scholar 

  • Bairi A, Zarco-Pernia E, Garcia de Maria JM (2014) A review on natural convection in enclosures for engineering applications. The particular case of the parallelogrammic diode cavity. Appl Therm Eng 63:304–322

    Article  Google Scholar 

  • Banerjee S, Mukhopadhyay A, Sen S, Ganguly R (2008) Optimizing thermomagnetic convection for electronics cooling. Numer Heat Transfer Part A-Appl 53:1231–1255

    Article  Google Scholar 

  • Bardan G, Mojtabi A (2000) On the Horton-Rogers-Lapwood convective instability with vertical vibration: onset of convection. Phys Fluids 12:2723–2731

    Article  MathSciNet  MATH  Google Scholar 

  • Bardan G, Knobloch E, Mojtabi A, Khallouf H (2001) Natural doubly diffusive convection with vibration. Fluid Dyn Res 28:159–187

    Article  Google Scholar 

  • Bardan G, Razi Y, Mojtabi A (2004) Comments on the mean flow averaged model. Phys Fluids 16:4535–4538

    Article  Google Scholar 

  • Basir MFM, Uddin MJ, Ismail AIM, Beg OA (2016) Nanofluid slip flow over a stretching cylinder with Schmidt and Peclet number effects. AIP Adv 6:055316

    Article  Google Scholar 

  • Beg OA, Uddin J, Khan WA (2015) Bioconvective non-Newtonian nanofluid transport in porous media containing micro-organisms in a moving free stream. J Mech Med Biol 15:1550071

    Article  Google Scholar 

  • Beghein C, Haghighat F, Allard F (1992) Numerical study of double-diffusive natural convection in a square cavity. Int J Heat Mass Transf 35:833–846

    Article  Google Scholar 

  • Bejan A (2013) Convection heat transfer, 4th edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Benzid C, Kaddeche S, Abdennadher A, Henry D, Ben Hadid H (2009) Rayleigh Benard instabilities under high frequency vibration and magnetic field. CR Mecanique 337:291–296

    Article  MATH  Google Scholar 

  • Bergman TL (2009) Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. Int J Heat Mass Transf 52:1240–1244

    Article  MATH  Google Scholar 

  • Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2017) Fundamentals of heat and mass transfer. Wiley, Hoboken

    Google Scholar 

  • Berkovsky BM, Polevikov VK (1977) Numerical study of problems on high-intensive free convection, heat transfer and turbulent buoyant convection. In: Spalding DB, Afgan N (eds) Heat transfer and turbulent buoyant convection. Hemisphere, New York, pp 443–455

    Google Scholar 

  • Bouhalleb M, Abbassi H (2014) Natural convection of nanofluids in enclosures with low aspect ratios. Int J Hydrog Energy 39:15275–15286

    Article  Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer-Trans ASME 128:240–250

    Article  Google Scholar 

  • Burghelea T, Segre E, Bar-Joseph I, Groisman A, Steinberg V (2004) Chaotic flow and efficient mixing in a microchannel with a polymer solution. Phys Rev E 69:066305

    Article  Google Scholar 

  • Carvalho PHS, de Lemos MJS (2014) Turbulent free convection in a porous cavity using the two-temperature model and the high Reynolds closure. Int J Heat Mass Transf 79:105–115

    Article  Google Scholar 

  • Catton I (1978) Natural convection in enclosures. In: Proceedings of the sixth international heat transfer conference, Toronto, 7–11 Aug 1978, vol 6, pp 13–31

    Google Scholar 

  • Caudwell T, Flor JB, Negretti ME (2016) Convection at an isothermal wall in an enclosure and establishment of stratification. J Fluid Mech 799:448–475

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Chang B (2014) Numerical study of flow and heat transfer in differentially heated enclosures. Therm Sci 18:451–463

    Article  Google Scholar 

  • Chatterjee S, Basak T, Das SK (2008) Onset of natural convection in a rotating fluid layer with non-uniform volumetric heat sources. Int J Therm Sci 47:730–741

    Article  Google Scholar 

  • Chatterjee D, Gupta SK, Mondal B (2014) Mixed convective transport in a lid-driven cavity containing a nanofluid and a rotating circular cylinder at the center. Int Commun Heat Mass Transfer 56:71–78

    Article  Google Scholar 

  • Chattot J, Wang Y (1998) Improved treatment of intersecting bodies with the chimera method and validation with a simple and fast flow solver. Comput Fluids 27:721–740

    Article  MATH  Google Scholar 

  • Childress S, Levandowsky M, Spiegel EA (1975) Pattern formation in a suspension of swimming microorganisms – equations and stability theory. J Fluid Mech 69:591–613

    Article  MATH  Google Scholar 

  • Cho C, Chiu C, Lai C (2016) Natural convection and entropy generation of Al2O3-water nanofluid in an inclined wavy-wall cavity. Int J Heat Mass Transf 97:511–520

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of non-newtonian flows. ASME, New York, pp 99–105

    Google Scholar 

  • Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transfer-Trans ASME 131:033106

    Article  Google Scholar 

  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  • Choi SUS, Zhang Z, Keblinski P (2004) Nanofluids. In: Nalwa H (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York, pp 757–773

    Google Scholar 

  • Choi C, Ha MY, Park YG (2015) Characteristics of thermal convection in a rectangular channel with an inner cold circular cylinder. Int J Heat Mass Transf 84:955–973

    Article  Google Scholar 

  • Cisse I, Bardan G, Mojtabi A (2004) Rayleigh Benard convective instability of a fluid under high-frequency vibration. Int J Heat Mass Transf 47:4101–4112

    Article  MATH  Google Scholar 

  • Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag 52:789–793

    Article  Google Scholar 

  • Costa V (1997) Double diffusive natural convection in a square enclosure with heat and mass diffusive walls. Int J Heat Mass Transf 40:4061–4071

    Article  MATH  Google Scholar 

  • Czarnota T, Wagner C (2016) Turbulent convection and thermal radiation in a cuboidal Rayleigh-Bénard cell with conductive plates. Int J Heat Fluid Flow 57:150–172

    Article  Google Scholar 

  • Das S, Choi SUS, Yu W, Pradeep T (2008) Nanofluids science and technology. Wiley, Hoboken

    Google Scholar 

  • Dawood HK, Mohammed HA, Sidik NAC, Munisamy KM, Wahid MA (2015) Forced, natural and mixed-convection heat transfer and fluid flow in annulus: a review. Int Commun Heat Mass Transfer 62:45–57

    Article  Google Scholar 

  • Derkacs D, Chen WV, Matheu PM, Lim SH, PKL Y, ET Y (2008) Nanoparticle-induced light scattering for improved performance of quantum-well solar cells. Appl Phys Lett 93:091107

    Article  Google Scholar 

  • Diaz-Maldonado M, Cordova-Figueroa UM (2015) On the anisotropic response of a Janus drop in a shearing viscous fluid. J Fluid Mech 770:R2

    Article  Google Scholar 

  • Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  • Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw-Hill, New York

    MATH  Google Scholar 

  • Farid M, Khudhair A, Razack S, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615

    Article  Google Scholar 

  • Gajbhiye NL, Eswaran V (2015) Numerical simulation of MHD flow and heat transfer in a rectangular and smoothly constricted enclosure. Int J Heat Mass Transf 83:441–449

    Article  Google Scholar 

  • Geng P, Kuznetsov AV (2004) Effect of small solid particles on the development of bioconvection plumes. Int Commun Heat Mass Transfer 31:629–638

    Article  Google Scholar 

  • Geng P, Kuznetsov AV (2005) Settling of bidispersed small solid particles in a dilute suspension containing gyrotactic micro-organisms. Int J Eng Sci 43:992–1010

    Article  MATH  Google Scholar 

  • Geng P, Kuznetsov AV (2006) Direct numerical simulation of settling of a large solid particle during bioconvection. Int J Numer Methods Fluids 51:511–530

    Article  MATH  Google Scholar 

  • Geng P, Kuznetsov AV (2007) Dynamics of large solid particles in bioconvective sedimentation. Int J Numer Methods Fluids 53:713–733

    Article  MATH  Google Scholar 

  • Getling A, Brausch O (2003) Cellular flow patterns and their evolutionary scenarios in three-dimensional Rayleigh-Bénard convection. Phys Rev E 67:046313

    Article  Google Scholar 

  • Ghachem K, Kolsi L, Maatki C, Alghamdi A, Oztop HF, Borjini MN, Ben Aissia H, Al-Salem K (2016) Numerical simulation of three-dimensional double diffusive convection in a lid-driven cavity. Int J Therm Sci 110:241–250

    Article  Google Scholar 

  • Ghorai S, Hill N (1999) Development and stability of gyrotactic plumes in bioconvection. J Fluid Mech 400:1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Ghorai S, Hill N (2000) Periodic arrays of gyrotactic plumes in bioconvection. Phys Fluids 12:5–22

    Article  MATH  Google Scholar 

  • Ghorai S, Singh R (2009) Linear stability analysis of gyrotactic plumes. Phys Fluids 21:081901

    Article  MATH  Google Scholar 

  • Ghorayeb K, Mojtabi A (1997) Double diffusive convection in a vertical rectangular cavity. Phys Fluids 9:2339–2348

    Article  MATH  Google Scholar 

  • Globe S, Dropkin D (1959) Natural convection heat transfer in liquid confined by two horizontal plates and heated from below. J Heat Transfer-Trans ASME 81:24–28

    Google Scholar 

  • Grosan T, Revnic C, Pop I, Ingham DB (2009) Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium. Int J Heat Mass Transf 52:1525–1533

    Article  MATH  Google Scholar 

  • Grossmann S, Lohse D (2000) Scaling in thermal convection: a unifying theory. J Fluid Mech 407:27–56

    Article  MathSciNet  MATH  Google Scholar 

  • Hewitt DR, Neufeld JA, Lister JR (2012) Ultimate regime of high Rayleigh number convection in a porous medium. Phys Rev Lett 108:224503

    Article  Google Scholar 

  • Hewitt DR, Neufeld JA, Lister JR (2014) High Rayleigh number convection in a three-dimensional porous medium. J Fluid Mech 748:879–895

    Article  Google Scholar 

  • Hill NA, Pedley TJ, Kessler JO (1989) Growth of bioconvection patterns in a suspension of gyrotactic microorganisms in a layer of finite depth. J Fluid Mech 208:509–543

    Article  MathSciNet  MATH  Google Scholar 

  • Hillesdon AJ, Pedley TJ (1996) Bioconvection in suspensions of oxytactic bacteria: linear theory. J Fluid Mech 324:223–259

    Article  MATH  Google Scholar 

  • Hillesdon AJ, Pedley TJ, Kessler JO (1995) The development of concentration gradients in a suspension of chemotactic bacteria. Bull Math Biol 57:299–344

    Article  MATH  Google Scholar 

  • Houzeaux G, Codina R (2003) A chimera method based on a Dirichlet/Neumann(Robin) coupling for the Navier-stokes equations. Comput Methods Appl Mech Eng 192:3343–3377

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu H, Huang Y, Liu Y (2016) Natural convection in an oscillating cylindrical enclosure with pin fins. Int J Heat Mass Transf 93:720–728

    Article  Google Scholar 

  • Hwang Y, Pedley TJ (2014) Bioconvection under uniform shear: linear stability analysis. J Fluid Mech 738:522–562

    Article  MathSciNet  MATH  Google Scholar 

  • Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  • Jang SP, Choi SUS (2007) Effects of various parameters on nanofluid thermal conductivity. J Heat Transfer-Trans ASME 129:617–623

    Article  Google Scholar 

  • Jin Y, Uth MF, Kuznetsov AV, Herwig H (2015) Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study. J Fluid Mech 766:76–103

    Article  Google Scholar 

  • Kahveci K, Oeztuna S (2009) MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur J Mech B-Fluids 28:744–752

    Article  MathSciNet  MATH  Google Scholar 

  • Kamiyo OM, Angeli D, Barozzi GS, Collins MW, Olunloyo VOS, Talabi SO (2010) A comprehensive review of natural convection in triangular enclosures. Appl Mech Rev 63:060801

    Article  Google Scholar 

  • Kang HU, Kim SH, JM O (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transfer 19:181–191

    Article  Google Scholar 

  • Kathare V, Davidson JH, Kulacki FA (2008) Natural convection in water-saturated metal foam. Int J Heat Mass Transf 51:3794–3802

    Article  MATH  Google Scholar 

  • Kefayati GHR (2014) Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq 191:1–9

    Article  Google Scholar 

  • Kefayati GR (2015) Mesoscopic simulation of mixed convection on non-Newtonian nanofluids in a two sided lid-driven enclosure. Adv Powder Technol 26:576–588

    Article  Google Scholar 

  • Kenjeres S, Hanjalic K (2000) Convective rolls and heat transfer in finite-length Rayleigh-Bénard convection: a two-dimensional numerical study. Phys Rev E 62:7987–7998

    Article  Google Scholar 

  • Kessler JO (1986) The external dynamics of swimming micro-organisms, chapter 6. In: Progress in phycological research, vol 4. Biopress, Bristol, pp 257–307

    Google Scholar 

  • Khalifa A (2001a) Natural convective heat transfer coefficient – a review I. Isolated vertical and horizontal surfaces. Energy Convers Manag 42:491–504

    Article  Google Scholar 

  • Khalifa A (2001b) Natural convective heat transfer coefficient – a review II. Surfaces in two- and three-dimensional enclosures. Energy Convers Manag 42:505–517

    Article  Google Scholar 

  • Khalili A, Shivakumara I, Suma S (2003) Convective instability in superposed fluid and porous layers with vertical throughflow. Transp Porous Media 51:1–18

    Article  MathSciNet  Google Scholar 

  • Khan WA, Uddin MJ, Ismail AI (2015) Bioconvective non-Newtonian nanofluid transport over a vertical plate in a porous medium containing microorganisms in a moving free stream. J Porous Media 18:389–399

    Article  Google Scholar 

  • Khanafer K, Vafai K (2002) Double-diffusive mixed convection in a lid-driven enclosure filled with a fluid-saturated porous medium. Numer Heat Transfer Part A-Appl 42:465–486

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  • Kim J, Tzempelikos A, Braun JE (2015) Review of modelling approaches for passive ceiling cooling systems. J Build Perform Simul 8:145–172

    Article  Google Scholar 

  • Kizildag D, Rodriguez I, Oliva A, Lehmkuhl O (2014a) Limits of the Oberbeck-Boussinesq approximation in a tall differentially heated cavity filled with water. Int J Heat Mass Transf 68:489–499

    Article  Google Scholar 

  • Kizildag D, Trias FX, Rodriguez I, Oliva A (2014b) Large eddy and direct numerical simulations of a turbulent water-filled differentially heated cavity of aspect ratio 5. Int J Heat Mass Transf 77:1084–1094

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2004a) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2004b) Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf 47:3159–3169

    Article  Google Scholar 

  • Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  MATH  Google Scholar 

  • Kuiken HK (1968) An asymptotic solution for large Prandtl number free convection. J Eng Math 2:355–371

    Article  MATH  Google Scholar 

  • Kuiken HK (1969) Free convection at low Prandtl numbers. J Fluid Mech 37:785–798

    Article  MATH  Google Scholar 

  • Kulacki FA, Goldstein RJ (1975) Hydrodynamic instability in fluid layers with uniform volumetric energy sources. Appl Sci Res 31:81–109

    Article  MATH  Google Scholar 

  • Kumar V, Sharma YD (2014) Instability analysis of gyrotactic microorganisms: a combined effect of high-frequency vertical vibration and porous media. Transp Porous Media 102:153–165

    Article  MathSciNet  Google Scholar 

  • Kuznetsov AV (1998) Numerical investigation of the macrosegregation during thin strip casting of carbon steel. Numer Heat Transfer Part A-Appl 33:515–532

    Article  Google Scholar 

  • Kuznetsov AV (2005a) Investigation of the onset of thermo-bioconvection in a suspension of oxytactic microorganisms in a shallow fluid layer heated from below. Theor Comput Fluid Dyn 19:287–299

    Article  MATH  Google Scholar 

  • Kuznetsov AV (2005b) The onset of bioconvection in a suspension of negatively geotactic microorganisms with high-frequency vertical vibration. Int Commun Heat Mass Transfer 32:1119–1127

    Article  Google Scholar 

  • Kuznetsov AV (2005c) Thermo-bioconvection in a suspension of oxytactic bacteria. Int Commun Heat Mass Transfer 32:991–999

    Article  Google Scholar 

  • Kuznetsov AV (2006a) Investigation of the onset of bioconvection in a suspension of oxytactic microorganisms subjected to high-frequency vertical vibration. Theor Comput Fluid Dyn 20:73–87

    Article  MATH  Google Scholar 

  • Kuznetsov AV (2006b) Linear stability analysis of the effect of vertical vibration on bioconvection in a horizontal porous layer of finite depth. J Porous Media 9:597–608

    Article  Google Scholar 

  • Kuznetsov AV (2006c) Thermo-bio-convection in porous media. J Porous Media 9:581–589

    Article  Google Scholar 

  • Kuznetsov AV (2008) New developments in bioconvection in porous media: bioconvection plumes, bio-thermal convection, and effects of vertical vibration. Emerg Top Heat Mass Transfer Porous Media 22:181–217

    Article  Google Scholar 

  • Kuznetsov AV (2010) The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int Commun Heat Mass Transfer 37:1421–1425

    Article  Google Scholar 

  • Kuznetsov AV (2011a) Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale Res Lett 6:100

    Article  Google Scholar 

  • Kuznetsov AV (2011b) Bio-thermal convection induced by two different species of microorganisms. Int Commun Heat Mass Transfer 38:548–553

    Article  Google Scholar 

  • Kuznetsov AV (2011c) Nanofluid bio-thermal convection: simultaneous effects of gyrotactic and oxytactic micro-organisms. Fluid Dyn Res 43:055505

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov AV (2012a) Nanofluid bioconvection in a horizontal fluid-saturated porous layer. J Porous Media 15:11–27

    Article  Google Scholar 

  • Kuznetsov AV (2012b) Nanofluid bioconvection in porous media: oxytactic microorganisms. J Porous Media 15:233–248

    Article  Google Scholar 

  • Kuznetsov AV (2012c) Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below. Theor Comput Fluid Dyn 26:291–310

    Article  MATH  Google Scholar 

  • Kuznetsov AV (2013) The onset of bio-thermal convection induced by a combined effect of gyrotactic and oxytactic microorganisms. Int J Numer Methods Heat Fluid Flow 23:979–1000

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov AV (2016) Biothermal convection and nanofluid bioconvection. In: Johnson RW (ed) Handbook of fluid dynamics. CRC Press, Boca Raton, pp 27.1–27.24

    Google Scholar 

  • Kuznetsov AV, Bubnovich V (2012) Investigation of simultaneous effects of gyrotactic and oxytactic microorganisms on nanofluid bio-thermal convection in porous media. J Porous Media 15:617–631

    Article  Google Scholar 

  • Kuznetsov AV, Geng P (2005) The interaction of bioconvection caused by gyrotactic micro-organisms and settling of small solid particles. Int J Numer Methods Heat Fluid Flow 15:328–347

    Article  Google Scholar 

  • Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  • Kuznetsov AV, Nield DA (2014) Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci 77:126–129

    Article  Google Scholar 

  • Kuznetsov AV, Nield DA (2015) Local thermal non-equilibrium effects on the onset of convection in an internally heated layered porous medium with vertical throughflow. Int J Therm Sci 92:97–105

    Article  Google Scholar 

  • Kuznetsov AV, Nield DA (2016) The effect of spatially nonuniform internal heating on the onset of convection in a horizontal fluid layer. J Heat Transfer-Trans ASME 138:062503

    Article  Google Scholar 

  • Kuznetsov IA, Greenfield MJ, Mehta YU, Merchan-Merchan W, Salkar G, Saveliev AV (2011) Increasing the solar cell power-output by coating with transition metal-oxide nanorods. Appl Energy 88:4218–4221

    Article  Google Scholar 

  • Kuznetsov AV, Blinov DG, Avramenko AA, Shevchuk IV, Tyrinov AI, Kuznetsov IA (2014) Approximate modeling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface. J Fluid Mech 738:492–521

    Article  MathSciNet  MATH  Google Scholar 

  • Lage JL (1994) Convective currents induced by periodic time-dependent vertical density gradient. Int J Heat Fluid Flow 15:233–240

    Article  Google Scholar 

  • Lage JL, Bejan A (1993) The resonance of natural convection in an enclosure heated periodically from the side. Int J Heat Mass Transf 36:2027–2038

    Article  MATH  Google Scholar 

  • Laguerre O, Flick D (2004) Heat transfer by natural convection in domestic refrigerators. J Food Eng 62:79–88

    Article  Google Scholar 

  • Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer-Trans ASME 121:280–289

    Article  Google Scholar 

  • Lin G, Zhao C, Hobbs B, Ord A, Muhlhaus H (2003) Theoretical and numerical analyses of convective instability in porous media with temperature-dependent viscosity. Commun Numer Methods Eng 19:787–799

    Article  MATH  Google Scholar 

  • Lin FYH, Sabri M, Alirezaie J, Li DQ, Sherman PM (2005) Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clin Diagn Lab Immunol 12:418–425

    Google Scholar 

  • Liu P (1996) Onset of Benard-Marangoni convection in a rotating liquid layer with nonuniform volumetric energy sources. Int J Heat Fluid Flow 17:579–586

    Article  Google Scholar 

  • Liu J, Wang C (2004) High order finite difference methods for unsteady incompressible flows in multi-connected domains. Comput Fluids 33:223–255

    Article  MathSciNet  MATH  Google Scholar 

  • Mahapatra PS, Manna NK, Ghosh K, Mukhopadhyay A (2015) Heat transfer assessment of an alternately active hi-heater undergoing transient natural convection. Int J Heat Mass Transf 83:450–464

    Article  Google Scholar 

  • Maiga S, Palm S, Nguyen C, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26:530–546

    Article  Google Scholar 

  • Mallinson GD, de Vahl Davis G (1977) Three-dimensional natural convection in a box – a numerical study. J Fluid Mech 83:1–31

    Article  Google Scholar 

  • Mamou M, Vasseur P, Bilgen E (1998) Double-diffusive convection instability in a vertical porous enclosure. J Fluid Mech 368:263–289

    Article  MATH  Google Scholar 

  • Mehryan SAM, Kashkooli FM, Soltani M, Raahemifar K (2016) Fluid flow and heat transfer analysis of a nanofluid containing motile gyrotactic micro-organisms passing a nonlinear stretching vertical sheet in the presence of a non-uniform magnetic field; numerical approach. PLoS One 11:e0157598

    Article  Google Scholar 

  • Metcalfe AM, Pedley TJ (1998) Bacterial bioconvection: weakly nonlinear theory for pattern selection. J Fluid Mech 370:249–270

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalfe AM, Pedley TJ (2001) Falling plumes in bacterial bioconvection. J Fluid Mech 445:121–149

    Article  MATH  Google Scholar 

  • Michelin S, Lauga E (2014) Phoretic self-propulsion at finite Peclet numbers. J Fluid Mech 747:572–604

    Article  MathSciNet  MATH  Google Scholar 

  • Mishra D, Muralidhar K, Munshi P (1999) Experimental study of Rayleigh-Bénard convection at intermediate Rayleigh numbers using interferometric tomography. Fluid Dyn Res 25:231–255

    Article  Google Scholar 

  • Mojtabi M, Razi Y, Maliwan K, Mojtabi A (2004) Influence of vibration on Soret-driven convection in porous media. Numer Heat Transfer Part A-Appl 46:981–993

    Article  Google Scholar 

  • Mojumder S, Rabbi KM, Saha S, Hasan MN, Saha SC (2016) Magnetic field effect on natural convection and entropy generation in a half-moon shaped cavity with semi-circular bottom heater having different ferrofluid inside. J Magn Magn Mater 407:412–424

    Article  Google Scholar 

  • Moresi L, Gurnis M, Zhong SJ (2000) Plate tectonics and convection in the Earth’s mantle: toward a numerical simulation. Comput Sci Eng 2:22–33

    Article  Google Scholar 

  • Nardini G, Paroncini M, Vitali R (2015) Natural convection in a cavity with partially active side walls with and without a horizontal baffle. Heat Mass Transf 51:1791–1804

    Article  Google Scholar 

  • Nardini G, Paroncini M, Vitali R (2016) Experimental and numerical analysis of the effect of the position of a bottom wall hot source on natural convection. Appl Therm Eng 92:236–245

    Article  Google Scholar 

  • Nebbache S, Loquet M, Vinceslas-Akpa M, Feeny V (1997) Turbidity and microorganisms in a karst spring. Eur J Soil Biol 33:89–103

    Google Scholar 

  • Nield DA (1967) The thermohaline Rayleigh-Jeffreys problem. J Fluid Mech 29:545–558

    Article  Google Scholar 

  • Nield DA (1987) Throughflow effects in the Rayleigh-Bénard convective instability problem. J Fluid Mech 185:353–360

    Article  Google Scholar 

  • Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Nield DA, Kuznetsov AV (2006) The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection. Int J Therm Sci 45:990–997

    Article  Google Scholar 

  • Nield DA, Kuznetsov AV (2010) The onset of convection in a horizontal nanofluid layer of finite depth. Eur J Mech B/Fluids 29:217–223

    Article  MathSciNet  MATH  Google Scholar 

  • Nield DA, Kuznetsov AV (2013) Forced convection past a rotating sphere: modeling oxygen transport to a pond snail embryo. J Heat Transfer-Trans ASME 135:124503

    Article  Google Scholar 

  • Niemela JJ, Skrbek L, Sreenivasan KR, Donnelly RJ (2000) Turbulent convection at very high Rayleigh numbers. Nature 404:837–840

    Article  Google Scholar 

  • Nishimura T, Wakamatsu M, Morega A (1998) Oscillatory double-diffusive convection in a rectangular enclosure with combined horizontal temperature and concentration gradients. Int J Heat Mass Transf 41:1601–1611

    Article  MATH  Google Scholar 

  • Nkurikiyimfura I, Wang Y, Pan Z (2013) Heat transfer enhancement by magnetic nanofluids-a review. Renew Sust Energ Rev 21:548–561

    Article  Google Scholar 

  • Odenbach S (2003) Ferrofluids – magnetically controlled suspensions. Colloids Surf A-Physicochem Eng Asp 217:171–178

    Article  Google Scholar 

  • Ohta M, Ohta M, Akiyoshi M, Obata E (2002) A numerical study on natural convective heat transfer of pseudoplastic fluids in a square cavity. Numer Heat Transfer Part A-Appl 41:357–372

    Article  Google Scholar 

  • Ozoe H, Churchill SW (1972) Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids – development of a numerical solution. AICHE J 18:1196–1207

    Article  Google Scholar 

  • Oztop HF, Oztop M, Varol Y (2009) Numerical simulation of magnetohydrodynamic buoyancy-induced flow in a non-isothermally heated square enclosure. Commun Nonlinear Sci Numer Simul 14:770–778

    Article  MATH  Google Scholar 

  • Oztop HF, Estelle P, Yan W, Al-Salem K, Orfi J, Mahian O (2015) A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Transfer 60:37–44

    Article  Google Scholar 

  • Pakravan HA, Yaghoubi M (2013) Analysis of nanoparticles migration on natural convective heat transfer of nanofluids. Int J Therm Sci 68:79–93

    Article  Google Scholar 

  • Pedley TJ, Kessler JO (1987) The orientation of spheroidal microorganisms swimming in a flow field. Proc R Soc London Ser B-Biol Sci 231:47–70

    Article  Google Scholar 

  • Pedley TJ, Kessler JO (1992) Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu Rev Fluid Mech 24:313–358

    Article  MathSciNet  MATH  Google Scholar 

  • Pedley TJ, Hill NA, Kessler JO (1988) The growth of bioconvection patterns in a uniform suspension of gyrotactic microorganisms. J Fluid Mech 195:223–237

    Article  MathSciNet  MATH  Google Scholar 

  • Perekattu GK, Balaji C (2009) On the onset of natural convection in differentially heated shallow fluid layers with internal heat generation. Int J Heat Mass Transf 52:4254–4263

    Article  MATH  Google Scholar 

  • Pollock T, Murphy W (1996) The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall Mater Trans A-Phys Metall Mater Sci 27:1081–1094

    Article  Google Scholar 

  • Qiu H, Lage JL, Junqueira SLM, Franco AT (2013) Predicting the Nusselt number of heterogeneous (porous) enclosures using a generic form of the Berkovsky-Polevikov correlations. J Heat Transfer-Trans ASME 135:082601

    Article  Google Scholar 

  • Rahman H, Suslov SA (2016) Magneto-gravitational convection in a vertical layer of ferrofluid in a uniform oblique magnetic field. J Fluid Mech 795:847–875

    Article  MathSciNet  MATH  Google Scholar 

  • Ren Q, Chan CL (2016) Numerical study of double-diffusive convection in a vertical cavity with Soret and Dufour effects by lattice Boltzmann method on GPU. Int J Heat Mass Transf 93:538–553

    Article  Google Scholar 

  • Roberts PH (1967) Convection in horizontal layers with internal heat generation. Theory. J Fluid Mech 30:33–49

    Article  Google Scholar 

  • Rodriguez-Gonzalez V, Obregon Alfaro S, Torres-Martinez LM, Cho S, Lee S (2010) Silver-TiO2 nanocomposites: synthesis and harmful algae bloom UV-photoelimination. Appl Catal B-Environ 98:229–234

    Article  Google Scholar 

  • Rudraiah N, Barron RM, Venkatachalappa M, Subbaraya CK (1995) Effect of a magnetic field on free convection in a rectangular enclosure. Int J Eng Sci 33:1075–1084

    Article  MATH  Google Scholar 

  • Saravanan S, Sivakumar T (2011) Thermovibrational instability in a fluid saturated anisotropic porous medium. J Heat Transfer-Trans ASME 133:051601

    Article  Google Scholar 

  • Schneider MC, Beckermann C (1995) Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel. Metall Mater Trans A-Phys Metall Mater Sci 26:2373–2388

    Article  Google Scholar 

  • Selimefendigil F, Oztop HE (2016) Natural convection in a flexible sided triangular cavity with internal heat generation under the effect of inclined magnetic field. J Magn Magn Mater 417:327–337

    Article  Google Scholar 

  • Sezai I, Mohamad A (2000) Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients. Phys Fluids 12:2210–2223

    Article  MATH  Google Scholar 

  • Sharma YD, Kumar V (2011) Overstability analysis of thermo-bioconvection saturating a porous medium in a suspension of gyrotactic microorganisms. Transp Porous Media 90:673–685

    Article  MathSciNet  Google Scholar 

  • Sharma YD, Kumar V (2012) The effect of high-frequency vertical vibration in a suspension of gyrotactic micro-organisms. Mech Res Commun 44:40–46

    Article  Google Scholar 

  • Sheikholeslami M, Ellahi R (2015) Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf 89:799–808

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD (2014) Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75:400–410

    Article  Google Scholar 

  • Sheikholeslami M, Ganji DD (2016) Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng 65:43–77

    Article  Google Scholar 

  • Sheikholeslami M, Gorji-Bandpy M (2014) Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol 256:490–498

    Article  Google Scholar 

  • Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Rana P, Soleimani S (2014a) Magnetohydrodynamic free convection of Al2O3-water nanofluid considering thermophoresis and Brownian motion effects. Comput Fluids 94:147–160

    Article  MathSciNet  Google Scholar 

  • Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A (2014b) Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater 369:69–80

    Article  Google Scholar 

  • Sheikhzadeh GA, Dastmalchi M, Khorasanizadeh H (2013) Effects of nanoparticles transport mechanisms on Al2O3-water nanofluid natural convection in a square enclosure. Int J Therm Sci 66:51–62

    Article  Google Scholar 

  • Sheremet MA, Pop I (2014) Thermo-bioconvection in a square porous cavity filled by oxytactic microorganisms. Transp Porous Media 103:191–205

    Article  MathSciNet  Google Scholar 

  • Sheremet MA, Grosan T, Pop I (2015) Natural convection in a cubical porous cavity saturated with nanofluid using Tiwari and das’ nanofluid model. J Porous Media 18:585–596

    Article  Google Scholar 

  • Shivakumara IS, Suma SP (2000) Effects of throughflow and internal heat generation on the onset of convection in a fluid layer. Acta Mech 140:207–217

    Article  MATH  Google Scholar 

  • Shklyaev S, Brady JF, Cordova-Figueroa UM (2014) Non-spherical osmotic motor: chemical sailing. J Fluid Mech 748:488–520

    Article  MathSciNet  Google Scholar 

  • Sidik NAC, Yazid MNAWM, Mamat R (2015) A review on the application of nanofluids in vehicle engine cooling system. Int Commun Heat Mass Transfer 68:85–90

    Article  Google Scholar 

  • Singh H, Eames PC (2011) A review of natural convective heat transfer correlations in rectangular cross-section cavities and their potential applications to compound parabolic concentrating (CPC) solar collector cavities. Appl Therm Eng 31:2186–2196

    Article  Google Scholar 

  • Sk MT, Das K, Kundu PK (2016) Multiple slip effects on bioconvection of nanofluid flow containing gyrotactic microorganisms and nanoparticles. J Mol Liq 220:518–526

    Article  Google Scholar 

  • Sparrow EM, Goldstein RJ, Jonsson VK (1964) Thermal instability in a horizontal fluid layer – effect of boundary conditions and non-linear temperature profile. J Fluid Mech 18:513–528

    Article  MathSciNet  MATH  Google Scholar 

  • Straughan B (1990) Continuous dependence on the heat source and non-linear stability for convection with internal heat generation. Math Methods Appl Sci 13:373–383

    Article  MathSciNet  MATH  Google Scholar 

  • Su Y, Wade A, Davidson JH (2015) Macroscopic correlation for natural convection in water saturated metal foam relative to the placement within an enclosure heated from below. Int J Heat Mass Transf 85:890–896

    Article  Google Scholar 

  • Taheri M, Bilgen E (2008) Thermo-bioconvection in a suspension of gravitactic micro-organisms in vertical cylinders. Int J Heat Mass Transf 51:3535–3547

    Article  MATH  Google Scholar 

  • Tasaka Y, Takeda Y (2005) Effects of heat source distribution on natural convection induced by internal heating. Int J Heat Mass Transf 48:1164–1174

    Article  MATH  Google Scholar 

  • Teertstra P, Culham J, Yovanovich M (1997) Comprehensive review of natural and mixed convection heat transfer models for circuit board arrays. J Electron Manuf 7:79–92

    Article  Google Scholar 

  • Ternik P (2015) Conduction and convection heat transfer characteristics of water-au nanofluid in a cubic enclosure with differentially heated side walls. Int J Heat Mass Transf 80:368–375

    Article  Google Scholar 

  • Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018

    Article  MATH  Google Scholar 

  • Torres JF, Henry D, Komiya A, Maruyama S (2015) Transition from multiplicity to singularity of steady natural convection in a tilted cubical enclosure. Phys Rev E 92:023031

    Article  Google Scholar 

  • Tritton DJ (1975) Internally heated convection in atmosphere of Venus and in laboratory. Nature 257:110–111

    Article  Google Scholar 

  • Tritton DJ, Zarraga MN (1967) Convection in horizontal layers with internal heat generation. Experiments. J Fluid Mech 30:21–31

    Article  Google Scholar 

  • Uddin MB, Rahman MM, Khan MAH, Ibrahim TA (2015) Effect of buoyancy ratio on unsteady thermosolutal combined convection in a lid driven trapezoidal enclosure in the presence of magnetic field. Comput Fluids 114:284–296

    Article  MathSciNet  Google Scholar 

  • Uth MF, Jin Y, Kuznetsov AV, Herwig H (2016) A direct numerical simulation study on the possibility of macroscopic turbulence in porous media: effects of different solid matrix geometries, solid boundaries, and two porosity scales. Phys Fluids 28:065101

    Article  Google Scholar 

  • Vadasz P (2006) Heat conduction in nanofluid suspensions. J Heat Transfer-Trans ASME 128:465–477

    Article  Google Scholar 

  • Vadasz JJ, Govender S, Vadasz P (2005) Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations. Int J Heat Mass Transf 48:2673–2683

    Article  Google Scholar 

  • Wan Q, Kuznetsov A (2004) Investigation of the acoustic streaming in a rectangular cavity induced by the vibration of its lid. Int Commun Heat Mass Transfer 31:467–476

    Article  Google Scholar 

  • Wang S, Tan W (2011) Stability analysis of Soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int J Heat Fluid Flow 32:88–94

    Article  Google Scholar 

  • Wang J, Yang M, He Y, Zhang Y (2016) Oscillatory double-diffusive convection in a horizontal cavity with Soret and Dufour effects. Int J Therm Sci 106:57–69

    Article  Google Scholar 

  • Wibisono AF, Ahn Y, Williams WC, Addad Y, Lee JI (2013) Studies of various single phase natural circulation systems for small and medium sized reactor design. Nucl Eng Des 262:390–403

    Article  Google Scholar 

  • Williamson N, Armfield SW, Lin W, Kirkpatrick MP (2016) Stability and Nusselt number scaling for inclined differentially heated cavity flow. Int J Heat Mass Transf 97:787–793

    Article  Google Scholar 

  • Wu C, Cho TJ, Xu J, Lee D, Yang B, Zachariah MR (2010) Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids. Phys Rev E 81:011406

    Article  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  • Yadav D, Kim CH, Lee J, Cho HH (2015) Influence of a magnetic field on the onset of nanofluid convection induced by purely internal heating. Comput Fluids 121:26–36

    Article  MathSciNet  Google Scholar 

  • Yigit S, Poole RJ, Chakraborty N (2015) Effects of aspect ratio on laminar Rayleigh-Bénard convection of power-law fluids in rectangular enclosures: a numerical investigation. Int J Heat Mass Transf 91:1292–1307

    Article  Google Scholar 

  • Yigit S, Graham T, Poole RJ, Chakraborty N (2016) Numerical investigation of steady-state laminar natural convection of power-law fluids in square cross-sectioned cylindrical annular cavity with differentially-heated vertical walls. Int J Numer Methods Heat Fluid Flow 26:85–107

    Article  MathSciNet  MATH  Google Scholar 

  • Yucel A, Bayazitoglu Y (1979) Onset of convection in fluid layers with non-uniform volumetric energy sources. ASME J Heat Transf 101:666–671

    Article  Google Scholar 

  • Zahmatkesh I (2008) On the importance of thermal boundary conditions in heat transfer and entropy generation for natural convection inside a porous enclosure. Int J Therm Sci 47:339–346

    Article  Google Scholar 

  • Zalba B, Marin J, Cabeza L, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23:251–283

    Article  Google Scholar 

  • Zhai XQ, Song ZP, Wang RZ (2011) A review for the applications of solar chimneys in buildings. Renew Sust Energ Rev 15:3757–3767

    Article  Google Scholar 

  • Zhang X, Ni S, He G (2008) A pressure-correction method and its applications on an unstructured chimera grid. Comput Fluids 37:993–1010

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao C, Hobbs B, Muhlhaus H, Ord A, Lin G (2002) Analysis of steady-state heat transfer through mid-crustal vertical cracks with upward throughflow in hydrothermal systems. Int J Numer Anal Methods Geomech 26:1477–1491

    Article  MATH  Google Scholar 

Download references

Acknowledgment

The author acknowledges with gratitude the support of the National Science Foundation (award CBET-1642262) and the Alexander von Humboldt Foundation through the Humboldt Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kuznetsov, A.V., Kuznetsov, I.A. (2017). Free Convection: Cavities and Layers. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics