Skip to main content

Cerebrospinal Fluid Circulation

Tradition and New Insights

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus

Abstract

The classic model of cerebrospinal fluid (CSF) formation, transport across the central nervous system, and absorption is based on the circulation theory. This model, where CSF is thought to be secreted by the choroid plexus, and to circulate from the ventricles into the cisterns and the subarachnoid spaces (SAS), is no longer considered reliable. Several studies indicate that CSF can be produced and absorbed throughout the entire CSF system, notably the ependyma, the perineural SAS, and the Virchow-Robin spaces (VRS). The discovery of the expression of aquaporin 1 (AQP1) in the choroidal plexus and aquaporin 4 (AQP4) in the end-feet of astrocytes underlying pia mater, has shed new light into the mechanisms of fluid exchange between intracranial compartments. In this emerging model, CSF has a direct correlation with the brain interstitial fluid (ISF), the blood circulation, and the lymphatic system. These new insights into the physiology and homeostasis of CSF, together with the new advances in neuroimaging, especially in MRI techniques, might have relevant implications for understanding the mechanisms at the base of brain pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achiron A, Faibel M et al (2002) Sandlike appearance of Virchow-Robin spaces in early multiple sclerosis: a novel neuroradiologic marker. AJNR Am J Neuroradiol 23:376–380

    PubMed  PubMed Central  Google Scholar 

  • Agre P, Bonhivers M, Borgnia MJ (1998) The Aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273(24):14659–14662

    Article  CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP et al (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Ames A 3rd, Sakanoue M, Endo S (1964) Na, K, Ca, Mg, and C1 concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27:672–681

    Article  PubMed  Google Scholar 

  • Badaut J, Ashwal S, Adami A et al (2011) Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference. J Cereb Blood Flow Metab 31:819–831

    Article  CAS  PubMed  Google Scholar 

  • Barkhof F, Kouwenhoven M, Scheltens P (1994) Phase-contrast cine MR imaging of normal aqueductal CSF flow. Effect of aging and relation to CSF void on modulus MR. Acta Radiol 35:123–130

    Article  CAS  PubMed  Google Scholar 

  • Bateman GA, Brown KM (2012) The measurement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 28:55–63

    Article  PubMed  Google Scholar 

  • Bateman GA, Napier BD (2011) External hydrocephalus in infants: six cases with MR venogram and flow quantification correlation. Childs Nerv Syst 27:2087–2096

    Article  PubMed  Google Scholar 

  • Bechmann I, Priller J, Kovac A et al (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14: 1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Becker NH, Novikoff AB, Zimmerman HM (1967) Fine structure observations of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 15:160–165

    Article  CAS  PubMed  Google Scholar 

  • Benga G (2003) Birth of water channel proteins-the aquaporins. Cell Biol Int 27(9):701–709

    Article  CAS  PubMed  Google Scholar 

  • Bering EA Jr (1959) Cerebrospinal fluid production and its relationship to cerebral metabolism and cerebral blood flow. Am J Phys 197:825–828

    Google Scholar 

  • Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    Article  PubMed  Google Scholar 

  • Borgnia M, Nielsen S, Engel A et al (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  CAS  PubMed  Google Scholar 

  • Boulton M, Flessner M, Armstrong D et al (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Phys 274:R88–R96

    Article  CAS  Google Scholar 

  • Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Phys 240:F329–F336

    CAS  Google Scholar 

  • Bradley WG Jr (2016) Magnetic resonance imaging of normal pressure hydrocephalus. Semin Ultrasound CT MR 37:120–128

    Article  PubMed  Google Scholar 

  • Bradley WG Jr, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal fluid in normal and hydrocephalic states: appearance on MR images. Radiology 159:611–616

    Article  PubMed  Google Scholar 

  • Bradley WG Jr, Whittemore AR, Kortman KE et al (1991) Marked cerebrospinal fluid void: indicator of successful shunt in patients with suspected normal-pressure hydrocephalus. Radiology 178:459–466

    Article  PubMed  Google Scholar 

  • Bradley WG Jr, Scalzo D, Queralt J et al (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198:523–529

    Article  PubMed  Google Scholar 

  • Brierley JB, Field EJ, Yoffey JM (1949) Passage of Indian ink particles from the cranial subarachnoid space. J Anat 83:77

    PubMed  Google Scholar 

  • Brinker T, Ludemann W, Berens V et al (1997) Dynamic properties of lymphatic pathways for the absorption of cerebrospinal fluid. Acta Neuropathol (Berl) 94:493–498

    Article  CAS  Google Scholar 

  • Brinker T, Stopa E, Morrison J et al (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65:99–112

    Article  PubMed  Google Scholar 

  • Carare R, Bernardes-Silva M, Newman T et al (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144

    Article  CAS  PubMed  Google Scholar 

  • Chazal J, Tanguy A, Irthum B et al (1985) Dilatation of the subarach- noid pericerebral space and absorption of cerebrospinal fluid in the infant. Anat Clin 7:61–66

    Article  CAS  PubMed  Google Scholar 

  • Conforti R, Cirillo M, Saturnino PP et al (2014) Dilated Virchow-Robin spaces and multiple sclerosis: 3T magnetic resonance study. Radiol Med 119:408–414

    Article  PubMed  Google Scholar 

  • Cotugno D (1764) De ischiade nervosa commentarius. Simonios, Napoli

    Google Scholar 

  • Courtice FC, Simmonds WJ (1951) The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29:255–263

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    Article  CAS  PubMed  Google Scholar 

  • Cushing H (1925) The third circulation and its channels. Lancet 2:851–857

    Google Scholar 

  • d’Avella D, Baroni A, Mingrino S et al (1980) An electron microscope study of human arachnoid villi. Surg Neurol 14:41–47

    PubMed  Google Scholar 

  • d’Avella D, Cicciarello R, Albiero F et al (1983) Scanning electron microscope study of human arachnoid villi. J Neurosurg 59(4):620–626

    Article  PubMed  Google Scholar 

  • Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davson H (1966) Formation and drainage of the cerebrospinal fluid. Sci Basis Med Annu Rev 1:238–259

    Google Scholar 

  • Davson H, Segal MB (1996) Physiology of the cerebrospinal fluid and blood-brain barriers, vol 832. CRC Press, London

    Google Scholar 

  • de Rougemont J, Ames A III, Nesbett FB et al (1960) Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495

    Article  PubMed  Google Scholar 

  • Di Rocco C, Di Trapani G, Pettorossi VE et al (1979) On the pathology of experimental hydrocephalus induced by artificial increase in endoventricular CSF pulse pressure. Childs Brain 5(2):81–95

    PubMed  Google Scholar 

  • Dohrmann GJ, Bucy PC (1970) Human choroid plexus: a light and electron microscopic study. J Neurosurg 33:506–516

    Article  CAS  PubMed  Google Scholar 

  • Egnor M, Zheng L, Rosiello A et al (2002) A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 36(6):281–303

    Article  PubMed  Google Scholar 

  • Enzmann DR, Pelc NJ (1991) Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178: 467–474

    Article  CAS  PubMed  Google Scholar 

  • Erlich SS, McComb JG, Hyman S et al (1986) Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473

    Article  CAS  PubMed  Google Scholar 

  • Foldi M, Csillik B, Zoltan OT (1968) Lymphatic drainage of the brain. Experientia 24:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Gomez DG, Di Benedetto AT, Pavese AM et al (1981) Development of arachnoid villi and granulations in man. Acta Anat 111:247–258

    Article  Google Scholar 

  • Greitz D (1993) Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl 386:1–23

    CAS  PubMed  Google Scholar 

  • Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23:487–489

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadaczek P, Yamashita Y, Mirek H et al (2006) The “Perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther 14:69–78

    Article  CAS  PubMed  Google Scholar 

  • Hassin GB (1947) The cerebrospinal fluid pathways (a critical note). J Neuropathol Exp Neurol 6:172–176

    Article  CAS  PubMed  Google Scholar 

  • Hassin GB, Oldberg E, Tinsley M (1937) Changes in the brain in plexectomized dogs with commentson the cerebrospinal fluid. Arch Neurol Psychiatry 38:1224–1239

    Article  Google Scholar 

  • Haughton VM, Korosec FR, Medow JE et al (2003) Peak systolic and diastolic CSF velocity in the foramen magnum in adult patients with Chiari I malformations and in normal control participants. AJNR Am J Neuroradiol 24(2):169–176

    PubMed  PubMed Central  Google Scholar 

  • Hayashi N, Matsumae M, Yatsushiro S et al (2015) Quantitative analysis of cerebrospinal fluid pressure gradients in healthy volunteers and patients with normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 55(8):657–662

    Article  Google Scholar 

  • Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  CAS  PubMed  Google Scholar 

  • Ichimura T, Fraser PA, Cserr HF (1991) Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res 545:103–113

    Article  CAS  PubMed  Google Scholar 

  • Igarashi H, Tsujita M, Kwee IL et al (2014) Water influx into cerebrospinal fluid (CSF) is primarily controlled by aquaporin-4, not by aquaporin-1: O-17 JJVCPE MRI study in knockout mice. Neuroreport 25:39–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med 4:147ra111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iliff JJ, Chen MJ, Plog BA et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34: 16180–16193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iskandar BJ, Quigley M, Haughton VM (2004) Foramen magnum cerebrospinal fluid flow characteristics in children with Chiari I malformation before and after craniocervical decompression. J Neurosurg 101(2 Suppl):169–178

    PubMed  Google Scholar 

  • Johanson CE, Stopa EG, McMillan PN (2011) The blood-cerebrospinal fluid barrier: structure and functional significance. Methods Mol Biol 686:101–131

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Ratan VB, Preston GM et al (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci 91:13052–13056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahle KT, Kulkarni AV, Limbrick DD Jr et al (2016) Hydrocephalus in children. Lancet 387:788–799

    Article  PubMed  Google Scholar 

  • Kahlon B, Annertz M, Stahlberg F et al (2007) Is aqueductal stroke volume, measured with cine phase-contrast magnetic resonance imaging scans useful in predicting outcome of shunt surgery in suspected normal pressure hydrocephalus? Neurosurgery 60: 124–130

    Article  PubMed  Google Scholar 

  • Key EAH, Retzius MG (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Samson and Wallin, Stockholm

    Google Scholar 

  • Kida S, Pentazis A, Weller RO (1993) Cerebrospinal fluid drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Choi JU, Huh R et al (1999) Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst 15:461–467

    Article  CAS  PubMed  Google Scholar 

  • Klarica M, Mise B, Vladic A et al (2013) “Compensated hyperosmolarity” of cerebrospinal fluid and the development of hydrocephalus. Neuroscience 248C: 278–289

    Article  CAS  Google Scholar 

  • Koç K, Anik Y, Anik I et al (2007) Chiari 1 malformation with syringomyelia: correlation of phase-contrast cine MR imaging and outcome. Turk Neurosurg 17(3): 183–192

    PubMed  Google Scholar 

  • Krahn V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl) 164:257–263

    Article  CAS  Google Scholar 

  • Krisch B (1988) Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of new-world monkeys (Cebus apella, Callitrix jacchus). Cell Tissue Res 251:621–631

    Article  CAS  PubMed  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238: 459–474

    Article  CAS  PubMed  Google Scholar 

  • Krueger M, Bechmann I (2010) CNS pericytes: concepts, misconceptions, and a way out. Glia 58:1–10

    Article  PubMed  Google Scholar 

  • Lee JH, Lee HK, Kim JK et al (2004) CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. Korean J Radiol 5:81–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Xie L, Yu M et al (2015) The effect of body posture on brain glymphatic transport. J Neurosci 35: 11034–11044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine JE, Povlishock JT, Becker DP (1982) The morphological correlates of primate cerebrospinal fluid absorption. Brain Res 241:31–41

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kong H, Wu W et al (2009) Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience 162:67–77

    Article  CAS  PubMed  Google Scholar 

  • Longatti P (2008) Domenico Felice Cotugno and the rationale of his discovery of CSF. Childs Nerv Syst 24(2): 161–162

    Article  PubMed  Google Scholar 

  • Longatti P, Basaldella L, Orvieto E et al (2004) Choroid plexus and aquaporin 1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg 40(6): 277–283

    Article  CAS  PubMed  Google Scholar 

  • MacAulay N, Zeuthen T (2010) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168:941–956

    Article  CAS  PubMed  Google Scholar 

  • Macey RI, Karan DM, Farmer RE (1972) Properties of water channels in human red cells. Biomembranes 255(2):502–516

    Article  Google Scholar 

  • Mascalchi M, Arnetoli G, Inzitari D et al (1993) Cine-MR imaging of aqueductal CSF flow in normal pressure hydrocephalus syndrome before and after CSF shunt. Acta Radiol 34:586–592

    Article  CAS  PubMed  Google Scholar 

  • Matsushima T (1983) Choroid plexus papillomas and human choroid plexus: a light and electron microscopy study. J Neurosurg 59:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • McComb JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383

    Article  CAS  PubMed  Google Scholar 

  • McGirt MJ, Atiba A, Attenello FJ et al (2008) Correlation of hindbrain CSF flow and outcome after surgical decompression for Chiari I malformation. Childs Nerv Syst 24(7):833–840

    Article  PubMed  Google Scholar 

  • Menick BJ (2001) Phase-contrast magnetic resonance imaging of cerebrospinal fluid flow in the evaluation of patients with Chiari I malformation. Neurosurg Focus 11:E5

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508

    CAS  PubMed  Google Scholar 

  • Milhorat TH (1975) The third circulation revisited. J Neurosurg 42:628–645

    Article  CAS  PubMed  Google Scholar 

  • Mollanji R, Bozanovic-Sosic R, Zakharov A et al (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282:R1593–R1599

    Article  CAS  PubMed  Google Scholar 

  • Moon HC, Baek HM, Park YS (2016) Comparison of 3 and 7 tesla magnetic resonance imaging of obstructive hydrocephalus caused by tectal glioma. Brain Tumor Res Treat 4(2):150–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Naidich TP, Altman NR, Conzalez-Arias SM (1993) Phase contrast cine magnetic resonance imaging: normal cerebrospinal fluid oscillation and applications to hydrocephalus. Neurosurg Clin N Am 4:677–705

    Article  CAS  PubMed  Google Scholar 

  • Nakada T (2014) Virchow-Robin space and aquaporin-4: new insights on an old friend. Croat Med J 55:328–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakada T (2015) The Molecular Mechanisms of Neural Flow Coupling: A New Concept. J Neuroimaging 25:861–865

    Article  PubMed  PubMed Central  Google Scholar 

  • Neely JD, Christensen BM, Nielsen S et al (1999) Heterotetrameric composition of aquaporin-4 water channels. Biochemistry 38(34):11156–11163

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell M (1985) NMR blood flow imaging using multiecho, phase contrast sequences. Med Phys 12(1): 59–64

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    Article  PubMed  Google Scholar 

  • Oner Z, Sagіr Kahraman A, Kose E et al (2017) Quantitative evaluation of normal aqueductal cerebrospinal fluid flow using phase-contrast cine MRI according to age and sex. Anat Rec (Hoboken) 300(3):549–555

    Article  Google Scholar 

  • Oreskovic D, Klarica M, Vukic M (2002) The formation and circulation of cerebrospinal fluid inside the cat brain ventricles: a fact or an illusion? Neurosci Lett 327:103–106

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi M, Reddy BP, Reddy AK et al (2004) CSF flow study in Chiari I malformation. Childs Nerv Syst 20:336–340

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2011) Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 8:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Penn RD, Basati S, Sweetman B et al (2011) Ventricle wall movements and cerebrospinal fluid flow in hydrocephalus. J Neurosurg 115:159–164

    Article  PubMed  Google Scholar 

  • Pinna G, Alessandrini F, Alfieri A et al (2000) Cerebrospinal fluid flow dynamics study in Chiari I malformation: implications for syrinx formation. Neurosurg Focus 8(3):E3

    Article  CAS  PubMed  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid system. Cerebrospinal Fluid Res 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213:1031–1038

    CAS  Google Scholar 

  • Pollay M, Stevens A, Estrada E et al (1972) Extracorporeal perfusion of choroid plexus. J Appl Physiol 32: 612–617

    Article  CAS  PubMed  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67

    Article  CAS  PubMed  Google Scholar 

  • Quigley MF, Iskandar B, Quigley ME et al (2004) Cerebrospinal fluid flow in foramen magnum: temporal and spatial patterns at MR imaging in volunteers and in patients with Chiari I malformation. Radiology 232(1):229–236

    Article  PubMed  Google Scholar 

  • Radoš M, Orešković D, Radoš M et al (2014) Long lasting near-obstruction stenosis of mesencephalic aqueduct without development of hydrocephalus – case report. Croat Med J 55:394–398

    Article  PubMed  PubMed Central  Google Scholar 

  • Rennels ML, Gregory TF, Blaumanis OR et al (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    Article  CAS  PubMed  Google Scholar 

  • Ringstad G, Emblem KE, Eide PE (2016) Phase-contrast magnetic resonance imaging reveals net retrograde aqueductal flow in idiopathic normal pressure hydrocephalus. J Neurosurg 124:1850–1857

    Article  PubMed  Google Scholar 

  • Robin C (1859) Recherches sur quelques particularites de la structure des capillaires de l’encephale. J Physiol Homme Animaux 2:537–548

    Google Scholar 

  • Saadoun S, Tait MJ, Reza A et al (2009) AQP4 gene deletion in mice does not alter blood–brain barrier integrity or brain morphology. Neuroscience 161:764–772

    Article  CAS  PubMed  Google Scholar 

  • Sahuquillo J, Poca MA, Amoros S (2001) Current aspects of pathophysiology and cell dysfunction after severe head injury. Curr Pharm Des 7(15):1475–1503

    Article  CAS  PubMed  Google Scholar 

  • Schley D, Carare-Nnadi R, Please CP et al (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238:962–974

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HW, Schweim C, Schweim KH et al (2000) Analysis of aqueductal cerebrospinal fluid flow after endoscopic aqueductoplasty by using cine phase-contrast magnetic resonance imaging. J Neurosurg 93:237–244

    Article  CAS  PubMed  Google Scholar 

  • Scollato A, Tenenbaum R, Bahl G et al (2008) Changes in aqueductal CSF stroke volume and progression of symptoms in patients with unshunted idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol 29(1):192–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scollato A, Gallina P, Gautam B et al (2009) Changes in aqueductal CSF stroke volume in shunted patients with idiopathicnormal-pressure hydrocephalus. AJNR Am J Neuroradiol 30(8):1580–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibukawa S, Tosiaki Miyati T, Niwa T et al (2017) Time-spatial labeling inversion pulse (time-SLIP) with pencil beam pulse: a selective labeling technique for observing cerebrospinal fluid flow dynamics. Magn Reson Med Sci 17:259. Aug 24 [Epub ahead of print]

    Article  PubMed  PubMed Central  Google Scholar 

  • Silver I, Li B, Szalai J et al (1999) Relationship between intracranial pressure and cervical lymphatic pressure and flow rates in sheep. Am J Phys 277:R1712–R1717

    CAS  Google Scholar 

  • Simmonds WJ (1953) The absorption of labeled erythrocytes from the subarachnoid space of the rabbit. J Exp Biol Med Sci 31:77–83

    Article  CAS  Google Scholar 

  • Singer JR, Crooks LE (1983) Nuclear magnetic resonance blood flow measurements in the human brain. Science 221:654–656

    Article  CAS  PubMed  Google Scholar 

  • Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 1609(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Szentistvanyi I, Patlak CS, Ellis RA et al (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Phys 246:F835–F844

    CAS  Google Scholar 

  • Tawfik AM, Elsorogy L, Abdelghaffar R et al (2017) Phase-contrast MRI CSF flow measurements for the diagnosis of normal-pressure hydrocephalus: observer agreement of velocity versus volume parameters. AJR Am J Roentgenol 208(4):838–843

    Article  PubMed  Google Scholar 

  • Tennyson VM, Pappas GD (1968) The fine structure of choroid plexus: adult and developmental stages. Prog Brain Res 29:63–85

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluids. Exp Eye Res 25:65–116

    Article  PubMed  Google Scholar 

  • Virchow R (1851) Ueber die Erweiterung kleinerer Gefaesse. Arch Pathol Anat Physiol Klin Med 3:427–462

    Article  Google Scholar 

  • Wagshul ME, Chen JJ, Egnor MR et al (2006) Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 104:810–819

    Article  PubMed  Google Scholar 

  • Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 18(8):5

    Article  Google Scholar 

  • Weed LH (1914a) Studies on cerebro-spinal fluid. No. II: the theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J Med Res 31:21–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1914b) Studies on cerebro-spinal fluid. No. III: the pathways of escape from the subarachnoid spaces with particular reference to the Arachnoid Villi. J Med Res 31:51–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1914c) Studies on cerebro-spinal fluid. No. IV: the dual source of cerebro-spinal fluid. J Med Res 31:93–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1917) The development of the cerebrospinal spaces in pig and in man. Contrib Embryol Carnegie Inst 5:1–116

    Google Scholar 

  • Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Phys 205:617–624

    CAS  Google Scholar 

  • Welch K (1975) The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol 13: 247–332

    CAS  PubMed  Google Scholar 

  • Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    Article  CAS  PubMed  Google Scholar 

  • Welch K, Pollay M (1961) Perfusion of particles through arachnoid villi of the monkey. Am J Phys 201:651–654

    CAS  Google Scholar 

  • Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops and Macaca irus. Anat Rec 145:43–48

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Djuanda E, Yow HY et al (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117:1–14

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Galea I, Carare RO et al (2010) Pathophysiology of the lymphatic drainage of the central nervous system: implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17:295–306

    Article  CAS  PubMed  Google Scholar 

  • Whish S, Dziegielewska KM, Møllgård K et al (2015) The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 12(9):16

    Google Scholar 

  • Whytt R (1768) Observations on the dropsy in the brain. J. Balfour, Edinburgh

    Google Scholar 

  • Woollam DH, Millen JW (1955) The perivascular spaces of the mammalian central nervous system and their relation to the perineuronal and subarachnoid spaces. J Anat 89:193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Miyazaki M, Kanazawa H et al (2008) Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology 249: 644–652

    Article  PubMed  Google Scholar 

  • Yamada S, Tsuchiya K, Bradley WG et al (2015) Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol 36(4):623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Longatti .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Longatti, P., Basaldella, L., Feletti, A., Fiorindi, A. (2019). Cerebrospinal Fluid Circulation. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics