Skip to main content

Phase Change Materials

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Phase change materials (PCMs) primarily leverage latent heat during phase transformation processes to minimize material usage for thermal energy storage (TES) or thermal management applications (TMA). PCMs effectively serve as thermal capacitors that help to mitigate the imbalance between energy demand and supply, to address the inherently transient nature of applications that require TES or TMA. PCMs provide higher energy storage density, since latent heat values are significantly higher than sensible heat. PCMs can enable the realization of isothermal reservoirs which serve as a heat source or heat sink. Reliability of PCM for TES or TMA is typically tested by their ability to withstand multiple charging and discharging cycles. In numerous literature reports, PCMs were explored for TES or TMA – ranging from solar power harvesting to thermal management of buildings. The wide range of information on PCMs are culled from the literature reports and summarized in this study. The culled information is categorized into history of PCMs, types (organic/inorganic), analytical formulations (for charging/discharging cycles), protocols for thermophysical property measurements (microscale/macroscale), reliability issues, applications, and identification of future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abduljalil A, Sohif M, Sopian K, Sulaiman MY, Mohammad TA (2014) Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 68:33–41

    Article  Google Scholar 

  • Abhat A (1983) Low temperature latent heat temperature energy storage: heat storage materials. Sol Energy 30(4):313–332

    Article  Google Scholar 

  • Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of material, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628

    Article  Google Scholar 

  • Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Trans 48(13):2759–2770

    Article  MATH  Google Scholar 

  • Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147

    Article  Google Scholar 

  • Amon C, Vesligaj M (1999) Transient thermal management of temperature fluctuations during time varying workloads on portable electronics. IEEE Trans Component Packag Technol 22:541–550

    Article  Google Scholar 

  • Anon (2016) EGR aerosapce. [Online] [Figure]. Available at: http://www.ergaerospace.com/project-gallery.htm. Accessed 29 Apr 2016

  • Araki N, Futamura M, Makino A, Shibata H (1995) Measurement of thermophysical properties of sodium acetate hydrate. Int J Thermophys 16(6):1455–1466

    Article  Google Scholar 

  • Bareiss M, Beer H (1984) An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Trans 27(5):739–746

    Article  Google Scholar 

  • Barz T, Zauner C, Lager D, Cardenas D, Hengstberger F, Bournazou NC, Marx K (2016) Experimental analysis and numerical modeling of a shell and tube heat storage unit with phase change materials. Ind Eng Chem Res 55:8154–8164

    Article  Google Scholar 

  • Beckermann C, Viskanta R (1988) Natural convection solid/liquid phase change in porous media. Int J Heat Mass Trans 31:35–46

    Article  Google Scholar 

  • Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100

    Article  Google Scholar 

  • Brousseau P, Lacroix M (1998) Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res 22:1–15

    Article  Google Scholar 

  • Cabeza LF, Svensson G, Hiebler S, Hiebler S, Mehling H (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change storage material. Appl Therm Eng 23(13):1697–1704

    Article  Google Scholar 

  • Campardo G (2011) Memory mass storage. Springer, Berlin

    Book  Google Scholar 

  • Chintakrinda K, Weinstein R, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50:1639–1647

    Article  Google Scholar 

  • Costa M, Oliva A, Ferez-Searra CD, Alba R (1991) Numerical simulation of solid-liquid phase change phenomena. Comput Methods Appl Mech Eng 91:1123–1134

    Article  Google Scholar 

  • Delaunay D, Carre P (1982) Dispositif de mesure automatique de la conductivité thermique des matériaux à changement de phase. Rev Phys Appl 17:209–215

    Article  Google Scholar 

  • Delgado M, Lazaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16(1):253–273

    Article  Google Scholar 

  • Deng Y (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change material with silver nanowire for thermal energy storage. Chem Eng J 295:427–435

    Article  Google Scholar 

  • Desgrosseilliers L, Groulx D, White MA (2013) Heat conduction in laminate multilayer bodies with applied finite heat source. Int J Thermal Sci 72:47–59

    Article  Google Scholar 

  • Duan X, Naterer G (2010) Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int J Heat Mass Trans 53:5176–5182

    Article  Google Scholar 

  • Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behaviour of phase change materials. Carbon 43:3067–3074

    Article  Google Scholar 

  • Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manag 37(12):1775–1785

    Article  Google Scholar 

  • Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172

    Article  Google Scholar 

  • Fedden A (2006) Graphitized carbon foam with phase change material. Air Force Insitute of Technology, Dayton

    Google Scholar 

  • Fleischer AS (2015) Thermal energy storage using phase change materials fundamentals and applications, SpringerBriefs in thermal engineering and applied science. Springer, New York

    Book  Google Scholar 

  • Fok S, Shen W, Tan F (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Thermal Sci 49(1):109–117

    Article  Google Scholar 

  • Gong Z, Mujumdar A (1997) Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Thermal Energy 17(6):583–591

    Article  Google Scholar 

  • Hasan A (1994) Phase change material energy storage system employing palmitic acid. Sol Energy 52:143–154

    Article  Google Scholar 

  • He Y (2005) Rapid thermal conductivity measurement with a hot-disk sensor: part 1. Theoretical considerations. Thermochim Acta 436:122–129

    Article  Google Scholar 

  • Hosseini MJ, Rahimil M, Bahrampoury R (2015) Thermal analysis of PCM containing heat exchanger. Mech Sci 6:221–234

    Article  Google Scholar 

  • Huang J, Wang T, Wang CH, Rao ZH (2013) Molecular dynamics simulations of melting behaviour of n-hexacosane as phase change material for thermal energy storage. Asian J Chem 25(4):1839–1841

    Google Scholar 

  • Humphries W (1978) Performance of finned thermal capacitors. NASA Tech Note, NASA-TN-D-7690

    Google Scholar 

  • Humphries W, Griggs E (1977) A design handbook for phase change thermal control and energy storage devices. NASA Technical Ppr, NASA-TP-1074

    Google Scholar 

  • Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf 32:307–312

    Article  Google Scholar 

  • Ismail K, Henriquez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41:179–187

    Google Scholar 

  • Jameskhorshid A, Sadrameli S, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542

    Article  Google Scholar 

  • Johansson P, Kalagasidis AS, Jansson H (2015) Investigating PCM activation using transient plane source method. Energy Procedia 78:800–805

    Article  Google Scholar 

  • Joshi Y, Pal D (1997) Application of phase change materials to thermal control of electronics modules: a computational study. Trans ASME J Elect Packag 119:40–50

    Article  Google Scholar 

  • Kandasamy R, Wang XQ, Mujumdar A (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Thermal Eng 28:1047–1057

    Article  Google Scholar 

  • Kaul RK (2002) Thermal insulating coating for spacecrafts. US Patent 6939610 B1

    Google Scholar 

  • Kerkamm I (2014) Battery thermal management using phase change material. US Patent 20140004394 A1

    Google Scholar 

  • Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158

    Article  Google Scholar 

  • Khobadadi J, Zhang Y (1999) Effects of buoyancy driven convection on melting within spherical containers. Int J Heat Mass Trans 44:4197–4205

    Google Scholar 

  • Khudhair AM, Farid MM (2004) A review on energy conversion in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275

    Article  Google Scholar 

  • Kravvaritis ED, Antonopoulos KA, Tzivanidis C (2010) Improvements to the measurement of the thermal properties of phase change materials. Meas Sci Technol 21:91–99

    Article  Google Scholar 

  • Kurkulu A, Wheldon A, Hadley P (1996) Mathematical modelling of the thermal performance of a phase change material storage: cooling cycle. Appl Thermal Energy 16(7):615–623

    Google Scholar 

  • Kuznik F, David D, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 5(1):379–391

    Article  Google Scholar 

  • Kwon H, Kim J (2015) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18:923–926

    Article  Google Scholar 

  • Lane GA (1983) Background and scientific principles, solar heat storage: latent heat material, vol I. CRC Press, Boca Raton

    Google Scholar 

  • Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27(2):135–180

    Article  Google Scholar 

  • Latibari S, Mehrali M, Mahlia T (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Sol Energy 61:664–672

    Google Scholar 

  • Lazaro A, Gunther E, Mehling H, Hiebler S, Marin MJ, Zalba B (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17:2168–2174

    Article  Google Scholar 

  • Li J, Zeng Y, Luo Z (2014) Simultaneous enhancement of latent heat and thermal conductivity of docoasane based phase change materials in the presence of spongy graphene. Sol Energy Mater Sol Cells 66:48–51

    Article  Google Scholar 

  • Long J (2008) Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy 82:977–985

    Article  Google Scholar 

  • Marin J, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with temperature-history method: improvement to temperature dependent properties. Meas Sci Technol 14:184–189

    Article  Google Scholar 

  • Marks SB (1982) The effects of crystal size on the thermal energy storage capacity of thickened Glauber’s salt. Sol Energy 30(1):45–49

    Article  Google Scholar 

  • Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Berlin

    Google Scholar 

  • Mehling H, Heibler S, Ziegler F (2000) Latent heat storage using a PCM-graphite composite material. In: Proceedings of Terrastock conference, Stuttgart

    Google Scholar 

  • Modal S (2008) Phase change materials for smart textiles – an overview. Appl Thermal Eng 28:1536–1550

    Article  Google Scholar 

  • Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Trans 67:301–310

    Article  Google Scholar 

  • Naumann R, Emons HH (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. Thermal Anal 35:1009–1031

    Article  Google Scholar 

  • Nie C, Tong X, Wu S, Gong S, Peng D (2015) Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies. Roy Soc Chem 5:92812–92817

    Google Scholar 

  • Nithyanandam K, Pitchumani R (2014) Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64:793–810

    Article  Google Scholar 

  • Ovshinsky SR (1996) Memory element with memory material comprising phase-change material and dielectric material. US Patent 6087674 A

    Google Scholar 

  • Papadimitratos A, Hassanipour F, Pozdin V (2016) Evacuated tube solar collectors integrated with phase change materials. Sol Energy 84:10–19

    Article  Google Scholar 

  • Park G, Lee J, Kang S, Kim M, Kang S, Choi W (2016) Design principle of super resolution near-field structure using thermally responsive optical phase change materials for nanolithography application. Mat Des 102:45–55

    Google Scholar 

  • Pendyala S (2012) Macroencapsulation of phase change materials for thermal energy storage. University of South Florida, Tampa

    Google Scholar 

  • RAL (2009) Phase change material [quality assurance]. RAL Deutsches Institut, Berlin

    Google Scholar 

  • Rao Z, Wang S, Wu M, Zhang Y, Li F (2012) Molecular dynamics simulations of melting behaviour of alkane as phase change slurry. Energy Convers Manag 64:152–156

    Article  Google Scholar 

  • Rao Z, Wang S, Peng F (2013) Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Trans 66:575–584

    Article  Google Scholar 

  • Riley D, Smith F, Poots G (1974) The inward melting of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516

    Article  Google Scholar 

  • Robak C, Bergman T, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473

    Article  Google Scholar 

  • Romero AG, Diarce G, Ibarretxe J (2012) Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol Energy Mater Sol Cells 102:189–195

    Article  Google Scholar 

  • Rosen M, Dincer I (2002) Thermal energy storage, systems, and application. Wiley, Chichester

    Google Scholar 

  • Ryu H, Woo W, Shin BC, Kim DS (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172

    Article  Google Scholar 

  • Sabbah R, Kizilel R, Selman J, Hallaj A (2008) Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources 182(2):630–638

    Article  Google Scholar 

  • Sanusi O, Warzoha R, Fieischer AS (2011) Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Trans 54:4429–4436

    Article  Google Scholar 

  • Sari A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octadecane as phase change material for thermal energy storage. Trans ASME J Sol Eng 83:1757–1763

    Google Scholar 

  • Sarier N, Onder E (2012) Organic phase change material and their textile applications: an overview. Thermochem Acta 540:7–60

    Article  Google Scholar 

  • Shamberger PJ, O’Malley MJ (2015) Heterogeneous nucleation of thermal storage material LiNO3.3H2O from stable lattice-matched nucleation catalysts. Acta Mater 84:265–274

    Article  Google Scholar 

  • Shamberger PJ, Reid T (2012) Thermophysical properties of lithium nitrate trihydrate from 253 to 353 K. J Chem Eng Data 57:1404–1411

    Article  Google Scholar 

  • Shamsundar N, Sparrow E (1976) Analysis of multidimensional conduction phase change via the enthalpy model. Trans ASME J Heat Trans 97:333–340

    Article  Google Scholar 

  • Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13:318–345

    Article  Google Scholar 

  • Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Trans 51:1488–1493

    Article  MATH  Google Scholar 

  • Shin BC, Kim SD, Park WH (1989) Phase separation and supercooling of a latent heat-storage material. Energy 14:921–930

    Article  Google Scholar 

  • Shi X, Memon AS, Tang W, Cui H, Xing F (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings 71:80–87

    Google Scholar 

  • Singh N, Banerjee D (2013) Nanofins: science and applications, SpringerBriefs in thermal engineering and applied science. Springer, New York

    MATH  Google Scholar 

  • Sliva P, Goncalves L, Pires L (2002) Transient behaviour of a latent heat thermal energy store: numerical and experimental studies. Appl Energy 73:83–98

    Article  Google Scholar 

  • Solomon A (1979) Design criteria in PCM wall. Energy 4:701–709

    Article  Google Scholar 

  • Solomon A (1980) On the melting time of a simple body with a convection boundary condition. Lett Heat Mass Trans 7:183–188

    Article  Google Scholar 

  • Solomon AV (1993) Mathematical modelling of melting and freezing processes. Hemisphere, New York

    Google Scholar 

  • Speyer RF (1994) Thermal analysis of materials. Marcel Dekker, New York

    Google Scholar 

  • Swaminathan C, Voller V (1993) On the enthalpy method. Intl J Num Method Heat Fluid Flow 3:233–244

    Article  Google Scholar 

  • Swanson T, Birus G (2002) NASA thermal control technologies for robotic spacecraft. Appl Thermal Eng 23(9):1055–1065

    Article  Google Scholar 

  • Tay N, Belusko M, Bruno F (2012) An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Appl Energy 91:309–319

    Article  Google Scholar 

  • Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. J Ind Eng Chem 44:1308–1310

    Article  Google Scholar 

  • Theunissen P, Buchlin J (1983) Numerical optimization of a solar air heating system based on encapsulated PCM storage. Sol Energy 31:271–277

    Article  Google Scholar 

  • Trammell MP (2013) Evaluation of the transient thermal performance of a graphite foam/phase change material composite. University of Tennessee, Knoxville

    Google Scholar 

  • Tseng Y, Fang M, Tsai P, Yang YM (2005) Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J Microencapsul 22(1):37–46

    Article  Google Scholar 

  • Tyagi V, Kaushik S, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sust Energ Rev 15:1373–1391

    Article  Google Scholar 

  • Veerappan M, KalaiselvamS IS, Goic R (2009) Phase change characteristics study of spherical PCMs in solar energy storage. Sol Energy 83:1245–1252

    Article  Google Scholar 

  • Vettiger P, Despont M, Drechsler U (2000) The “millipede”-more than thousand tips for future AFM storage. IBM J Res Dev 44(3):323–340

    Article  Google Scholar 

  • Wang JP, Zhao XP, Guo HL, Zheng Q (2004) Preparation of microcapsules containing two phase core materials. Langmuir 128:10845–10850

    Article  Google Scholar 

  • Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42

    Article  Google Scholar 

  • Wang X, Zhang L, Yu Y-H (2015) Nano-encapsulated PCM via pickering emulsification. Sci Rep 5:1–8

    Google Scholar 

  • Wang Y, Chen Z, Ling X (2016) A molecular dynamics study of nano-encapsulated phase change material slurry. Appl Thermal Eng 98:835–840

    Article  Google Scholar 

  • Warzoha R, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. IntJ Heat Mass Trans 79:324–333

    Article  Google Scholar 

  • William PK, Goodson KE (2002) Thermal writing and nanoimaging with a heated atomic force microscope cantilever. Trans ASME J Heat Trans 124(4):597

    Article  Google Scholar 

  • Xia L, Zhang P, Wang R (2010) Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 48:2538–2548

    Article  Google Scholar 

  • Yamagishi Y, Takeuchi H, Pyatenko A (1999) Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE J 45:696–707

    Article  Google Scholar 

  • Yamaguchi M, Nogi T (1977) The Stefan problem. Sangyo-Tosho, Tokyo

    Google Scholar 

  • Yinping Z, Yi J, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials. Meas Sci Technol 10:201–205

    Article  Google Scholar 

  • Zalba B, Marin J, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng 23:251–283

    Article  Google Scholar 

  • Zhang X, Fan Y, Tao X, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88(2–3):300–307

    Article  Google Scholar 

  • Zhang Y, Su Y, Zhu Y, Hu X (2001) A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems. Journal of Solar Energy Engineering 123:232–236

    Google Scholar 

  • Zhang H, Xu Q, Zhao Z, Zhang J, Sun Y, Sun L, Xu F, Sawada Y (2012) Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulations. Sol Energy 102:93–102

    Google Scholar 

  • Zhang P, Ma Z, Shi X, Xiao X (2014a) Thermal conductivity measurements of a phase change material slurry under the influence of phase change. Int J Thermal Sci 78:56–64

    Article  Google Scholar 

  • Zhang XR, Chen L, Wang T, Zhao Y (2014b) Characterization of thermal and hydrodynamics properties for microencapsulated phase change slurry. Energy Convers Manag 79:317–333

    Article  Google Scholar 

  • Zhou Y, Jiang Y, Liu F, Li Q (2016) Thermal conductivity and thermal mechanism of aluminium nanoparticles/octadecane composite phase change materials from molecular dynamics simulations and experimental study. J Ovonic Res 12(2):49–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Kumar .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kumar, N., Banerjee, D. (2017). Phase Change Materials. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_53-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics