Skip to main content

Enhancement of Convective Heat Transfer

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 453 Accesses

Abstract

An extended review of heat transfer enhancement in single-phase forced convection, also referred to as augmentation and intensification of heat transfer, is presented. A variety of techniques and devices have been developed in the literature, which are broadly categorized as passive or active techniques. The former, and particularly those that have provided more viable industrial usage, are evaluated in this review, and their thermal and hydrodynamic performance characteristics are highlighted. In many cases, to aid the heat exchanger or thermal device designer, generalized correlations that predict the respective performance have been recommended. Also, some aspects of the performance of a select and potentially viable active techniques as well as the use of compound enhancement, where more than one method is used together, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bartoli C, Baffigi F (2010) Heat transfer enhancement from a circular cylinder to distilled water by ultrasonic waves at different subcooling degrees. In: Proceedings of the international heat transfer conference. ASME, Washinton, DC/New York. Paper IHTC14-22773

    Google Scholar 

  • Bergles AE (1998) Techniques to enhance heat transfer. In: Rohsenow WM, Hartnett JP, Cho YI (eds) Handbook of heat transfer, 3rd edn. McGraw-Hill, New York. p Ch. 11

    Google Scholar 

  • Bergles AE (1999) Enhanced heat transfer: endless frontier, or mature and routine? J Enhanc Heat Transf 6(2–4):79–88

    Article  Google Scholar 

  • Bergles AE (2000) New frontiers in enhanced heat transfer. In: Manglik RM, Ravigururajan TS, Muley A, Papar RA, Kim J (eds) Advances in enhanced heat transfer – 2000. ASME IMECE/ASME, Orlando/New York, pp 1–8

    Google Scholar 

  • Bergles AE, Manglik RM (2013) Current progress and new developments in enhanced heat and mass transfer. J Enhanc Heat Transf 20(1):1–15

    Article  Google Scholar 

  • Bergles AE, Nirmalan V, Junkhan GH, Webb RL (1983) Bibliography on augmentation of convective heat and mass transfer – II. Iowa State University, Ames

    Book  Google Scholar 

  • Bergles AE, Jensen MK, Somerscales EFC, Manglik RM (1991) Literature review of heat transfer enhancement technology for heat exchangers in gas-fired applications. Gas Research Institute, Chicago

    Google Scholar 

  • Bishara F, Jog MA, Manglik RM (2009) Computational simulation of swirl enhanced flow and heat transfer in a twisted oval tube. J Heat Transf 131(8):080902–080901

    Article  Google Scholar 

  • Bishara F, Jog MA, Manglik RM (2013) Heat transfer enhancement due to swirl effects in oval tubes twisted about their longitudinal Axis. J Enhanc Heat Transf 20(4):289–304

    Article  Google Scholar 

  • Carnavos TC (1979) Cooling air in turbulent flow with internally finned tubes. Heat Transfer Eng 1(2):41–46

    Article  Google Scholar 

  • Champagne PR, Bergles AE (2011) Development and testing of a novel, variable-roughness technique to enhance, on demand, heat transfer in a single-phase heat exchanger. J Enhanc Heat Transf 8(5):341–352

    Article  Google Scholar 

  • Chang YJ, Wang CC (1997) A generalized heat transfer correlation for louver fin geometry. Int J Heat Mass Transf 40:533

    Article  Google Scholar 

  • Chhabra RP, Richardson JF (1999) Non-Newtonian flow in the process industries: fundamentals and engineering applications. Butterworth-Heinemann, Oxford, UK

    Google Scholar 

  • Collins WM, Dennis SCR (1975) The steady motion of a viscous fluid in a curved tube. Q J Mech Appl Math 28:133–156

    Article  MATH  Google Scholar 

  • Dean WR (1927) Note on the motion of a fluid in a curved pipe. Philos Mag 4(7):208–233

    Article  MATH  Google Scholar 

  • Dean WR (1928) The stream line motion of fluid in a curved pipe. Philos Mag 5(7):673–695

    Article  Google Scholar 

  • Dippery DF, Sabersky RH (1963) Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int J Heat Mass Transf 6:329–353

    Article  Google Scholar 

  • Dzyubenko BV, Dreitser GA (1986) Heat transfer and fluid friction in bundles of twisted tubes. J Eng Phys 50(6):611–617

    Article  Google Scholar 

  • Fiebig M (1995) Vortex generators for compact heat exchangers. J Enhanc Heat Transf 2(1–2):43–61

    Article  Google Scholar 

  • Fiebig M, Kallweit P, Mitra N, Tiggelbeck S (1991) Heat transfer enhancement and drag by longitudinal vortex generators in channel flow. Exp Thermal Fluid Sci 4(1):103–114

    Article  Google Scholar 

  • Filonenko GK (1954) Hydraulic resistance in pipes (in Russian). Teploenergetika 1(4):40–44

    Google Scholar 

  • Focke WW, Knibbe PG (1986) Flow visualization in parallel-plate ducts with corrugated walls. J Fluid Mech 165:73–77

    Article  Google Scholar 

  • Fraas AP (1989) Heat exchanger design, 2nd edn. Wiley, New York

    Google Scholar 

  • Fujii M, Seshimo Y, Ueno S, Yamanaka G (1989) Forced air heat sink with new enhanced fins. Heat Transf Jpn Res 18(6):53–65

    Google Scholar 

  • Gnielinski V (1986) Correlations for the pressure drop in helically coiled tubes. Int Chem Eng 26(1):36–44

    Google Scholar 

  • Han J-C, Huang JJ, Lee CP (1993) Augmented heat transfer in square channels with wedge-shaped and delta-shaped turbulence promoters. J Enhanc Heat Transf 1(1):37–52

    Article  Google Scholar 

  • Huzayyin OA, Jog MA, Manglik RM (2010) Low Reynolds number air-flow heat transfer in trapezoidally corrugated perforated plate-fin ducts. ASHRAE Trans 116(2):339–346

    Google Scholar 

  • Junkhan GH, Bergles AE, Nirmalan V, Ravigururajan TS (1985) Investigation of turbulators for fire tube boilers. J Heat Transf 107(2):354–360

    Article  Google Scholar 

  • Kays WM, London AL (1998) Compact heat exchangers, 3rd edn. Krieger Publishing Company, Malabar

    Google Scholar 

  • Kenning DBR, Kao YS (1972) Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillarity. Int J Heat Mass Transf 15:1709–1718

    Article  Google Scholar 

  • Kraus AD, Aziz A, Welty J (2001) Extended surface heat transfer. Wiley, New York

    Google Scholar 

  • Kreith F, Manglik RM, Bohn MS (2011) Principles of heat transfer, 7th edn. Cengage Learning, Stamford

    Google Scholar 

  • Lokshin VA, Fomina VN (1978) Correlation of experimental data on finned tube bundles. Teploenergetika 6:36–39

    Google Scholar 

  • Luo L, Wang C, Wang L, Sundén B, Wang S (2015) Computational investigation of dimple effects on heat transfer and friction factor in a lamilloy cooling structure. J Enhanc Heat Transf 22(2):147–175

    Article  Google Scholar 

  • Manglik RM (2003) Heat transfer enhancement. In: Bejan A, Kraus AD (eds) Heat transfer handbook. Wiley, Hoboken. p Ch. 14

    Google Scholar 

  • Manglik RM (2016) Heat transfer enhancement. In: Chhabra RP (ed) CRC handbook of thermal engineering 2e. CRC Press, Boca Raton. p Ch. 4

    Google Scholar 

  • Manglik RM, Bergles AE (1992) Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts. Wärme- und Stoffübertragung 27(4):249–257

    Article  Google Scholar 

  • Manglik RM, Bergles AE (1993a) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part I – laminar flows. J Heat Transf 115(4):881–889

    Article  Google Scholar 

  • Manglik RM, Bergles AE (1993b) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II – transition and turbulent flows. J Heat Transf 115(4):890–896

    Article  Google Scholar 

  • Manglik RM, Bergles AE (1995) Heat transfer and pressure drop correlations for the rectangular offset-strip-fin compact heat exchanger. Exp Thermal Fluid Sci 10(2):171–180

    Article  Google Scholar 

  • Manglik RM, Bergles AE (2002) Swirl flow heat transfer and pressure drop with twisted-tape inserts. In: Hartnett JP, Irvine TF, Cho YI, Greene GA (eds) Advances in heat transfer, vol 36. Academic, New York, pp 183–266

    Google Scholar 

  • Manglik RM, Bergles AE (2004) Enhanced heat and mass transfer in the new millennium: a review of the 2001 literature. J Enhanc Heat Transf 11(2):87–118

    Article  Google Scholar 

  • Manglik RM, Bergles AE (2013) Characterization of twisted-tape-induced helical swirl flows for enhancement of forced convective heat transfer in single-phase and two-phase flows. J Therm Sci Eng Appl 5(2):021010. (021011–021012). https://doi.org/10.1115/1.4023935

  • Manglik RM, Fang P (2002) Thermal processing of viscous non-Newtonian fluids in annular ducts: effects of power-law rheology, duct eccentricity, and thermal boundary conditions. Int J Heat Mass Transf 45(4):803–814

    Article  MATH  Google Scholar 

  • Manglik RM, Jog MA (2009) Molecular-to-large-scale heat transfer with multiphase interfaces: current status and new directions. J Heat Transf 131(12):121001. (121001–121011)

    Article  Google Scholar 

  • Manglik RM, Kraus AD (1996) Process, enhanced and multiphase heat transfer. Begell House, New York

    Google Scholar 

  • Manglik RM, Prusa J (1995) Viscous dissipation in non-Newtonian flows: implications for the nusselt number. J Thermophys Heat Transf 9(4):733–742

    Article  Google Scholar 

  • Manglik RM, Maramraju S, Bergles AE (2001) The scaling and correlation of low Reynolds number swirl flows and friction factors in circular tubes with twisted-tape inserts. J Enhanc Heat Transf 8(6):383–395

    Article  Google Scholar 

  • Manglik RM, Zhang J, Muley A (2005) Low Reynolds number forced convection in three-dimensional wavy-plate-fin compact channels: fin density effects. Int J Heat Mass Transf 48(8):1439–1449

    Article  MATH  Google Scholar 

  • Manglik RM, Huzayyin OA, Jog MA (2011) Fin effects in flow channels of plate-fin compact heat exchanger cores. J Therm Sci Eng Appl 3(4):041004. (041001–041009)

    Article  Google Scholar 

  • Manglik RM, Patel P, Jog MA (2012) Swirl-enhanced forced convection through axially twisted rectangular ducts – part 2, heat transfer. J Enhanc Heat Transf 19(5):437–450

    Article  Google Scholar 

  • Manglik RM, Bergles AE, Dongaonkar AJ, Rajendran S (2013) Limitations of compiling the global literature on enhanced heat and mass transfer. J Enhanc Heat Transf 20(1):83–92

    Article  Google Scholar 

  • Manlapaz RL, Churchill SW (1980) Fully developed laminar flow in a helically coiled tube of finite pitch. Chem Eng Commun 7:57–78

    Article  Google Scholar 

  • Manlapaz RL, Churchill SW (1981) Fully developed laminar convection from a helical coil. Chem Eng Commun 9:185–200

    Article  Google Scholar 

  • Marner WJ, Bergles AE (1978) Augmentation of Tubeside laminar flow heat transfer by means of twisted-tape inserts, static-mixer inserts, and internally finned tubes. In: International heat transfer conference, heat transfer 1978. Hemisphere, Washington, DC, pp 583–588

    Google Scholar 

  • Marner WJ, Bergles AE, Chenoweth JM (1983) On the presentation of performance data for enhanced tubes used in shell-and-tube heat exchangers. J Heat Transf 105:358–365

    Article  Google Scholar 

  • Masliyah JH, Nandakumar K (1977) Fluid flow and heat transfer in internally finned helical coils. Can J Chem Eng 55:27 36

    Google Scholar 

  • Metwally HM, Manglik RM (2004) Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int J Heat Mass Transf 47(10–11):2283–2292

    Article  Google Scholar 

  • Mishra P, Gupta SN (1979) Momentum transfer in curved pipes, 1. Newtonian fluids; 2. Non-Newtonian fluids. Ind Eng Chem Process Des Dev 18:130–142

    Article  Google Scholar 

  • Mori Y, Nakayama W (1965) Study on forced convective heat transfer in curved pipes (1st report, laminar region). Int J Heat Mass Transf 8:67–82

    Article  MATH  Google Scholar 

  • Mori Y, Nakayama W (1967) Study on forced convective heat transfer in curved pipes (3rd report, theoretical analysis under the condition of uniform wall temperature and practical formulae). Int J Heat Mass Transf 10:681–695

    Article  Google Scholar 

  • Muley A, Manglik RM (2000) Enhanced thermal-hydraulic performance optimization of chevron plate heat exchangers. Int J Heat Exch 1(1):3–18

    Google Scholar 

  • Nandakumar K, Masliyah JH (1986) Swirling flow and heat transfer in coiled and twisted pipes. In: Mujumdar AS, Mashelkar RA (eds) Advances in transport processes, vol IV. Wiley Eastern, New Delhi, pp 49–112

    Google Scholar 

  • Ngo TL, Kato Y, Nikitin K, Ishizuka T (2007) Heat transfer and pressure drop correlations of microchannel heat exchangers with S-shaped and zigzag fins for carbon dioxide cycles. Exp Thermal Fluid Sci 32(2):560–570

    Article  Google Scholar 

  • Nikuradse J (1933) Strömungsgesetze in rauhen Rohren. Forsch Arb Ing-Wes, No 361 (English translation as NACA TM 1292, 1965)

    Google Scholar 

  • Nishimura T, Bian Y, Kunitsugu K, Morega AM (2003) Fluid flow and mass transfer in a sinusoidal wavy-walled tube at moderate Reynolds numbers. Heat Transf Asian Res 32(7):650–661

    Article  Google Scholar 

  • Oliver DR, Shoji Y (1992) Heat transfer enhancement in round tubes using three different tube inserts: non-Newtonian liquids. Chem Eng Sci Des 70(6):558–564

    Google Scholar 

  • Park H, Kim S (2010) Thermal performance improvement of a heat sink with piezoelectric vibrating fins. In: Proceedings of the international heat transfer conference. ASME, Washington, DC/New York. pp Paper IHTC14-22552

    Google Scholar 

  • Patel P, Manglik RM, Jog MA (2012) Swirl-enhanced forced convection through axially twisted rectangular ducts – part 1, fluid flow. J Enhanc Heat Transf 19(5):423–436

    Article  Google Scholar 

  • Prusa J, Manglik RM (1994) Asymptotic and numerical solutions for thermally developing flows of Newtonian and non-Newtonian fluids in circular tubes. Numer Heat Transfer Part A 26(2):199–217

    Article  Google Scholar 

  • Prusa J, Yao LS (1982) Numerical solution for fully developed flow in heated curved tubes. J Fluid Mech 123(Oct):503–522

    Article  MATH  Google Scholar 

  • Ravigururajan TS, Bergles AE (1994) Visualization of flow phenomena near enhanced surfaces. J Heat Transf 116(1):54–57

    Article  Google Scholar 

  • Ravigururajan TS, Bergles AE (1995) Prandtl number influence on heat transfer enhancement in turbulent flow of water at low temperatures. J Heat Transf 117(2):276–282

    Article  Google Scholar 

  • Ravigururajan TS, Bergles AE (1996) Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Exp Thermal Fluid Sci 13(1):55–70

    Article  Google Scholar 

  • Rush TA, Newell TA, Jacobi AM (1999) An experimental study of flow and heat transfer in sinusoidal wavy passages. Int J Heat Mass Transf 42:1541–1553

    Article  Google Scholar 

  • Saunders EAD (1988) Heat exchangers: selection, design and construction. Longman Scientific & Technical, Harlow

    Google Scholar 

  • Solano JP, Garcia A, Vicente PG, Viedma A (2011) Performance evaluation of a zero-fouling reciprocating scraped-surface heat exchanger. Heat Transf Eng 32(3–4):331–338

    Article  Google Scholar 

  • Srinivasan PS, Nandapurkar SS, Holland FA (1968) Pressure drop and heat transfer in coils. Chem Eng 218:113–119

    Google Scholar 

  • Sundén B (1999) Enhancement of convective heat transfer in rib-roughened rectangular ducts. J Enhanc Heat Transf 6(2–4):89–103

    Article  Google Scholar 

  • Tamari M, Nishikawa K (1976) The stirring effect of bubbles upon the heat transfer to liquids. Heat Transf Jpn Res 5(2):31–44

    Google Scholar 

  • Taylor GI (1929) The criterion for turbulence in curved pipes. Proc R Soc A 124:243–249

    Article  MATH  Google Scholar 

  • Vyas S, Manglik RM, Jog MA (2010) Visualization and characterization of lateral swirl flow structure in sinusoidal corrugated-plate channels. J Flow Vis Image Process 17(4):281–296

    Article  Google Scholar 

  • Wang C-C (2000) Technology review – a survey of recent patents of fin-and-tube heat exchangers. J Enhanc Heat Transf 7(5):333–345

    Article  Google Scholar 

  • Wang C-C, Lee W-S, Sheu W-J, Liaw J-S (2001) Empirical airside correlations of fin-and-tube heat exchangers under dehumidifying conditions. Int J Heat Exch II(2):151–178

    Google Scholar 

  • Watkinson AP, Miletti DC, Kubanek GR (1975) Heat transfer and pressure drop of internally finned tubes in laminar oil flows. ASME, New York

    Google Scholar 

  • Webb RL, Bergles AE (1983) Performance evaluation criteria for selection of heat transfer surface geometries used in low Reynolds number heat exchangers. In: Kakaç S, Shah RK, Bergles AE (eds) Low Reynolds number flow heat exchangers. Hemispherre, Washington, DC, pp 735–752

    Google Scholar 

  • Webb RL, Kim N-H (2005) Principles of enhanced heat transfer, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Webb RL, Eckert ERG, Goldstein RJ (1971) Heat transfer and friction in tubes with repeated-rib roughness. Int J Heat Mass Transf 14:601–618

    Article  Google Scholar 

  • Webb RL, Exckert ERG, Goldstein RJ (1972) Generalized heat transfer and friction correlations for tubes with repeated-rib roughness. Int J Heat Mass Transf 15:180–184

    Article  Google Scholar 

  • Wright LM, Han J-C (2014) Heat transfer enhancement for turbine blade internal cooling. J Enhanc Heat Transf 21(2–3):111–140

    Article  Google Scholar 

  • Yerra KK, Manglik RM, Jog MA (2006) Optimization of heat transfer enhancement in single-phase tubeside flows with twisted-tape inserts. Int J Heat Exch 8(1):117–138

    Google Scholar 

  • Zhang J, Kundu J, Manglik RM (2004) Effect of fin waviness and spacing on the lateral vortex structure and laminar heat transfer in wavy-plate-fin cores. Int J Heat Mass Transf 47(8–9):1719–1730

    Article  Google Scholar 

  • Zimparov V, Petkov VM, Bergles AE (2012) Performance characteristics of deep corrugated tubes with twisted-tape inserts. J Enhanc Heat Transf 19(1):1–11

    Article  Google Scholar 

  • Žukauskas A (1989) High-performance single-phase heat exchangers. Hemisphere, New York

    Google Scholar 

Download references

Acknowledgments

Partial support from ARPA-E, US Department of Energy, particularly for the evaluation of convective enhancement in plate-fin and tube-fin flows, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj M. Manglik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Manglik, R.M. (2017). Enhancement of Convective Heat Transfer. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics