Skip to main content

Experimental Hydrocephalus

Models and Study Methods

  • Living reference work entry
  • First Online:
Pediatric Hydrocephalus
  • 165 Accesses

Abstract

Studies on experimental hydrocephalus have expanded considerably in the past 20 years, especially in areas that employ congenital and transgenic models, CSF shunting, and advanced neuroimaging. These advancements have set the stage for experiments that will further define the pathogenesis and pathophysiology of hydrocephalus in all its insidious forms and enhance the development of pharmacological treatments to supplement surgical approaches. Careful consideration of all the advantages and disadvantages of specific in vivo and in vitro models should be applied to all studies of experimental hydrocephalus. In particular, it is important to understand how the timing of induction procedures in acquired models can dramatically alter the severity of ventriculomegaly and thus the relevance to clinical scenarios. In this regard, correlations between neurological outcomes and specific biomarkers of injury should be attempted if possible. Chronic studies are still needed to determine the long-term sequelae of ventriculomegaly and the effects of persistent shunt malfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aojula A, Botfield H, McAllister JP 2nd, Gonzalez AM, Abdullah O, Logan A, Sinclair A (2016) Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus. Fluids Barriers CNS 13:9

    Article  Google Scholar 

  • Aquilina K, Hobbs C, Cherian S, Tucker A, Porter H, Whitelaw A, Thoresen M (2007) A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg 107:126–136

    PubMed  Google Scholar 

  • Aquilina K, Hobbs C, Tucker A, Whitelaw A, Thoresen M (2008) Do drugs that block transforming growth factor beta reduce posthaemorrhagic ventricular dilatation in a neonatal rat model? Acta Paediatr 97:1181–1186

    Article  CAS  Google Scholar 

  • Baledent O, Gondry-Jouet C, Stoquart-Elsankari S, Bouzerar R, Le GD, Meyer ME (2006) Value of phase contrast magnetic resonance imaging for investigation of cerebral hydrodynamics. J Neuroradiol 33:292–303

    Article  CAS  Google Scholar 

  • Ballabh P, Lagamma EF (2014) Strategies for working with a preterm rabbit model of glycerol-induced intraventricular hemorrhage: strengths and limitations. Pediatr Res 76:495–496

    Article  CAS  Google Scholar 

  • Batiz LF, Jimenez AJ, Guerra M, Rodriguez-Perez LM, Toledo CD, Vio K, Paez P, Perez-Figares JM, Rodriguez EM (2011) New ependymal cells are born postnatally in two discrete regions of the mouse brain and support ventricular enlargement in hydrocephalus. Acta Neuropathol 121:721–735

    Article  Google Scholar 

  • Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JPI, Logan A (2013) Decorin prevents the development of juvenile communicating hydrocephalus. Brain 136:2842–2858

    Article  Google Scholar 

  • Carter BJ, Morel L, Jones HC (2002) Characterization of inherited hydrocephalus in the LEW/Jms rat. In: 2002 abstract viewer/itinerary planner. CD-ROM, Program No. 311.7. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Carter CS, Vogel TW, Zhang Q, Seo S, Swiderski RE, Moninger TO, Cassell MD, Thedens DR, Keppler-Noreuil KM, Nopoulos P, Nishimura DY, Searby CC, Bugge K, Sheffield VC (2012) Abnormal development of NG2(+)PDGFR-alpha(+) neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18:1797–1804

    Article  CAS  Google Scholar 

  • Castaneyra-Ruiz L, Brody SL, Morales DM, Strahle JM, McAllister JPI, Limbrick DD Jr (2018) Blood exposure causes ventricular zone disruption and glial activation in vitro. J Neuropathol Exp Neurol 77:803–813

    Article  Google Scholar 

  • Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AG, Thoresen M (2003) Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J Neuropathol Exp Neurol 62:292–303

    Article  Google Scholar 

  • Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S (2004a) Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol 30:585–600

    Article  CAS  Google Scholar 

  • Cherian S, Whitelaw A, Thoresen M, Love S (2004b) The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol 14:305–311

    Article  CAS  Google Scholar 

  • Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P (2009) Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke 40:3369–3377

    Article  Google Scholar 

  • Clancy B, Finlay BL, Darlington RB, Anand KJ (2007) Extrapolating brain development from experimental species to humans. Neurotoxicology 28:931–937

    Article  Google Scholar 

  • Daniel GB, Edwards DF, Harvey RC, Kabalka GW (1995) Communicating hydrocephalus in dogs with congenital ciliary dysfunction. Dev Neurosci 17:230–235

    Article  CAS  Google Scholar 

  • Davis LE (1981) Communicating hydrocephalus in newborn hamsters and cats following vaccinia virus infection. J Neurosurg 54:767–772

    Article  CAS  Google Scholar 

  • Del Bigio MR (2001) Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am 12:639–649

    Article  CAS  Google Scholar 

  • Del Bigio MR (2004) Cellular damage and prevention in childhood hydrocephalus. Brain Pathol 14:317–324

    Article  Google Scholar 

  • Del Bigio MR (2010) Neuropathology and structural changes in hydrocephalus. Dev Disabil Res Rev 16:16–22

    Article  Google Scholar 

  • Del Bigio MR, Bruni JE (1987) Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr Neurosci 13:72–77

    Article  Google Scholar 

  • Di Curzio DL (2018) Neuropathological changes in hydrocephalus – a comprehensive review. Open J Mod Neurosurg 08:1–29

    Article  Google Scholar 

  • Di Curzio DL, Turner-Brannen E, Del Bigio MR (2014) Oral antioxidant therapy for juvenile rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 11:23

    Article  Google Scholar 

  • Diggs J (1986) Early changes in experimental hydrocephalus. Investig Radiol 21:118–121

    Article  CAS  Google Scholar 

  • Dohare P, Zia MT, Ahmed E, Ahmed A, Yadala V, Schober AL, Ortega JA, Kayton R, Ungvari Z, Mongin AA, Ballabh P (2016) AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage. J Neurosci 36:3363–77

    Article  CAS  Google Scholar 

  • Eskandari R, Harris CA, McAllister JP 2nd (2011) Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst 27:2067–2076

    Article  Google Scholar 

  • Eskandari R, Packer M, Burdett EC, McAllister JP 2nd (2012) Effect of delayed intermittent ventricular drainage on ventriculomegaly and neurological deficits in experimental neonatal hydrocephalus. Childs Nerv Syst 28:1849–1861

    Article  Google Scholar 

  • Eskandari R, Abdullah O, Mason C, Lloyd KE, Oeschle AN, McAllister JP 2nd (2014) Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Childs Nerv Syst 30:1651–1661

    Article  Google Scholar 

  • Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H (2016) Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS 13:11

    Article  Google Scholar 

  • Fiori MG, Sharer LR, Lowndes HE (1985) Communicating hydrocephalus in rodents treated with beta, beta’-iminodipropionitrile (IDPN). Acta Neuropathol (Berl) 65:209–216

    Article  CAS  Google Scholar 

  • Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G (2014) Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab 34:1070–1075

    Article  CAS  Google Scholar 

  • Garton T, Keep RF, Wilkinson DA, Strahle JM, Hua Y, Garton HJ, Xi G (2016) Intraventricular hemorrhage: the role of blood components in secondary injury and hydrocephalus. Transl Stroke Res 7:447–451

    Article  Google Scholar 

  • Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, Lagamma EF, Ballabh P (2008) Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke 39:3378–88

    Article  CAS  Google Scholar 

  • Gonzalez AM, Podvin S, Lin SY, Miller MC, Botfield H, Leadbeater WE, Roberton A, Dang X, Knowling SE, Cardenas-Galindo E, Donahue JE, Stopa EG, Johanson CE, Coimbra R, Eliceiri BP, Baird A (2011) Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury. Fluids Barriers CNS 8:6

    Article  CAS  Google Scholar 

  • Harris CA, McAllister JP 2nd (2012) What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 70:1589–1601; discussion 1601–2

    Article  Google Scholar 

  • Harris NG, McAllister JP 2nd, Jones HC (1993) The effect of untreated and shunt-treated hydrocephalus on cortical pyramidal neurone morphology in the H-Tx rat. Eur J Pediatr Surg 3:31–32

    PubMed  Google Scholar 

  • Hochwald GM (1985) Animal models of hydrocephalus: recent developments. Proc Soc Exp Biol Med 178:1–11

    Article  CAS  Google Scholar 

  • Hoque N, Thoresen M, Aquilina K, Hogan S, Whitelaw A (2011) Decorin and colchicine as potential treatments for post-haemorrhagic ventricular dilatation in a neonatal rat model. Neonatology 100:271–276

    Article  Google Scholar 

  • Jimenez AJ, Rodriguez-Perez LM, Dominguez-Pinos MD, Gomez-Roldan MC, Garcia-Bonilla M, Ho-Plagaro A, Roales-Bujan R, Jimenez S, Roquero-Manueco MC, Martinez-Leon MI, Garcia-Martin ML, Cifuentes M, Ros B, Arraez MA, Vitorica J, Gutierrez A, Perez-Figares JM (2014) Increased levels of TNF alpha but not TGB beta1 are associated with the severity of congenital hydrocephalus in the hyh mouse. Neuropathol Appl Neurobiol 40:911–932

    Article  CAS  Google Scholar 

  • Johanson CE, Szmydynger-Chodobska J, Chodobski A, Baird A, Mcmillan P, Stopa EG (1999) Altered formation and bulk absorption of cerebrospinal fluid in FGF-2-induced hydrocephalus. AJP Leg 277:R263–R271

    CAS  Google Scholar 

  • Johanson C, Del Bigio M, Kinsman S, Miyan J, Pattisapu J, Robinson M, Jones HC (2001) New models for analysing hydrocephalus and disorders of CSF volume transmission. Br J Neurosurg 15:281–283

    Article  CAS  Google Scholar 

  • Jones HC, Harris NG, Inglis BA, Briggs RW (1995) Reduced cortical metabolites are avoided by early shunt-treatment in congenitally hydrocephalic rats. J Cereb Blood Flow Metabol 15:S585

    Google Scholar 

  • Jones HC, Chen GF, Yehia BR, Carter BJ, Akins EJ, Wolpin LC (2005) Single and multiple congenic strains for hydrocephalus in the H-Tx rat. Mamm Genome 16:251–261

    Article  Google Scholar 

  • Jusue-Torres I, Jeon LH, Sankey EW, Lu J, Vivas-Buitrago T, Crawford JA, Pletnikov MV, Xu J, Blitz A, Herzka DA, Crain B, Hulbert A, Guerrero-Cazares H, Gonzalez-Perez O, McAllister JP II, Quinones-Hinojosa A, Rigamonti D (2016) A novel experimental animal model of adult chronic hydrocephalus. Neurosurgery 79:746–756. online ahead of print

    Article  Google Scholar 

  • Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320

    Article  CAS  Google Scholar 

  • Khan OH, Mcphee LC, Moddemann LN, Del Bigio MR (2007) Calcium antagonism in neonatal rats with kaolin-induced hydrocephalus. J Child Neurol 22:1161–1166

    Article  Google Scholar 

  • Kim H, Moore SA, Johnston MG (2014) Potential for intranasal drug delivery to alter CSF outflow via the nasal turbinate lymphatics. Fluids Barriers CNS 11:4

    Article  Google Scholar 

  • Korzh V (2018) Development of brain ventricular system. Cell Mol Life Sci 75:375–383

    Article  CAS  Google Scholar 

  • Koschnitzky JE, Keep RF, Limbrick DD Jr, McAllister JP 2nd, Morris JA, Strahle J, Yung YC (2018) Opportunities in posthemorrhagic hydrocephalus research: outcomes of the Hydrocephalus Association Posthemorrhagic Hydrocephalus Workshop. Fluids Barriers CNS 15:11

    Article  Google Scholar 

  • LI J, McAllister JP 2nd, Shen Y, Wagshul ME, Miller JM, Egnor MR, Johnston MG, Haacke EM, Walker ML (2008) Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Exp Neurol 211:351–361

    Article  Google Scholar 

  • Lin TH, Chiang CW, Perez-Torres CJ, Sun P, Wallendorf M, Schmidt RE, Cross AH, Song SK (2017) Diffusion MRI quantifies early axonal loss in the presence of nerve swelling. J Neuroinflammation 14:78

    Article  Google Scholar 

  • Lopes Lda S, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219:187–196

    Article  Google Scholar 

  • McAllister JP 2nd, Williams MA, Walker ML, Kestle JR, Relkin NR, Anderson AM, Gross PH, Browd SR, Hydrocephalus Symposium Expert Panel (2015) An update on research priorities in hydrocephalus: overview of the third National Institutes of Health-sponsored symposium “Opportunities for Hydrocephalus Research: Pathways to Better Outcomes”. J Neurosurg 123:1–12

    Google Scholar 

  • Mcmullen AB, Baidwan GS, Mccarthy KD (2012) Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus. PLoS One 7:e30159

    Article  CAS  Google Scholar 

  • Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  Google Scholar 

  • Miller JM, Kumar R, McAllister JP 2nd, Krause GS (2006) Gene expression analysis of the development of congenital hydrocephalus in the H-Tx rat. Brain Res 1075:36–47

    Article  CAS  Google Scholar 

  • Moinuddin SM, Tada T (2000) Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Neurol Res 22:215–222

    Article  CAS  Google Scholar 

  • Nagra G, Wagshul ME, Rashid S, Li J, McAllister JP 2nd, Johnston M (2010) Elevated CSF outflow resistance associated with impaired lymphatic CSF absorption in a rat model of kaolin-induced communicating hydrocephalus. Cerebrospinal Fluid Res 7:4

    Article  Google Scholar 

  • Nonaka Y, Miyajima M, Ogino I, Nakajima M, Arai H (2008) Analysis of neuronal cell death in the cerebral cortex of H-Tx rats with compensated hydrocephalus. J Neurosurg Pediatr 1:68–74

    Article  Google Scholar 

  • Ortloff AR, Vio K, Guerra M, Jaramillo K, Kaehne T, Jones H, McAllister JP 2nd, Rodriguez E (2013) Role of the subcommissural organ in the pathogenesis of congenital hydrocephalus in the HTx rat. Cell Tissue Res 352:707–725

    Article  CAS  Google Scholar 

  • Passini, E, Britton OJ, Lu HR, Rohrbacher J, Hermans AN, Gallacher DJ, Greig RJH, Bueno-Orovio A, Rodriguez B (2017) Human In silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity. Front Physiol 8:668

    Article  Google Scholar 

  • Pollay M (2010) The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 7:9

    Article  Google Scholar 

  • Price DL, James AE Jr, Sperber E, Strecker EP (1976) Communicating hydrocephalus. Arch Neurol 33:15–20

    Article  CAS  Google Scholar 

  • Rashid S, McAllister JP 2nd, Yu Y, Wagshul ME (2012) Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus. J Cereb Blood Flow Metab 32:318–329

    Article  Google Scholar 

  • Sarkisian MR, Guadiana SM (2014) Influences of primary cilia on cortical morphogenesis and neuronal subtype maturation. Neuroscientist 21:136–151

    Article  Google Scholar 

  • Schurr PH, Mclaurin RL, Ingraham FD (1953) Experimental studies on the circulation of the cerebrospinal fluid and methods of producing communicating hydrocephalus in the dog. J Neurosurg 10:515–525

    Article  CAS  Google Scholar 

  • Shaheen R, Sebai MA, Patel N, Ewida N, Kurdi W, Altweijri I, Sogaty S, Almardawi E, Seidahmed MZ, Alnemri A, Madirevula S, Ibrahim N, Abdulwahab F, Hashem M, Al-Sheddi T, Alomar R, Alobeid E, Sallout B, Albaqawi B, Alaali W, Ajaji N, Lesmana H, Hopkin RJ, Dupuis L, Mendoza-Londono R, Al Rukban H, Yoon G, Faqeih E, Alkuraya FS (2017) The genetic landscape of familial congenital hydrocephalus. Ann Neurol 81:890–897

    Article  CAS  Google Scholar 

  • Smith ME, Eskandari R (2018) A novel technology to model pressure-induced cellular injuries in the brain. J Neurosci Methods 293:247–253

    Article  Google Scholar 

  • Song SK, Kim JH, Lin SJ, Brendza RP, Holtzman DM (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15:640–647

    Article  CAS  Google Scholar 

  • Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, Armstrong RC (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. NeuroImage 26:132–140

    Article  Google Scholar 

  • Strahle J, Garton H, Maher C, Muraszko K, Keep R, Xi G (2012) Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 3:1–14

    Article  Google Scholar 

  • Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G (2014) Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 75:696–705; discussion 706

    Article  Google Scholar 

  • Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, Mccarthy KD (2007) Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J Neurosci 27:2309–2317

    Article  CAS  Google Scholar 

  • Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C (2012) Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS 9:22

    Article  Google Scholar 

  • Tada T, Kanaji M, Kobayashi S (1994) Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. J Neuroimmunol 50:153–158

    Article  CAS  Google Scholar 

  • Vidovic D, Harris L, Harvey T, Evelyn Heng YH, Smith A, Osinski J, Hughes J, Thomas P, Gronostajski RM, Bailey TL, Piper M (2015) Expansion of the lateral ventricles and ependymal deficits underlie the hydrocephalus evident in mice lacking the transcription factor NFIX. Brain Res 1616:71–87

    Article  CAS  Google Scholar 

  • Vinukonda G, Zia MT, Bhimavarapu BB, Hu F, Feinberg M, Bokhari A, Ungvari Z, Fried VA, Ballabh P (2013) Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery. Exp Neurol 247:630–44

    Article  CAS  Google Scholar 

  • Vinukonda G, Dohare P, Arshad A, Zia MT, Panda S, Korumilli R, Kayton R, Hascall VC, Lauer ME, Ballabh P (2016a) Hyaluronidase and hyaluronan oligosaccharides promote neurological recovery after intraventricular hemorrhage. J Neurosci 36:872–889

    Article  CAS  Google Scholar 

  • Vinukonda G, Hu F, Mehdizadeh R, Dohare P, Kidwai A, Juneja A, Naran V, Kierstead M, Chawla R, Kayton R, Ballabh P (2016b) Epidermal growth factor preserves myelin and promotes astrogliosis after intraventricular hemorrhage. Glia 64:1987–2004

    Article  Google Scholar 

  • Wagshul ME, Eide PK, Madsen JR (2011) The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS 8:5

    Article  Google Scholar 

  • Wehby-Grant MC, Olmstead CE, Peacock WJ, Hovda DA, Gayek RJ, Fisher RS (1996) Metabolic responses of the neonatal rabbit brain to hydrocephalus and shunting. Pediatr Neurosurg 24:79–91

    Article  CAS  Google Scholar 

  • Wiesmann M, Koedel U, Bruckmann H, Pfister HW (2002) Experimental bacterial meningitis in rats: demonstration of hydrocephalus and meningeal enhancement by magnetic resonance imaging. Neurol Res 24:307–310

    Article  Google Scholar 

  • Williams MT, Braun AA, Amos-Kroohs R, McAllister JP, Lindquist DM, Mangano FT, Vorhees CV, Yuan W (2014) Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats. Int J Dev Neurosci 35C:7–15

    Article  Google Scholar 

  • Xi G, Strahle J, Hua Y, Keep RF (2014) Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 115:45–63

    Article  Google Scholar 

  • Yamasaki M, Kanemura Y (2015) Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol Med Chir (Tokyo) 55:640–646

    Article  Google Scholar 

  • Yuan W, McAllister JP 2nd, Lindquist DM, Gill N, Holland SK, Henkel D, Rajagopal A, Mangano FT (2012) Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Childs Nerv Syst 28:47–54

    Article  Google Scholar 

  • Yuan W, McAllister JPI, Mangano FT (2013) Neuroimaging of white matter abnormalities in pediatric hydrocephalus. J Pediatr Neuroradiol 2:119–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. McAllister II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McAllister, J.P. (2018). Experimental Hydrocephalus. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics