Skip to main content

Anatomy of the Cranial and Spinal Meninges

  • Living reference work entry
  • First Online:

Abstract

The anatomy, the histology, and the principles of cerebrospinal fluid circulation are reviewed. The basic of comparative anatomy are rapidly reviewed. The anatomical details of the three meningeal layers and their relationships with the nervous system and the venous system are reviewed, with specific attention to anatomical and histological details that have specific interest in the pathophysiology of hydrocephalus, circulation and resorption of cerebrospinal fluid, and surgical techniques for the treatment of hydrocephalus.

This is a preview of subscription content, log in via an institution.

References

  • Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    Article  CAS  PubMed  Google Scholar 

  • Adachi M, Hosoya T, Haku T, Yamaguchi K (1998) Dilated Virchow-Robin spaces: MRI pathological study. Neuroradiology 40:27–31

    Article  CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Allen C, Sievers J, Berrety M, Jenner S (1981) Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-OHDA in the rat. J Comp Neurol 203:771–783

    Article  CAS  PubMed  Google Scholar 

  • Angelov DN (1989) Morphogenesis of rat cranial meninges. A light- and electron-microscopic study. Cell Tissue Res 257:207–216

    Article  CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU (1947) Anatomie comparée du système nerveux, particulièrement de celui des Mammifères et de l’Homme. Masson et Cie, Paris

    Google Scholar 

  • Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balédent O, Henry-Feugeas MC, Idy-Peretti I (2001) Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 36(7):368–377

    Article  PubMed  Google Scholar 

  • Beccari N (1943) Neurologia Comparata dei Vertebrati. Sansoni, Firenze

    Google Scholar 

  • Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Brian O, Tom P, Wang D et al (2010) Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res 7:15

    Article  Google Scholar 

  • Brierley JB, Field EJ (1948) The connexions of the spinal sub-arachnoid space with the lymphatic. J Anat 82:153–166

    PubMed  PubMed Central  Google Scholar 

  • Bucchieri F, Farina F, Zummo G, Cappello F (2015) Lymphatic vessels of the dura mater: a new discovery? J Anat 227(5):702–703

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter RL, Hogan QH, Liu SS, Crane B, Moore J (1998) Lumbosacral cerebrospinal fluid volume is the primary determinant of sensory block extent and duration during spinal anesthesia. Anesthesiology 89(7):24–29

    Article  CAS  PubMed  Google Scholar 

  • Catala M (1998) Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol 46:153–169

    PubMed  CAS  Google Scholar 

  • Chernoff EAG (1996) Spinal cord regeneration: a phenomenon unique to urodeles? Int J Dev Biol 40:823–831

    PubMed  CAS  Google Scholar 

  • Christodoulides M, Makepeace BL, Partridge KA, Kaur D, Fowler MI, Weller RO, Heckels JE (2002) Interaction of Neisseria meningitidis with human meningeal cells induces the secretion of a distinct group of chemotactic, proinflammatory, and growth-factor cytokines. Infect Immun 70(8):4035–4044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarot F, Callonnec F, Douvrin F, Hannequin D, Simonet J, Proust B, Thiébot J (2000) Giant cervical epidural veins after lumbar puncture in a case of intracranial hypotension. AJNR Am J Neuroradiol 21:787–789

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cohen MC, Scheimberg I (2009) Histology of the dural membrane supports the theoretical considerations of its role in the pathophysiology of subdural collections in nontraumatic circumstances. Pediatr Radiol 39:880–881

    Article  PubMed  Google Scholar 

  • Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672–682

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    Article  CAS  PubMed  Google Scholar 

  • Cserr HF, Ostrach LH (1974) On the presence of subarachnoid fluid in the mudpuppy, Necturus maculosus. Comp Biochem Physiol 48:145–151

    Article  CAS  Google Scholar 

  • Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 4:269–276

    Article  Google Scholar 

  • Cuatico W, Parker JC (1989) Further observations on spinal meningeal nerves and their role in pain production. Acta Neurochir 101:126–128

    Article  CAS  PubMed  Google Scholar 

  • Damkier HH, Brown PD, Praetorius J (2013) Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 93:1847–1892

    Article  CAS  PubMed  Google Scholar 

  • Dagain A, Vignes JR, Dulou R, Dutertre G, Delmas JM, Guerin J, Liguoro D (2008) Junction between the great cerebral vein and the straight sinus: an anatomical, immunohistochemical, and ultrastructural study on 25 human brain cadaveric dissections. Clin Anat 21:389–397

    Article  CAS  PubMed  Google Scholar 

  • Davson H, Segal MB (1996) Physiology of the cerebrospinal fluid and Blood–brain barriers. CRC Press, London

    Google Scholar 

  • Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone

    Google Scholar 

  • D’Avella D, Cicciarello R, Albiero F, Andrioli G (1983) Scanning electron microscopic study of human arachnoid villi. J Neurosurg 59:620–626

    Article  PubMed  Google Scholar 

  • Decimo I, Bifari F, Rodriguez FJ et al (2011) Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction. Stem Cells 29:2062–2076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Destrieux C, Kakou MK, Velut S, Lefrancq T, Jan M (1998) Microanatomy of the hypophyseal fossa boundaries. J Neurosurg 88:743–752

    Article  CAS  PubMed  Google Scholar 

  • Di Chiro G (1966) Observations on the circulation of the cerebrospinal fluid. Acta Radiol Diagn (Stockh) 5:988–1002

    Article  Google Scholar 

  • Dilenge D, Perey B (1973) An angiographic study of the meningorachidian venous system. Radiology 108:333–337

    Article  CAS  PubMed  Google Scholar 

  • Doepp F, Schreiber SJ, von Münster T, Rademacher J, Klingebiel R, Valdueza JM (2004) How does the blood leave the brain? A systematic ultrasound analysis of cerebral venous drainage patterns. Neuroradiology 46(7):565–570

    Article  PubMed  Google Scholar 

  • Edgard MA, Nundy S (1966) Innervation of the spinal dura mater. J Neurol Neurosurg Psychiatry 29:530–534

    Article  Google Scholar 

  • Edsbagge M, Starck G, Zetterberg H, Ziegelitz D, Wikkelso C (2011) Spinal cerebrospinal fluid volume in healthy elderly individuals. Clin Anat 24(6):733–740

    Article  CAS  PubMed  Google Scholar 

  • Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na+K+ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279:C1685–C1693

    Article  CAS  PubMed  Google Scholar 

  • Elman R (1923) Spinal arachnoid granulations with special reference to the CSF. Bull Johns Hopkins Hosp 34:99–104

    Google Scholar 

  • Erlich SS, McComb JG, Hyman S et al (1986) Ultrastructural morphology of the olfactory pathway for cerebrospinal fluid drainage in the rabbit. J Neurosurg 64:466–473

    Article  CAS  PubMed  Google Scholar 

  • Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258:R94–R98

    CAS  Google Scholar 

  • Ferretti P, Zhang F, O’Neil P (2003) Changes in spinal cord regenerative ability through phylogenesis and development: lessons to be learnt. Dev Dyn 226:245–256

    Article  PubMed  Google Scholar 

  • Foldi M, Csillik B, Zoltan OT (1968) Lymphatic drainage of the brain. Experientia 24:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Fox RJ, Walji AH, Mielke B, Petruk KC, Aronyk KE (1996) Anatomic details of intradural channels in the parasagittal dura: a possible pathway for flow of cerebrospinal fluid. Neurosurgery 39(1):84–90

    Article  CAS  PubMed  Google Scholar 

  • François P, Travers N, Lescanne E, Arbeille B, Jan M, Velut S (2010) The interperiosteo-dural concept applied to the perisellar compartment: a microanatomical and electron microscopic study. J Neurosurg 113(5):1045–1052

    Article  PubMed  Google Scholar 

  • Froelich SC, Abdel Aziz KM, Cohen PD, van Loveren HR, Keller JT (2008) Microsurgical and endoscopic anatomy of Liliequist’s membrane: a complex and variable structure of the basal cisterns. Neurosurgery 63:1–8

    Article  Google Scholar 

  • Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garceau GJ (1953) The filum terminal syndrome (the cord traction syndrome). J Bone Joint Surg Am 35:711–716

    Article  PubMed  Google Scholar 

  • Gideon P, Thomsen C, Ståhlberg F, Henriksen O (1994) Cerebrospinal fluid production and dynamics in normal aging: a MRI phase-mapping study. Acta Neurol Scand 89(5):362–366

    Article  CAS  PubMed  Google Scholar 

  • Gomez DG, Ehrmann JE, Potts DG, Pavese AM, Gilanian A (1983) The arachnoid granulations of the newborn human an ultrastructural study. Int J Dev Neurosci 1:139–147

    Article  CAS  PubMed  Google Scholar 

  • Gooding CA, Price DC, Newton TH (1972) Experimental studies of falx and tentorial opacification during cerebral angiography. Radiology 102:77–82

    Article  CAS  PubMed  Google Scholar 

  • Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27(3):145–165

    Article  PubMed  Google Scholar 

  • Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Groen J, Baljet B, Drukker J (1988) The innervation of the spinal dura mater: anatomy and clinical implications. Acta Neurochir 92:39–46

    Article  CAS  PubMed  Google Scholar 

  • Groeschel S, Chong WK, Surtees R, Hanefeld F (2006) Virchow-Robin spaces on magnetic resonance images: normative data, their dilatation, and a review of the literature. Neuroradiology 48:745–754

    Article  PubMed  Google Scholar 

  • Gupta S, Soellinger M, Boesiger P, Poulikakos D, Kurtcuoglu V (2009) Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J Biomech Eng 131(2):021010

    Article  PubMed  Google Scholar 

  • Haines DE, Harkey HL, Al-Mefty O (1993) The “subdural” space: a new look at an outdated concept. Neurosurgery 32(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Hakuba A, Ohata K (2000) Embryology of the cavernous sinus. In: The cavernous sinus: a comprehensive text. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hannah JA (1936) The aetiology of subdural hematoma: an anatomical and pathological study. J Nerv Ment Dis 84:169–186

    Article  Google Scholar 

  • Harrington MG, Salomon RM, Pogoda JM et al (2010) Cerebrospinal fluid sodium rhythms. Cerebrospinal Fluid Res 7:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harvey SC, Burr HS (1924) An experimental study of the origin of the meninges. Proc Soc Exp Biol Med 22:52–53

    Article  Google Scholar 

  • Harvey SC, Burr HS (1926) The development of the meninges. Arch Neurol Psychiatr 15:545–567

    Article  Google Scholar 

  • Heier LA, Bauer CJ, Schwartz L, Zimmerman RD, Morgello S, Deck MD (1989) Large Virchow-Robin spaces: MR–clinical correlation. AJNR Am J Neuroradiol 10:929–936

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hendrick EB, Hoffman HJ, Humphreys RP (1983) The tethered spinal cord. Clin Neurosurg 30:457–463

    Article  CAS  PubMed  Google Scholar 

  • Hickey WF, Hsu BL, Kimura H (1991) T-lymphocyte entry into the central nervous system. J Neurosci Res 28:254–260

    Article  CAS  PubMed  Google Scholar 

  • Himango WA, Low FN (1971) The fine structure of a lateral recess of the subarachnoid space in the rat. Anat Rec 171:1–19

    Article  CAS  PubMed  Google Scholar 

  • Hochstetter F (1919) Beiträge zur entwicklungsgeschichte des menschlichen gehirns. Deuticke, Vienna

    Google Scholar 

  • Hodel J, Silvera J, Bekaert O, Rahmouni A, Bastuji-Garin S, Vignaud A et al (2011) Intracranial cerebrospinal fluid spaces imaging using a pulse-triggered three-dimensional turbo spin echo MR sequence with variable flip-angle distribution. Eur Radiol 21:402–410

    Article  PubMed  Google Scholar 

  • Hoffman HJ, Hendrick EB, Humphreys R (1976) The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain 2:145–155

    PubMed  CAS  Google Scholar 

  • Inoue K, Seker A, Osawa S, Alencastro LF, Matsushima T, Rhoton AL Jr (2009) Microsurgical and endoscopic anatomy of the supratentorial arachnoidal membranes and cisterns. Neurosurgery 65:644–664

    Article  PubMed  Google Scholar 

  • Ivanow G, Romodanowsky K (1928) Uber den anatomischen Zusammenhang der cerebralenund spinalen submeningealen Raume mit den Lymphsystem. Z gee exp Med 58:596–607

    Google Scholar 

  • Jackson HC, Winkelmann RK, Bickel WH (1966) Nerve endings in the human lumbar spinal column and related structures. J Bone Joint Surg 48:1272–1281

    Article  PubMed  Google Scholar 

  • Johanson C, Duncan J, Klinge P, Brinker T, Stopa E, Silverberg G (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamiryo T, Orita T, Nishizaki T, Aoki H (1990) Development of the rat meninx: experimental study using bromodeoxyuridine. Anat Rec 227:207–210

    Article  CAS  PubMed  Google Scholar 

  • Kartenbeck J, Schwechheimer K, Moll R, Franke WW (1984) Attachment of vimentin filaments to desmosomal plaques in human meningiomal cells and arachnoidal tissue. J Cell Biol 98:1072–1081

    Article  CAS  PubMed  Google Scholar 

  • Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH (2001) Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport 12(3):553–557

    Article  CAS  PubMed  Google Scholar 

  • Kerber CW, Newton TH (1973) The macro- and microvasculature of the dura mater. Neuroradiology 6:175–179

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27:476–483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Key A, Retzius G (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Samsin and Wallen, Stockholm

    Google Scholar 

  • Kida S, Pentazis A, Weller RO (1993) Cerebrospinal fluid drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  CAS  PubMed  Google Scholar 

  • Kido DK, Gomez DG, Pavese AM Jr, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228

    Article  CAS  PubMed  Google Scholar 

  • Klatzo I, Steinwall O (1965) Observation on cerebrospinal fluid pathways and behaviour of the blood-brain barrier in sharks. Acta Neuropathol 5:161–175

    Article  CAS  PubMed  Google Scholar 

  • Krahn V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol 164:257–263

    Article  CAS  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238:459–474

    Article  CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1975) The central nervous system of vertebrates: a general survey of its comparative anatomy with an introduction to the pertinent fundamental biologic and logical concepts. Volume 3, part II: overall morphologic patterns. S Karger, Bazel

    Google Scholar 

  • Kuslich SD, Ulstrom CL, Michael CJ (1991) The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. Orthop Clin North Am 22:181–187

    PubMed  CAS  Google Scholar 

  • Lasjaunias P, Berenstein A (1990) Surgical Neuro-angiography. 3 Functional vascular anatomy of brain, spinal cord and spine. Springer, Berlin

    Google Scholar 

  • Latarget A (1948) Traité d’anatomie humaine Tome 2, Angéiologie, système nerveux central. G Doin, Paris

    Google Scholar 

  • Lazorthes G (1976) Vascularisation et circulation cérébrales. Masson, Paris

    Google Scholar 

  • Lazorthes G, Gouazé A, Djindjian R (1973) Vascularisation et circulation de la moelle épinière, anatomie, physiologie, pathologie, angiographie. Masson, Paris

    Google Scholar 

  • Lebret A, Hodel J, Rahmouni A, Decq P, Petit E (2013) Cerebrospinal fluid volume analysis for hydrocephalus diagnosis and clinical research. Comput Med Imaging Graph 37:224–233

    Article  PubMed  Google Scholar 

  • Le Douarin N (1982) The neural crest. Cambridge University Press, Cambridge/London

    Google Scholar 

  • Le Gros Clark WE (1920) On the Pacchionian bodies. J Anat 55(Pt 1):40–48

    PubMed  PubMed Central  Google Scholar 

  • Lee RR, Abraham RA, Quinn CB (2001) Dynamic physiologic changes in lumbar CSF volume quantitatively measured by three-dimensional fast spin-echo MRI. Spine 26:1172–1178

    Article  CAS  PubMed  Google Scholar 

  • Lemire RJ (1969) Variations in development of the caudal neural tube in human embryos (Horizons XIV–XXI). Teratology 2:361–370

    Article  CAS  PubMed  Google Scholar 

  • Levine JM (1994) Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci 14:4716–4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy LM, Di Chiro G (1990) MR phase imaging and cerebrospinal fluid flow in the head and spine. Neuroradiology 32:399–406

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Owman C (1981) Autonomic nerves in the mammalian choroid plexus and their influence on the formation of cerebrospinal fluid. J Cereb Blood Flow Metab 1:245–266

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201:176–178

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1979) Effect of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol 64:132–145

    Article  PubMed  CAS  Google Scholar 

  • Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523(7560):337–341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T (2002) Berens von Rautenfeld D. Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl 81:271–273

    PubMed  CAS  Google Scholar 

  • Mack J, Squier W, Eastman JT (2009) Anatomy and development of the meninges: implications for subdural collections and CSF circulation. Pediatr Radiol 39:200–210

    Article  PubMed  Google Scholar 

  • Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marmarou A, Shulman K, LaMorgese J (1975) Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg 43:523–534

    Article  PubMed  CAS  Google Scholar 

  • Martyr JW, Song SJ, Hua J, Burrows S (2011) The correlation between cauda equina nerve root volume and sensory block height after spinal anaesthesia with glucose-free bupivacaine. Anaesthesia 66(7):590–594

    Article  CAS  PubMed  Google Scholar 

  • Massiat MH (2002) Bases anatomiques de l’infiltration du nerf sinu-vertébral de Luschka en L2. MSBM, Université de Nantes, Faculté de Médecine

    Google Scholar 

  • Matsumae M, Kikinis R, Mórocz IA, Lorenzo AV, Sándor T, Albert MS, Black PM, Jolesz FA (1996) Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg 84:982–991

    Article  CAS  PubMed  Google Scholar 

  • May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40(3 Pt 1):500–503

    Article  CAS  PubMed  Google Scholar 

  • Merland JJ, Riche MC, Chiras J (1980) Intraspinal extramedullary arteriovenous fistulae draining into the medullary veins. J Neuroradiol 7:271–320

    PubMed  CAS  Google Scholar 

  • Milhorat TH (1974) Failure of choroid plexectomy as treatment for hydrocephalus. Surg Gynecol Obstet 139:505–508

    PubMed  CAS  Google Scholar 

  • Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston MG (2002) Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282:R1593–R1599

    Article  CAS  PubMed  Google Scholar 

  • Murphy DG, DeCarli C, McIntosh AR et al (1996) Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 53:585–594

    Article  CAS  PubMed  Google Scholar 

  • Nakagomi T, Nakano-Doi A, Matsuyama T (2015) Leptomeninges: a novel stem cell niche harboring ischemia-induced neural progenitors. Histol Histopathol 30:391–399

    PubMed  CAS  Google Scholar 

  • Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45(5):588–608

    Article  PubMed  Google Scholar 

  • Osaka K, Handad H, Matsumoto S, Yasuda M (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human development. Childs Brain 6:26–38

    PubMed  CAS  Google Scholar 

  • Ouyang T, Rothfus WE, Ng JM, Challinor SM (2011) Imaging of the pituitary. Radiol Clin N Am 49(3):549–571

    Article  PubMed  Google Scholar 

  • Padget DH (1957) The development of the cranial venous system in man from the viewpoint of comparative anatomy. Contrib Embryol 36:79–140

    Google Scholar 

  • Palay S (1944) The histology of the meninges of the toad (Bufo). Anat Rec 88:257–270

    Article  Google Scholar 

  • Pan W, Banks WA, Kastin AJ (1997) Permeability of the blood-brain and blood-spinal cord barriers to interferons. J Neuroimmunol 76:105–111

    Article  CAS  PubMed  Google Scholar 

  • Parkinson D (2000) History of the extradural neural axis compartment. Surg Neurol 54:422–431

    Article  CAS  PubMed  Google Scholar 

  • Paturet P (1964) Traité d’anatomie humaine, Tome IV, Système nerveux. Masson Inc., Paris

    Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollay M, Curl F (1967) Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Phys 213:1031–1038

    CAS  Google Scholar 

  • Protasoni M, Sangiorgi S, Cividini A, Culuvaris GT, Tomei G, Dell’Orbo C, Raspanti M, Balbi S, Reguzzoni M (2011) The collagenic architecture of human dura mater. J Neurosurg 114(6):1723–1730

    Article  PubMed  Google Scholar 

  • Quencer RM, Donovan Post MJ, Hinks RS (1990) Cine MR in the evaluation of normal and abnormal CSF flow: intracranial and intraspinal studies. Neuroradiology 32:371–391

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Rev Immunol 12:623–635

    Article  CAS  Google Scholar 

  • Raoul S (1999) Etude anatomique du nerf sinu-vertébral. Thèse de Médecine, Université de Nantes, Faculté de Médecine

    Google Scholar 

  • Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  CAS  PubMed  Google Scholar 

  • Reier PJ, Stensaas LJ, Guth L (1983) The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ (eds) Spinal cord reconstruction. Raven Press, New York, pp 163–195

    Google Scholar 

  • Reina MA, De Leon CO, Lopez A, Andre JA, Mora M, Fernandez A (2002) The origin of the spinal subdural space: ultrastructure findings. Anesth Analg 94:991–995

    Article  PubMed  Google Scholar 

  • Reina MA, De Leon Casasola O, Villanueva MC, Lopez A, Maches F, De Andres JA (2004) Ultrastructural findings in human spinal pia mater in relation to subarachnoid anesthesia. Anesth Analg 98:1479–1485

    Article  PubMed  Google Scholar 

  • Reiss K, Mentlein R, Sievers J, Hartmann D (2002) Stromal cell-derived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115:295–305

    Article  CAS  PubMed  Google Scholar 

  • Rexed BA, Wennstrom KG (1959) Arachnoidal proliferation and cystic formation in the spinal nerve-root pouches of man. J Neurosurg 16:73–84

    Article  CAS  PubMed  Google Scholar 

  • Rollins NK, Deline C, Morriss MC (1993) Prevalence and clinical significance of dilated Virchow-Robin spaces in childhood. Radiology 189:53–57

    Article  CAS  PubMed  Google Scholar 

  • Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis 128:309–316

    Article  PubMed  CAS  Google Scholar 

  • Sakka L, Gabrillargues J, Coll G (2016) Anatomy of the spinal meninges. Operative Neurosurgery 12:168–188

    Google Scholar 

  • Scarff JE (1970) Treatment of nonobstructive (communicating) hydrocephalus by endoscopic cauterization of choroid plexuses. J Neurosurg 33:1–18

    Article  PubMed  CAS  Google Scholar 

  • Schnitt SJ, Vogel H (1986) Meningiomas. Diagnostic value of immunoperoxidase staining for epithelial membrane antigen. Am J Surg Pathol 10:640–649

    Article  CAS  PubMed  Google Scholar 

  • Schueler M, Neuhuber WL, De Col R, Messlinger K (2014) Innervation of rat and human dura mater and pericranial tissues in the parieto-temporal region by meningeal afferents. Headache 54(6):996–1009

    Article  PubMed  Google Scholar 

  • Sensenig EC (1949) The early development of the human vertebral column. Contr Embryol Carneg Instn 33:21–41

    CAS  Google Scholar 

  • Sensenig EC (1951) The early development of the meninges of the spinal cord in human embryos. Contr Embryol Carneg Instn 34:145–157

    Google Scholar 

  • Sievers J, Von Knebel DC, Pehlmann FW, Berry M (1986) Meningeal cells influence cerebellar development over a critical period. Anat Embryol 175:91–100

    Article  CAS  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S, Berry M (1994a) A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 23:117–134

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S, Berry M (1994b) Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149

    Article  CAS  PubMed  Google Scholar 

  • Silva N, Januel AC, Tall P, Cognard C (2007) Spinal epidural arteriovenous fistulas associated with progressive myelopathy. Report of four cases. J Neurosurg Spine 6:552–558

    Article  PubMed  Google Scholar 

  • Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA (2001) The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766

    Article  CAS  PubMed  Google Scholar 

  • Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275

    Article  PubMed  Google Scholar 

  • Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D (2003) Alzheimer’s disease, normal pressure hydrocephalus and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2:5006–50511

    Article  Google Scholar 

  • Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoquart-Elsankari S, Lehmann P, Villette A, Czosnyka M, Meyer ME, Deramond H, Balédent O (2009) A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab 29(6):1208–1215

    Article  PubMed  Google Scholar 

  • Stretter G (1915) The development of the venous sinuses of the dura mater in the human embryo. Am J Anat 18(2):145–178

    Article  Google Scholar 

  • Struckhoff G (1995) Coculture of meningeal and astrocytic cells – a model for the formation of the glial limiting membrane. Int J Dev Neurosci 13:595–606

    Article  CAS  PubMed  Google Scholar 

  • Stylianopoulou F, Herbert J, Soares MB, Efstratiadis A (1988) Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc Natl Acad Sci U S A 85:141–145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan JT, Grouper S, Walker MT, Parrish TB, McCarthy RJ, Wong CA (2006) Lumbosacral cerebrospinal fluid volume in humans using three-dimensional magnetic resonance imaging. Anesth Analg 103:1306–1310

    Article  PubMed  Google Scholar 

  • Taptas JN (1949) La loge du sinus caverneux, sa constitution et les rapports des éléments vasculaires et nerveux qui la traversent. Sem Hôp 25:1719–1722

    PubMed  CAS  Google Scholar 

  • Tencer AF, Allen BL, Ferguson RL (1985) A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 110:741–747

    Article  Google Scholar 

  • Tsuker M (1947) Innervation of the choroid plexus. Arch Neurol Psychiatr 58:474–483

    Article  CAS  Google Scholar 

  • Tsunoda A, Mitsuoka H, Sato K, Kanayama S (2000) A quantitative index of intracranial cerebrospinal fluid distribution in normal pressure hydrocephalus using an MRI-based processing technique. Neuroradiology 42:424–429

    Article  CAS  PubMed  Google Scholar 

  • Tubbs RS, Hansasuta A, Stetler W, Kelly DR, Blevins D, Humphrey R, Chua GD, Shoja MM, Loukas M, Oakes WJ (2007) Human spinal arachnoid villi revisited: immunohistological study and review of the literature. J Neurosurg Spine 7:328–331

    Article  PubMed  Google Scholar 

  • Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63:867–875

    Article  CAS  PubMed  Google Scholar 

  • van Swieten JC, van den Hout JH, van Ketel BA, Hijdra A, Wokke JH, van Gijn J (1991) Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114(Pt 2):761–774

    Article  PubMed  Google Scholar 

  • Vandenabeele F, Creemers J, Lambrichts I (1996) Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat 189:417–430

    PubMed  PubMed Central  Google Scholar 

  • Veening JG, Barendregt HP (2010) The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 7:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vignes JR, Dagain A, Guérin J, Liguoro D (2007) A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg 107:1205–1210

    PubMed  Google Scholar 

  • Voelz K, Kondziella D, von Rautenfeld DB, Brinker T, Ludemann W (2007) A ferritin tracer study of compensatory spinal CSF outflow pathways in kaolin-induced hydrocephalus. Acta Neuropathol 113:569–575

    Article  CAS  PubMed  Google Scholar 

  • Watters GV, Page L, Lorenzo AV, Cutler RW, Barlow CF (1969) Relationship between cerebrospinal fluid (CSF) formation, absorption and pressure in human hydrocephalus. Trans Am Neurol Assoc 94:153–156

    PubMed  CAS  Google Scholar 

  • Weed LH (1916) The formation of the cranial subarachnoid spaces. Anat Rec 10:475–481

    Article  Google Scholar 

  • Weed LH (1917) The development of the cerebrospinal spaces in pig and in man. Contr Embryol Carneg Instn No. 14, Publ. No. 225

    Google Scholar 

  • Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83:454–469

    Article  CAS  PubMed  Google Scholar 

  • Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops and Macaca irus. Anat Rec 145:43–48

    Article  CAS  PubMed  Google Scholar 

  • Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34

    Article  CAS  PubMed  Google Scholar 

  • Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain-morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284

    Article  CAS  PubMed  Google Scholar 

  • Weller RO (1995) Fluid compartments and fluid balance in the central nervous system. In Williams PL ed. Gray’s Anatomy, 38th ed. Edinburgh, Churchill Livingstone, 1202–1224

    Google Scholar 

  • Weller RO, Engelhardt B, Phillips MJ (1996) Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 6:275–288

    Article  CAS  PubMed  Google Scholar 

  • Wiberg G (1949) Back pain in relation to the nerve supply of the intervertebral disc. Acta Orthop Scand 19:211–221

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT (1936) On the nature and mode of origin of the foramen of Magendie. J Anat 71:423–426

    Google Scholar 

  • Yokoyama S, Hirano H, Moroki K, Goto M, Imamura S, Kuratsu JI (2001) Are nonfunctioning pituitary adenomas extending into the cavernous sinus aggressive and/or invasive? Neurosurgery 49:857–863

    PubMed  CAS  Google Scholar 

  • Zerah M, Roujeau T, Catala M, Pierre-Kahn A (2008) Spinal Lipoma. In: Ozek M, Cinalli G, Maixner W (eds) Spina bifida management and outcome. Springer, Milan, pp 245–275

    Google Scholar 

  • Zhang ET, Richards HK, Kida S, Weller RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83(3):233–239

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Smith D, Yamamoto M, Ma L, McCaffery P (2003) The meninges is a source of retinoic acid for the late-developing hindbrain. J Neurosci 23:7610–7620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Sakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sakka, L. (2018). Anatomy of the Cranial and Spinal Meninges. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics