Skip to main content

Classification of Hydrocephalus

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus

Abstract

The contemporary classification of hydrocephalus has resulted from clinical and basic science research using new technology and scientific endeavors. The classification is based on the assumption that all hydrocephalus results from a restriction of flow from the point of production of cerebrospinal fluid (CSF) within the cerebral ventricles and its point of absorption eventually into the systemic circulation. The point of restriction model was the subject of debate among a group of experts in the field of basic science and clinical care.

The CSF system can be seen as a hydraulic circuit with specific points of restriction of flow. The identified points of restriction are the foramina of Monro, the aqueduct of Sylvius, the exit foramina of the fourth ventricle, passage of CSF from the spinal to cortical subarachnoid space, the final pathway of CSF absorption, and when the skull is distensible the venous outflow of the dural venous sinuses. It is of note that venous hypertension can only lead to hydrocephalus if the cranium is distensible.

Each of these points of flow restriction is caused by a limited number of pathologies. Recognizing these points of flow restriction can lead to a variety of treatment options. One specific outcome related to the case of what has been called “communicating” hydrocephalus. In reality this form of hydrocephalus rarely results from a problem of terminal absorptive restriction but from a restriction of flow between the spinal subarachnoid and cortical subarachnoid spaces. In this situation, the patient may be an excellent candidate for endoscopic third ventriculostomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Beni-Adani L, Biani N, Ben-Sirah L, Constantini S (2006) The occurrence of obstructive vs absorptive hydrocephalus in newborns and infants: relevance to treatment choices. Childs Nerv Syst 22(12):1543–1563

    Article  PubMed  Google Scholar 

  • Dandy WE (1919) Experimental Hydrocephalus. Ann Surg 70:129–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel M, Carmel PW, Chutorian AM (1979) Increased intraventricular pressure without ventriculomegaly in children with shunts: “normal volume” hydrocephalus. Neurosurgery 5(5):549–552

    Article  CAS  PubMed  Google Scholar 

  • Gangemi M, Maiuri F, Naddeo M, Godano U, Mascari C, Broggi G, Ferroli P (2008) Endoscopic third ventriculostomy in idiopathic normal pressure hydrocephalus: an Italian multicenter study. Neurosurgery 63(1):62–67; discussion 67–69

    Article  PubMed  Google Scholar 

  • Green MA, Bilston LE, Sinkus R (2008) In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed 21(7):755–764

    Article  PubMed  Google Scholar 

  • Johnston I, Teo C (2000) Disorders of CSF hydrodynamics. Childs Nerv Syst 16(10–11):776–799

    Article  CAS  PubMed  Google Scholar 

  • Karahalios DG, Rekate HL, Khayata MH, Apostolides PJ (1996) Elevated intracranial venous pressure as a universal mechanism in pseudotumor cerebri of varying etiologies. Neurology 46(1):198–202

    Article  CAS  PubMed  Google Scholar 

  • Linder M, Diehl JT, Sklar FH (1981) Significance of postshunt ventricular asymmetries. J Neurosurg 55(2):183–186

    Article  CAS  PubMed  Google Scholar 

  • McNatt SA, Kim A, Hohuan D, Krieger M, McComb JG (2008) Pediatric shunt malfunction without ventricular dilatation. Pediatr Neurosurg 44(2):128–132

    Article  PubMed  Google Scholar 

  • Mori K (1990) Hydrocephalus – revision of its definition and classification with special reference to “intractable infantile hydrocephalus”. Childs Nerv Syst 6(4):198–204

    Article  CAS  PubMed  Google Scholar 

  • Nadkarni T, Rekate HL, Wallace D (2004) Resolution of pseudotumor cerebri after bariatric surgery for related obesity. Case report. J Neurosurg 101(5):878–880

    Article  PubMed  Google Scholar 

  • Nagra G, Li J, McAllister JP 2nd, Miller J, Wagshul M, Johnston M (2008) Impaired lymphatic cerebrospinal fluid absorption in a rat model of kaolin-induced communicating hydrocephalus. Am J Physiol Regul Integr Comp Physiol 294(5):R1752–R1759

    Article  CAS  PubMed  Google Scholar 

  • Nugent GR, Al-Mefty O, Chou S (1979) Communicating hydrocephalus as a cause of aqueductal stenosis. J Neurosurg 51(6):812–818

    Article  CAS  PubMed  Google Scholar 

  • Nulsen FE, Leung A, Fleming DG, Lorig RJ, Bettice JA, Donlin KA, Ko WH (1980) Chronic intracranial pressure monitoring by telemetry: clinical experience. Ann Biomed Eng 8(4–6): 505–513

    Article  CAS  PubMed  Google Scholar 

  • Oi S (2011) Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Childs Nerv Syst 27(10):1523–1533

    Article  PubMed  Google Scholar 

  • Olivero WC, Asner N (1992) Occlusion of the sagittal sinus in craniectomized rabbits. Childs Nerv Syst 8(6):307–309

    Article  CAS  PubMed  Google Scholar 

  • Pudenz RH (1981) The surgical treatment of hydrocephalus – an historical review. Surg Neurol 15(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Raimondi AJ (1994) A unifying theory for the definition and classification of hydrocephalus. Childs Nerv Syst 10(1):2–12

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff J, Shulman K, Fishman RA (1960) Hydrocephalus: a review of etiology and treatment. J Pediatr 56:399–411

    Article  CAS  PubMed  Google Scholar 

  • Rekate HL (1980) Closed-loop control of intracranial pressure. Ann Biomed Eng 8(4–6):515–522

    Article  CAS  PubMed  Google Scholar 

  • Rekate H (2000) Hydrocephalus: classification and pathophysiology. In: McLone DG (ed) Pediatric neurosurgery: surgery of the developing nervous system, 4th edn. WB Saunders, Philadelphia, pp 253–295

    Google Scholar 

  • Rekate HL (2007) Longstanding overt ventriculomegaly in adults: pitfalls in treatment with endoscopic third ventriculostomy. Neurosurg Focus 22(4):E6

    PubMed  Google Scholar 

  • Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res 5:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16(1):9–15

    Article  PubMed  Google Scholar 

  • Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 27(10):1535–1541

    Article  PubMed  PubMed Central  Google Scholar 

  • Rekate HL, Erwood S, Brodkey JA, Chizeck HJ, Spear T, Ko W, Montague F (1985) Etiology of ventriculomegaly in choroid plexus papilloma. Pediatr Neurosci 12(4–5):196–201

    Article  PubMed  Google Scholar 

  • Rekate HL, Brodkey JA, Chizeck HJ, el Sakka W, Ko WH (1988) Ventricular volume regulation: a mathematical model and computer simulation. Pediatr Neurosci 14(2):77–84

    Article  CAS  PubMed  Google Scholar 

  • Sainte-Rose C, LaCombe J, Pierre-Kahn A, Renier D, Hirsch JF (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60(4):727–736

    Article  CAS  PubMed  Google Scholar 

  • Siomin V, Cinalli G, Grotenhuis A, Golash A, Oi S, Kothbauer K, Weiner H, Roth J, Beni-Adani L, Pierre-Kahn A, Takahashi Y, Mallucci C, Abbott R, Wisoff J, Constantini S (2002) Endoscopic third ventriculostomy in patients with cerebrospinal fluid infection and/or hemorrhage. J Neurosurg 97(3):519–524

    Article  PubMed  Google Scholar 

  • Spertell RB (1980) The response of brain to transient elevations in intraventricular pressure. J Neurol Sci 48(3):343–352

    Article  CAS  PubMed  Google Scholar 

  • Vanneste J, Augustijn P, Davies GA, Dirven C, Tan WF (1992) Normal-pressure hydrocephalus. Is cisternography still useful in selecting patients for a shunt? Arch Neurol 49(4):366–370

    Article  CAS  PubMed  Google Scholar 

  • Warf BC (2007) Endoscopic third ventriculostomy and choroid plexus cauterization for pediatric hydrocephalus. Clin Neurosurg 54:78–82

    PubMed  Google Scholar 

  • Yamada S, Goto T, McComb JG (2013) Use of a spin-labeled cerebrospinal fluid magnetic resonance imaging technique to demonstrate successful endoscopic fenestration of an enlarging symptomatic cavum septi pellucidi. World Neurosurg 80(3–4):436.e415–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Rekate .

Editor information

Editors and Affiliations

Appendix

Appendix

Members of committee to produce a consensus on the definition and classification of hydrocephalus (Rekate 2008)

Osamu Sato

MD

Tokyo, Japan

Shizuo Oi

MD, PhD

Tokyo, Japan

Charles Teo

MD

Sydney, Australia

John Pickard

MD

Cambridge, UK

Marion Walker

MD

Salt Lake City, UT

J. Patrick McAllister

PhD

St. Louis, MO

Gordon McComb

MD

Los Angeles, CA

Martina Messing-Yünger

MD

Sankt Augustin, Germany

Michael Pollay

MD

Sun City West, AZ

Spyros Sgouros

MD

Athens, Greece

Petra Klinge

MD, PhD

Providence, RI

Thomas Brinker

MD, PhD

Providence, RI

Conrad Johansson

PhD

Providence, RI

Concezio Di Rocco

MD

Rome, Italy

Harold L Rekate

MD

Great Neck, NY

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rekate, H.L. (2018). Classification of Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics