Skip to main content

Pathology of Pediatric Hydrocephalus

  • Living reference work entry
  • First Online:

Abstract

This chapter focuses on the pathology of hydrocephalus in children. With respect to causes of hydrocephalus, an anatomical approach is used highlighting abnormalities that can impede cerebrospinal fluid movements at the interventricular foramina, the cerebral aqueduct, the fourth ventricular apertures, and the subarachnoid space. Inflammatory processes, some very subtle, secondary to infections or hemorrhage can damage the ependymal layer and allow fusion of adjacent brain surfaces or cause collagenous scarring in the subarachnoid space. Neoplasms and other lesions that can compress the cerebrospinal fluid pathways are briefly summarized. Several complex malformations of the posterior fossa (including Chiari type 2, Meckel-Gruber, Dandy-Walker) are also associated with hydrocephalus. Ventricular enlargement, when sufficiently severe or rapid, can cause secondary damage in the brain. Early-onset hydrocephalus (e.g., in fetuses or premature infants) might alter subsequent brain development. Periventricular axon damage, which is caused by a combination of mechanical distortion and blood flow alterations, is preventable by shunting but is not reversible. Most changes in the neuron cell body are secondary to the axonal damage. The histopathology of shunt obstruction is briefly reviewed. In conjunction with in vivo imaging and animal experimentation, there remains much to be learned from autopsies, explanted cerebrospinal fluid shunts, and possibly brain biopsies from hydrocephalic children.

This is a preview of subscription content, log in via an institution.

References

  • Abderrahmen K, Aouidj ML, Kallel J, Zammel I, Khaldi MM (2008) Hydrocephalus due to non tumoral stenosis of foramens of Monro: report of four cases. Neurochirurgie 54:72–78

    Article  PubMed  CAS  Google Scholar 

  • Adeeb N, Deep A, Griessenauer CJ et al (2013) The intracranial arachnoid mater: a comprehensive review of its history, anatomy, imaging, and pathology. Childs Nerv Syst 29:17–33

    Article  PubMed  Google Scholar 

  • Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C et al (2013) Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol 126:427–442

    Article  PubMed  CAS  Google Scholar 

  • Ahdab-Barmada M, Claassen D (1990) A distinctive triad of malformations of the central nervous system in the Meckel-Gruber syndrome. J Neuropathol Exp Neurol 49:610–620

    Article  PubMed  CAS  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  PubMed  CAS  Google Scholar 

  • Alvarez LA, Kato T, Llena JF, Hirano A (1987) Ependymal foldings and other related ependymal structures in the cerebral aqueduct and fourth ventricle of man. Acta Anat (Basel) 129:305–309

    Article  CAS  Google Scholar 

  • Ang BT, Steinbok P, Cochrane DD (2006) Etiological differences between the isolated lateral ventricle and the isolated fourth ventricle. Childs Nerv Syst 22:1080–1085

    Article  PubMed  Google Scholar 

  • Arshad A, Vose LR, Vinukonda G et al (2016) Extended production of cortical interneurons into the third trimester of human gestation. Cereb Cortex 26:2242–2256

    Article  PubMed  Google Scholar 

  • Bakker EN, Bacskai BJ, Arbel-Ornath M et al (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36:181–194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barr ML (1948) Observations on the foramen of Magendie in a series of human brains. Brain 71:281–289

    Article  PubMed  CAS  Google Scholar 

  • Barry A, Patten BM, Stewart BH (1957) Possible factors in the development of the Arnold-Chiari malformation. J Neurosurg 14:285–301

    Article  PubMed  CAS  Google Scholar 

  • Beaumont TL, Limbrick DD Jr, Rich KM, Wippold FJ 2nd, Dacey RG Jr (2016) Natural history of colloid cysts of the third ventricle. J Neurosurg 125:1–11

    Article  Google Scholar 

  • Beckett RS, Netsky MG, Zimmerman HM (1950) Developmental stenosis of the aqueduct of Sylvius. Am J Pathol 26:755–787

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bell JE, Gordon A, Maloney AFJ (1980) The association of hydrocephalus and Arnold-Chiari malformation with spina bifida in the fetus. Neuropathol Appl Neurobiol 6:29–39

    Article  PubMed  CAS  Google Scholar 

  • Bruni JE, Del Bigio MR, Clattenburg RE (1985) Ependyma: normal and pathological. A review of the literature. Brain Res 356:1–19

    Article  PubMed  CAS  Google Scholar 

  • Bucchieri F, Farina F, Zummo G, Cappello F (2015) Lymphatic vessels of the dura mater: a new discovery? J Anat 227:702–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardoso ER, Del Bigio MR, Schroeder G (1989) Age-dependent changes of cerebral ventricular size. Part I: review of intracranial fluid collections. Acta Neurochir 97:40–46

    Article  PubMed  CAS  Google Scholar 

  • Castejon OJ (2004) Ultrastructural pathology of neuronal membranes in the oedematous human cerebral cortex. J Submicrosc Cytol Pathol 36:167–179

    PubMed  CAS  Google Scholar 

  • Castejon OJ (2015) Ultrastructural pathology of oligodendroglial cells in traumatic and hydrocephalic human brain edema: a review. Ultrastruct Pathol 39:359–368

    Article  PubMed  Google Scholar 

  • Castejon OJ, Arismendi GJ (2003) Morphological changes of dendrites in the human edematous cerebral cortex. A transmission electron microscopic study. J Submicrosc Cytol Pathol 35:395–413

    PubMed  CAS  Google Scholar 

  • Castejon OJ, Castejon HV, Castellao A (2001) Oligodendroglial cell damage and demyelination in infant hydrocephalus. An electron microscopic study. J Submicrosc Cytol Pathol 33:33–40

    PubMed  CAS  Google Scholar 

  • Cavallo C, Farago G, Broggi M, Ferroli P, Acerbi F (2015) Developmental venous anomaly as a rare cause of obstructive hydrocephalus: literature review and a case report. J Neurosurg Sci online 2015 Oct 06

    Google Scholar 

  • Caviness VS (1976) The Chiari malformations of the posterior fossa and their relation to hydrocephalus. Dev Med Child Neurol 18:103–116

    Article  PubMed  CAS  Google Scholar 

  • Caviness VS, Evrard P (1975) Occipital encephalocele: a pathologic and anatomic analysis. Acta Neuropathol 32:245–255

    Article  PubMed  Google Scholar 

  • Cesmebasi A, Loukas M, Hogan E, Kralovic S, Tubbs RS, Cohen-Gadol AA (2015) The Chiari malformations: a review with emphasis on anatomical traits. Clin Anat 28:184–194

    Article  PubMed  Google Scholar 

  • Chatterjee S, Chatterjee U (2011) Overview of post-infective hydrocephalus. Childs Nerv Syst 27:1693–1698

    Article  PubMed  Google Scholar 

  • Christian EA, Jin DL, Attenello F et al (2015) Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. J Neurosurg Pediatr 17:1–10

    Google Scholar 

  • Cinalli G, Spennato P, Nastro A et al (2011) Hydrocephalus in aqueductal stenosis. Childs Nerv Syst 27:1621–1642

    Article  PubMed  Google Scholar 

  • Cincinnati P, Neri ME, Valentini A (2000) Dandy-Walker anomaly in Meckel-Gruber syndrome. Clin Dysmorphol 9:35–38

    Article  PubMed  CAS  Google Scholar 

  • Dandy WE (1918) Extirpation of the choroid plexus of the lateral ventricles in communicating hydrocephalus. Ann Surg 68:569–579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Part 1. Experimental studies. Am J Dis Child 8:406–482

    Article  Google Scholar 

  • Dandy WE, Blackfan KD (1917) Internal hydrocephalus: second paper. Am J Dis Child 14:424–443

    Article  Google Scholar 

  • Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44

    Article  PubMed  CAS  Google Scholar 

  • de Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82:257–266

    Article  PubMed  Google Scholar 

  • Del Bigio MR (1993) Neuropathological changes caused by hydrocephalus. Acta Neuropathol (Berl) 85:573–585

    Article  Google Scholar 

  • Del Bigio MR (1995a) The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14:1–13

    Article  PubMed  Google Scholar 

  • Del Bigio MR (1995b) Ependymal reactions to injury. A review. J Neuropathol Exp Neurol 54:405–406

    Article  PubMed  Google Scholar 

  • Del Bigio MR (1998) Biological reactions to cerebrospinal fluid shunt devices: a review of the cellular pathology. Neurosurgery 42:319–325

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2001a) Future directions for therapy of childhood hydrocephalus: a view from the laboratory. Pediatr Neurosurg 34:172–181

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2001b) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2002) Neuropathological findings in a child with slit ventricle syndrome. Pediatr Neurosurg 37:148–151

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14:317–324

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2010a) Ependymal cells: biology and pathology. Acta Neuropathol 119:55–73

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2010b) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2011) Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 134:1344–1361

    Article  PubMed  Google Scholar 

  • Del Bigio MR (2014) Neuropathology of human hydrocephalus. In: Rigamonti D (ed) Adult hydrocephalus. Cambridge University Press, Cambridge, UK, pp 14–27

    Chapter  Google Scholar 

  • Del Bigio MR, Di Curzio DL (2016) Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Fluids Barriers CNS 13:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Del Bigio MR, Bruni JE, Fewer HD (1985) Human neonatal hydrocephalus. An electron microscopic study of the periventricular tissue. J Neurosurg 63:56–63

    Article  PubMed  Google Scholar 

  • Del Bigio MR, Wilson MJ, Enno T (2003) Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol 53:337–346

    Article  PubMed  Google Scholar 

  • Del Bigio MR, Khan OH, da Silva Lopes L, Juliet PA (2012) Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 71:274–288

    Article  PubMed  CAS  Google Scholar 

  • Di Curzio DL, Buist RJ, Del Bigio MR (2013) Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 248:112–128

    Article  PubMed  Google Scholar 

  • Docherty JG, Daly JC, Carachi R (1991) Encephaloceles – a review 1971–1990. Eur J Pediatr Surg 1:11–13

    Article  PubMed  Google Scholar 

  • Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):1–49

    Article  Google Scholar 

  • Dott NM (1927) A case of left unilateral hydrocephalus in an infant. Operation – cure. Brain 50:548–561

    Article  Google Scholar 

  • Drachman DA, Richardson EP (1961) Aqueductal narrowing, congenital and acquired: a critical review of the histologic criteria. Arch Neurol 5:552–559

    Article  Google Scholar 

  • Durfee SM, Kim FM, Benson CB (2001) Postnatal outcome of fetuses with the prenatal diagnosis of asymmetric hydrocephalus. J Ultrasound Med 20:263–268

    Article  PubMed  CAS  Google Scholar 

  • Elgamal EA (2012) Natural history of hydrocephalus in children with spinal open neural tube defect. Surg Neurol Int 3:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis MJ, Kazina CJ, Del Bigio MR, McDonald PJ (2008) Treatment of recurrent ventriculoperitoneal shunt failure associated with persistent cerebrospinal fluid eosinophilia and latex allergy by use of an “extracted” shunt. J Neurosurg Pediatr 1:237–239

    Article  PubMed  Google Scholar 

  • Emery JL (1964) Effect of continual decompression using Holter valve on weights of cerebral hemispheres in children with hydrocephalus and spina bifida cystica. Arch Dis Child 39:379–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emery JL (1965) Intracranial effects of long-standing decompression of the brain in children with hydrocephalus and meningomyelocele. Dev Med Child Neurol 7:302–309

    Article  PubMed  CAS  Google Scholar 

  • Emery JL (1968) Intra-hemispherical distances in congenital hydrocephalus associated with meningomyelocele. Dev Med Child Neurol 10(Suppl 15):21–29

    Google Scholar 

  • Emery JL (1974) Deformity of the aqueduct of Sylvius in children with hydrocephalus and myelomeningocele. Dev Med Child Neurol 16(Suppl 32):40–48

    PubMed  CAS  Google Scholar 

  • Emery JL, MacKenzie N (1973) Medullo-cervical dislocation deformity (Chiari II deformity) related to neurospinal dysraphism (meningomyelocele). Brain 96:155–162

    Article  PubMed  CAS  Google Scholar 

  • Emery JL, Staschak MC (1972) The size and form of the cerebral aqueduct in children. Brain 95:591–598

    Article  PubMed  CAS  Google Scholar 

  • Evans JA, Stranc LC, Kaplan P, Hunter AG (1989) VACTERL with hydrocephalus: further delineation of the syndrome(s). Am J Med Genet 34:177–182

    Article  PubMed  CAS  Google Scholar 

  • Faubel R, Westendorf C, Bodenschatz E, Eichele G (2016) Cilia-based flow network in the brain ventricles. Science 353:176–178

    Article  PubMed  CAS  Google Scholar 

  • Federative Committee on Anatomical Terminology, International Federation of Associations of Anatomists (1998) Terminologia anatomica. http://www.unifr.ch/ifaa/. accessed on 2018 June

  • Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39:84–90

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1961) Surface structures of the aqueduct and the ventricular walls: a morphologic, comparative and histochemical study. J Comp Neurol 116:229–247

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1962) A quantitative study of myelination in hydrocephalus. J Neuropathol Exp Neurol 21:645–648

    Article  PubMed  CAS  Google Scholar 

  • Friede RL (1989) Developmental neuropathology, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Fujimoto Y, Matsushita H, Plese JP, Marino R Jr (2004) Hydrocephalus due to diffuse villous hyperplasia of the choroid plexus. Case report and review of the literature. Pediatr Neurosurg 40:32–36

    Article  PubMed  Google Scholar 

  • Gadsdon DR, Variend S, Emery JL (1978) The effect of hydrocephalus upon the myelination of the corpus callosum. Z Kinderchir 25:311–319

    Google Scholar 

  • Gadsdon DR, Variend S, Emery JL (1979) Myelination of the corpus callosum. II. The effect of relief of hydrocephalus upon the processes of myelination. Z Kinderchir Grenzgeb 28:314–321

    PubMed  CAS  Google Scholar 

  • Gilbert JN, Jones KL, Rorke LB, Chernoff GF, James HE (1986) Central nervous system anomalies associated with meningomyelocele, hydrocephalus, and the Arnold-Chiari malformation: reappraisal of theories regarding the pathogenesis of posterior neural tube closure defects. Neurosurgery 18:559–564

    Article  PubMed  CAS  Google Scholar 

  • Gilles FH, Davidson RI (1971) Communicating hydrocephalus associated with deficient dysplastic parasagittal arachnoidal granulations. J Neurosurg 35:421–426

    Article  PubMed  CAS  Google Scholar 

  • Glees P, Hasan M (1990) Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev 13:231–242

    Article  PubMed  CAS  Google Scholar 

  • Glees P, Voth D (1988) Clinical and ultrastructural observations of maturing human frontal cortex. Part I (biopsy material of hydrocephalic infants). Neurosurg Rev 11:273–278

    Article  PubMed  CAS  Google Scholar 

  • Glees P, Hasan M, Voth D, Schwarz M (1989) Fine structural features of the cerebral microvasculature in hydrocephalic human infants: correlated clinical observations. Neurosurg Rev 12:315–321

    Article  PubMed  CAS  Google Scholar 

  • Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247–258

    CAS  Google Scholar 

  • Greenstone MA, Jones RWA, Dewar A, Neville BGR, Cole PJ (1984) Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child 59:481–482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerra MM, Henzi R, Ortloff A et al (2015) Cell junction pathology of neural stem cells is associated with ventricular zone disruption, hydrocephalus, and abnormal neurogenesis. J Neuropathol Exp Neurol 74:653–671

    Article  PubMed  Google Scholar 

  • Gunn TR, Mora JD, Becroft DM (1988) Congenital hydrocephalus secondary to prenatal intracranial haemorrhage. Aust N Z J Obstet Gynaecol 28:197–200

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez Y, Friede RL, Kaliney WJ (1975) Agenesis of arachnoid granulations and its relationship to communicating hydrocephalus. J Neurosurg 43:553–558

    Article  PubMed  CAS  Google Scholar 

  • Hanlo PW, Gooskens RJHM, Vanschooneveld M, Tulleken CAF, Vanderknaap MS, Faber JAJ, Willemse J (1997) The effect of intracranial pressure on myelination and the relationship with neurodevelopment in infantile hydrocephalus. Dev Med Child Neurol 39:286–291

    Article  PubMed  CAS  Google Scholar 

  • Harris CA, McAllister JP 2nd (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70:1589–1601

    Article  PubMed  Google Scholar 

  • Hart MN, Malamud N, Ellis WG (1972) The Dandy-Walker syndrome. A clinicopathological study based on 28 cases. Neurology 22:771–780

    Article  PubMed  CAS  Google Scholar 

  • Hasan M, Glees P (1990a) The fine structure of human cerebral perivascular pericytes and juxtavascular phagocytes: their possible role in hydrocephalic edema resolution. J Hirnforsch 31:237–249

    PubMed  CAS  Google Scholar 

  • Hasan M, Glees P (1990b) Ultrastructural features of the human frontal cortex neurons of maturing and hydrocephalic cerebrum. Arch Ital Anat Embriol 95:17–26

    PubMed  CAS  Google Scholar 

  • He X, Raichle ME, Yablonskiy DA (2012) Transmembrane dynamics of water exchange in human brain. Magn Reson Med 67(2):562–571

    Article  PubMed  CAS  Google Scholar 

  • Holden ST, Cox JJ, Kesterton I, Thomas NS, Carr C, Woods CG (2006) Fanconi anaemia complementation group B presenting as X linked VACTERL with hydrocephalus syndrome. J Med Genet 43:750–754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humphreys P, Muzumdar DP, Sly LE, Michaud J (2007) Focal cerebral mantle disruption in fetal hydrocephalus. Pediatr Neurol 36:236–243

    Article  PubMed  Google Scholar 

  • Ishak GE, Dempsey JC, Shaw DW et al (2012) Rhombencephalosynapsis: a hindbrain malformation associated with incomplete separation of midbrain and forebrain, hydrocephalus and a broad spectrum of severity. Brain 135:1370–1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivashchuk G, Loukas M, Blount JP, Tubbs RS, Oakes WJ (2015) Chiari III malformation: a comprehensive review of this enigmatic anomaly. Childs Nerv Syst 31:2035–2040

    Article  PubMed  Google Scholar 

  • Jellinger G (1986) Anatomopathology of non-tumoral aqueductal stenosis. J Neurosurg Sci 30:1–16

    PubMed  CAS  Google Scholar 

  • Jellinger K, Schwingshackl A (1973) Birth injury of the spinal cord. Report of two necropsy cases with several weeks survival. Neuropaediatrie 4:111–123

    Article  CAS  Google Scholar 

  • Johnson RT, Johnson KP (1969) Hydrocephalus as a sequela of experimental myxovirus infections. Exp Mol Pathol 10:68–80

    Article  PubMed  Google Scholar 

  • Johnson KJ, Cullen J, Barnholtz-Sloan JS et al (2014) Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer Epidemiol Biomark Prev 23:2716–2736

    Article  Google Scholar 

  • Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyvas AV, Kalamatianos T, Pantazi M, Lianos GD, Stranjalis G, Alexiou GA (2016) Maternal environmental risk factors for congenital hydrocephalus: a systematic review. Neurosurg Focus 41:E3

    Article  PubMed  Google Scholar 

  • Karachi C, Le Guerinel C, Brugieres P, Melon E, Decq P (2003) Hydrocephalus due to idiopathic stenosis of the foramina of Magendie and Luschka. Report of three cases. J Neurosurg 98:897–902

    Article  PubMed  Google Scholar 

  • Karch SB, Urich H (1972) Occipital encephalocele – morphological study. J Neurol Sci 15:89–112

    Article  PubMed  CAS  Google Scholar 

  • Karimy JK, Duran D, Hu JK et al (2016) Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. Neurosurg Focus 41:E10

    Article  PubMed  Google Scholar 

  • Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435

    Article  PubMed  CAS  Google Scholar 

  • Kondziolka D, Bilbao JM (1989) An immunohistochemical study of neuroepithelial (colloid) cysts. J Neurosurg 71:91–97

    Article  PubMed  CAS  Google Scholar 

  • Kosaki K, Ikeda K, Miyakoshi K et al (2004) Absent inner dynein arms in a fetus with familial hydrocephalus-situs abnormality. Am J Med Genet 129A:308–311

    Article  PubMed  Google Scholar 

  • Lach B, Scheithauer BW (1992) Colloid cyst of the third ventricle: a comparative ultrastructural study of neuraxis cysts and choroid plexus epithelium. Ultrastruct Pathol 16:331–349

    Article  PubMed  CAS  Google Scholar 

  • Lategan B, Chodirker BN, Del Bigio MR (2010) Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol 20:391–398

    Article  PubMed  Google Scholar 

  • Laurence KM (1964) The natural history of spina bifida cystica. Detailed analysis of 407 cases. Arch Dis Child 39:41–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazareff JA, Sadowinski S (1992) The probable role of hydrocephalus in the development of intraventricular septa. An observation of one case. Childs Nerv Syst 8:139–141

    Article  PubMed  CAS  Google Scholar 

  • Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 91:1117–1132

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein BW (1942) Distant neuroanatomic complications of spina bifida (spinal dysraphism): hydrocephalus, Arnold-Chiari deformity, stenosis of the aqueduct of Sylvius, etc.; pathogenesis and pathology. Arch Neurol Psychiatr 47:195–214

    Article  Google Scholar 

  • Logan CV, Abdel-Hamed Z, Johnson CA (2011) Molecular genetics and pathogenic mechanisms for the severe ciliopathies: insights into neurodevelopment and pathogenesis of neural tube defects. Mol Neurobiol 43:12–26

    Article  PubMed  CAS  Google Scholar 

  • Lomas FE, Dahlstrom JE, Ford JH (1998) VACTERL with hydrocephalus: family with X-linked VACTERL-H. Am J Med Genet 76:74–78

    Article  PubMed  CAS  Google Scholar 

  • Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  • Ma X, Bao J, Adelstein RS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B-ablated and mutated mice. Mol Biol Cell 18:2305–2312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacFarlane A, Maloney AF (1957) The appearance of the aqueduct and its relationship to hydrocephalus in the Arnold-Chiari malformation. Brain 80:479–491

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Vinukonda G, Vose LR et al (2013) Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci 33:411–423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masters CL (1978) Pathogenesis of the Arnold-Chiari malformation: the significance of hydrocephalus and aqueduct stenosis. J Neuropathol Exp Neurol 37:56–74

    Article  PubMed  CAS  Google Scholar 

  • Matsushima T, Rhoton AL, Lenkey C (1982) Microsurgery of the fourth ventricle: Part. 1. Microsurgical anatomy. Neurosurgery 11:631–667

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin JF, Loeser JD, Roberts TS (1997) Acquired hydrocephalus associated with superior vena cava syndrome in infants. Childs Nerv Syst 13:59–63

    Article  PubMed  CAS  Google Scholar 

  • Milhorat TH, Kotzen RM, Anzil AP (1994) Stenosis of central canal of spinal cord in man: incidence and pathological findings in 232 autopsy cases. J Neurosurg 80:716–722

    Article  PubMed  CAS  Google Scholar 

  • Miyan JA, Nabiyouni M, Zendah M (2003) Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol 81:317–328

    Article  PubMed  CAS  Google Scholar 

  • Mottolese C, Szathmari A, Beuriat PA (2015) Incidence of pineal tumours. A review of the literature. Neurochirurgie 61:65–69

    Article  PubMed  CAS  Google Scholar 

  • Nauta HJW, Dolan E, Yasargil MG (1983) Microsurgical anatomy of spinal subarachnoid space. Surg Neurol 19:431–437

    Article  PubMed  CAS  Google Scholar 

  • Nigri F, Gobbi GN, da Costa Ferreira Pinto PH, Simoes EL, Caparelli-Daquer EM (2016) Hydrocephalus caused by unilateral foramen of Monro obstruction: a review on terminology. Surg Neurol Int 7:S307–S313

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishio S, Morioka T, Suzuki S, Fukui M (2002) Tumours around the foramen of Monro: clinical and neuroimaging features and their differential diagnosis. J Clin Neurosci 9:137–141

    Article  PubMed  Google Scholar 

  • O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249

    Article  PubMed  Google Scholar 

  • Ogata H, Oka K, Mitsudome A (1992) Hydrocephalus due to acute aqueductal stenosis following mumps infection: report of a case and review of the literature. Brain Dev 14:417–419

    Article  PubMed  CAS  Google Scholar 

  • Oi S, Matsumoto S (1985) Pathophysiology of nonneoplastic obstruction of the foramen of Monro and progressive unilateral hydrocephalus. Neurosurgery 17:891–896

    Article  PubMed  CAS  Google Scholar 

  • Oi S, Ijichi A, Matsumoto S (1989) Immunohistochemical evaluation of neuronal maturation in untreated fetal hydrocephalus. Neurol Med Chir (Tokyo) 29:989–994

    Article  CAS  Google Scholar 

  • Olbrich H, Schmidts M, Werner C et al (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91:672–684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paez P, Batiz LF, Roales-Bujan R et al (2007) Patterned neuropathologic events occurring in hyh congenital hydrocephalic mutant mice. J Neuropathol Exp Neurol 66:1082–1092

    Article  PubMed  Google Scholar 

  • Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Phys Regul Integr Comp Phys 283:R869–R876

    CAS  Google Scholar 

  • Parker HL, Kernohan JW (1933) Stenosis of the aqueduct of Sylvius. Arch Neurol Psychiatr 29:538–560

    Article  Google Scholar 

  • Pasquier L, Marcorelles P, Loget P et al (2009) Rhombencephalosynapsis and related anomalies: a neuropathological study of 40 fetal cases. Acta Neuropathol 117:185–200

    Article  PubMed  Google Scholar 

  • Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72:26–35

    Article  PubMed  Google Scholar 

  • Pennybacker J, Russell DS (1943) Spontaneous ventricular rupture in hydrocephalus, with subtentorial cyst formation. J Neurol Psychiatry 6:38–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeiffer G, Friede RL (1984) Unilateral hydrocephalus from early developmental occlusion of one foramen of Monro. Acta Neuropathol 64:75–77

    Article  PubMed  CAS  Google Scholar 

  • Portnoy HD, Branch C, Castro ME (1994) The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv Syst 10:29–35

    Article  PubMed  CAS  Google Scholar 

  • Raimondi AJ, Clark SJ, McLone DG (1976) Pathogenesis of aqueductal occlusion in congenital murine hydrocephalus. J Neurosurg 45:66–77

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Sidman RL (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z Anat Entwicklungsgesch 129:53–82

    Article  PubMed  CAS  Google Scholar 

  • Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  PubMed  Google Scholar 

  • Rekate HL (2011) A consensus on the classification of hydrocephalus: its utility in the assessment of abnormalities of cerebrospinal fluid dynamics. Childs Nerv Syst 27:1535–1541

    Article  PubMed  PubMed Central  Google Scholar 

  • Rorke LB (1982) Pathology of perinatal brain injury. Raven Press, New York

    Google Scholar 

  • Rosman NP, Shands KN (1978) Hydrocephalus caused by increased intracranial venous pressure: a clinicopathological study. Ann Neurol 3:445–450

    Article  PubMed  CAS  Google Scholar 

  • Russell DS (1949) Observations on the pathology of hydrocephalus. Med Res Counc Spec Rep Ser 265:1–138

    Google Scholar 

  • Russell DS, Donald C (1935) The mechanism of internal hydrocephalus in spina bifida. Brain 58:203–215

    Article  Google Scholar 

  • Sainte-Rose C, LaCombe J, Pierre-Kahn A, Reiner D, Hirsch JF (1984) Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736

    Article  PubMed  CAS  Google Scholar 

  • Salmon JH (1970) Isolated unilateral hydrocephalus following ventriculoatrial shunt. J Neurosurg 32:219–226

    Article  PubMed  CAS  Google Scholar 

  • Schellinger D, Grant EG, Manz HJ, Patronas NJ, Uscinski RH (1986) Ventricular septa in the neonatal age group: diagnosis and considerations of etiology. Am J Neuroradiol 7:1065–1071

    PubMed  CAS  Google Scholar 

  • Schultz P, Leeds NE (1973) Intraventricular septations complicating neonatal meningitis. J Neurosurg 38:620–626

    Article  PubMed  CAS  Google Scholar 

  • Sival DA, Guerra M, den Dunnen WF, Batiz LF, Alvial G, Castaneyra-Perdomo A, Rodriguez EM (2011) Neuroependymal denudation is in progress in full-term human foetal spina bifida aperta. Brain Pathol 21:163–179

    Article  PubMed  CAS  Google Scholar 

  • Siyahhan B, Knobloch V, de Zelicourt D, Asgari M, Schmid Daners M, Poulikakos D, Kurtcuoglu V (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11:20131189

    Article  PubMed  PubMed Central  Google Scholar 

  • Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580

    Article  PubMed  CAS  Google Scholar 

  • Spennato P, Mirone G, Nastro A et al (2011) Hydrocephalus in Dandy-Walker malformation. Childs Nerv Syst 27:1665–1681

    Article  PubMed  Google Scholar 

  • Squier W, Lindberg E, Mack J, Darby S (2009) Demonstration of fluid channels in human dura and their relationship to age and intradural bleeding. Childs Nerv Syst 25:925–931

    Article  PubMed  CAS  Google Scholar 

  • St. Lawrence KS, Owen D, Wang DJ (2012) A two-stage approach for measuring vascular water exchange and arterial transit time by diffusion-weighted perfusion MRI. Magn Reson Med 67:1275–1284

    Article  PubMed  Google Scholar 

  • Starke RM, Cappuzzo JM, Erickson NJ, Sherman JH (2016) Pineal cysts and other pineal region malignancies: determining factors predictive of hydrocephalus and malignancy. J Neurosurg 127:1–6

    Google Scholar 

  • Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48

    Article  PubMed  CAS  Google Scholar 

  • Symss NP, Oi S (2013) Theories of cerebrospinal fluid dynamics and hydrocephalus: historical trend. J Neurosurg Pediatr 11:170–177

    Article  PubMed  Google Scholar 

  • Taggart JK, Walker AE (1942) Congenital atresia of the foramens of Luschka and Magendie. Arch Neurol Psychiatr 48:583–612

    Article  Google Scholar 

  • Taylor WJ, Hayward RD, Lasjaunias P, Britto JA, Thompson DN, Jones BM, Evans RD (2001) Enigma of raised intracranial pressure in patients with complex craniosynostosis: the role of abnormal intracranial venous drainage. J Neurosurg 94:377–385

    Article  PubMed  CAS  Google Scholar 

  • Torkildsen A (1948) Spontaneous rupture of the cerebral ventricles. J Neurosurg 5:327–339

    Article  PubMed  CAS  Google Scholar 

  • Tubbs RS, Hansasuta A, Stetler W et al (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331

    Article  PubMed  Google Scholar 

  • Tulipan N, Sutton LN, Bruner JP, Cohen BM, Johnson M, Adzick NS (2003) The effect of intrauterine myelomeningocele repair on the incidence of shunt-dependent hydrocephalus. Pediatr Neurosurg 38:27–33

    Article  PubMed  Google Scholar 

  • Tulipan N, Wellons JC, Thom EA et al (2015) Prenatal surgery for myelomeningocele and the need for cerebrospinal fluid shunt placement. J Neurosurg Pediatr 16:613–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull IM, Drake CG (1966) Membranous occlusion of the aqueduct of Sylvius. J Neurosurg 24:24–34

    Article  Google Scholar 

  • Uematsu Y, Komai N, Hirano A et al (1993) Cytokeratin immunohistochemical study of epithelial cysts in the central nervous system: with special reference to origins of colloid cyst of the third ventricle and Rathke’s cleft cyst in the sella. Noshuyo Byori 10:43–52

    PubMed  CAS  Google Scholar 

  • Vetsika EK, Bannister CM, Buckle AM, Miyan JA (1999) The effects of CSF blockage in early-onset hydrocephalus on the activity of the germinal epithelium. Eur J Pediatr Surg 1:43–44

    Google Scholar 

  • Vieira JP, Lopes P, Silva R (2012) Primary ciliary dyskinesia and hydrocephalus with aqueductal stenosis. J Child Neurol 27:938–941

    Article  PubMed  Google Scholar 

  • Wagner C, Batiz LF, Rodriguez S et al (2003) Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. J Neuropathol Exp Neurol 62:1019–1040

    Article  PubMed  CAS  Google Scholar 

  • Webb SJ, Monk CS, Nelson CA (2001) Mechanisms of postnatal neurobiological development: implications for human development. Dev Neuropsychol 19:147–171

    Article  PubMed  CAS  Google Scholar 

  • Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34

    Article  PubMed  CAS  Google Scholar 

  • Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265

    Article  PubMed  CAS  Google Scholar 

  • Wilberger JE Jr, Vertosick FT Jr, Vries JK (1983) Unilateral hydrocephalus secondary to congenital atresia of the foramen of Monro. Case report. J Neurosurg 59:899–901

    Article  PubMed  Google Scholar 

  • Wilkins RH, Odom GL (1974) Ependymal-choroidal cells in cerebrospinal fluid. Increased incidence in hydrocephalic infants. J Neurosurg 41:555–560

    Article  PubMed  CAS  Google Scholar 

  • Williams VJ, Juranek J, Stuebing KK et al (2015) Postshunt lateral ventricular volume, white matter integrity, and intellectual outcomes in spina bifida and hydrocephalus. J Neurosurg Pediatr 15:1–10

    Article  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell Scientific Publications, Oxford, pp 3–70

    Google Scholar 

  • Yamamoto H, Maruo T, Majima T et al (2013) Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One 8:e80356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yashon D, Jane JA, Sugar O (1965) The course of severe untreated infantile hydrocephalus. Prognostic significance of the cerebral mantle. J Neurosurg 23:509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc R. Del Bigio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nagra, G., Del Bigio, M.R. (2018). Pathology of Pediatric Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics