Skip to main content

Development of the Cerebrospinal Fluid Pathways during Embryonic and Fetal Life in Humans

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 213 Accesses

Abstract

The development of fluid spaces in the central nervous system is a difficult subject in developmental biology. The beginning of this ontogenetic history takes place during neurulation, during the fourth week of development in humans. The movements of neurulation lead to the formation of a neural tube from a neural plate yielded by neural induction. The tube is centered by a cavity, the so-called neurocele, which communicates with the amniotic cavity by the two neuropores. After the closure of the anterior neuropore, the spinal neurocele is occluded to generate a hyper-pressure in the neural tube lumen. This process plays a major role in the development of the anterior region of the central nervous system. The second important developmental phenomenon for this question is that of the formation of choroid plexuses. These structures are formed by the apposition of two tissues: the epithelial tissue which derives from the neuroepithelium of the neural tube and the mesenchymal core whose origins are more diverse. Choroid plexuses produce most of the CSF through multiple molecular systems that are differentially expressed during development. This could account for the difference in CSF synthesis during fetal and postnatal periods. The regulation of choroid plexus functions is complex and involves both a nervous facet and an endocrine control. Choroid plexuses secrete trophic factors for the nervous system, and their role in development is more complex than simply producing CSF. The ependyma forms the layer that borders the ventricular cavities. It is a tissue composed of several cellular types: ependimocytes (multiciliated cells), tanycytes, CSF-contacting neurons, supraependymal cells, and superficial nerves. Ependymal cells are produced by radial glial cells. They undergo a long process of maturation characterized by the development of numerous motile cilia on their apical surface and the loss of intercellular junctions which made them impermeable. This maturation process occurs in the postnatal phase in mice and in fetal life in humans. During development, if two ependymal surfaces come into contact, they adhere to one another and can fuse. Ventricular coarctations, intra-thalamic adherence, and spinal canal regression proceed according to these processes. This phenomenon could also account for the neuropathological aspects observed in forking of the mesencephalic aqueduct. The apical cilia of ependymal cells produce superficial fluid currents. It seems that in humans the forces that generate the movement of the CSF are rather the pulsations of the choroid plexus and the movements of the ventricular walls. The morphogenesis of the roof of the fourth ventricle is still ill-understood in humans. One should be very cautious before interpreting the malformations affected this anatomical area in humans. The histology of the meninges has benefited from electron microscopy studies which have made it possible to better understand the organization of these tissues. The spinal and brainstem meninges are derived from the mesoderm, while the meninges of the skull vault originate from the neural crest. Concerning the base of the skull, the situation is more complex. The meninges situated rostrally to the hypophysis derive from the crest, while those situated posteriorly come from mesoderm. Meninges play trophic roles on the nervous system: induction of glia limitans, participation in basal lamina formation, cell proliferation, but also cell migration and prevention of overmigration. Vessels that supply the cerebral parenchyma are not as permeable as other body vessels, leading to the concept of a blood-brain barrier. This barrier is induced by the nervous tissue and is not an intrinsic property of the vessels. The results of the study of the ontogeny of this barrier are contradictory because of the techniques used and the artifacts they can generate. This subject remains an open topic even if it seems that the blood-brain barrier is established much earlier than what was previously admitted. However, a process of maturing this barrier during development is more than likely. The barrier between the blood and the CSF sits at several levels. The main barrier is located at the level of epithelial cells. It seems also likely that this barrier is established very early during development. Reabsorption of the CSF involves several systems. Their respective roles and their ontogenesis are very poorly known in humans. It appears, however, that arachnoid villi begin to appear during fetal life.

This is a preview of subscription content, log in via an institution.

References

  • Abbott NJ, Pizzo ME, Preston JE et al (2018) The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135:387–407

    Article  CAS  PubMed  Google Scholar 

  • Adami M, Faria MMMD, Almeida AEFS, Pinto MGF, Prada ILS (2005) Scanning electron microscopy of the choroid plexus of the lateral ventricle of the horse. Anat Histol Embryol 34:379–382

    Article  CAS  PubMed  Google Scholar 

  • Adinolfi M, Beck SE, Haddad SA et al (1976) Permeability of the blood-cerebrospinal fluid barrier to plasma proteins during foetal and perinatal life. Nature 259:140–141

    Article  CAS  PubMed  Google Scholar 

  • Afzelius BA (2004) Cilia-related diseases. J Pathol 204:470–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnew WF, Alvarez RB, Yuen TGH et al (1980a) Protein synthesis and transport by the rat choroid plexus and ependymal. an autoradiographic study. Cell Tissue Res 298:261–281

    Google Scholar 

  • Agnew WF, Yuen TGH, Achtyl TR (1980b) Ultrastructural observations suggesting apocrine secretion in the choroid plexus: a comparative study. Neurol Res 1:313–332

    Article  CAS  PubMed  Google Scholar 

  • Alcolado R, Weller RO, Parrish EP et al (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    Article  CAS  PubMed  Google Scholar 

  • Alksne JF, Lovings ET (1972) Functional ultrastructure of the arachnoid villus. Arch Neurol 27:371–377

    Article  CAS  PubMed  Google Scholar 

  • Allen C, Sievers J, Berry M et al (1981) Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment with 6-0HDA in the rat. J Comp Neurol 203:771–783

    Article  CAS  PubMed  Google Scholar 

  • Allen DJ, Low FN (1973) The ependymal surface of the lateral ventricle of the dog as revealed by scanning electron microscopy. Am J Anat 137:483–489

    Article  CAS  PubMed  Google Scholar 

  • Alonso MI, Gato A, Moro JA et al (1998) Disruption of proteoglycans in neural tube fluid by beta-D-xyloside alters brain enlargement in chick embryos. Anat Rec 252:499–508

    Article  CAS  PubMed  Google Scholar 

  • Alonso MI, Gato A, Moro JA et al (1999) Involvement of sulfated proteoglycans in embryonic brain expansion at earliest stages of development in rat embryos. Cells Tissues Organs 165:1–9

    Article  CAS  PubMed  Google Scholar 

  • Alvarez IS, Schoenwolf GC (1992) Expansion of surface epithelium provides the major extrinsic force for bending the neural plate. J Exp Zool 261:340–348

    Article  CAS  PubMed  Google Scholar 

  • Alves CH, Gonçalves T, Socorro S et al (2009) Androgen receptor is expressed in murine choroid plexus and downregulated by 5α-dihydrotestosterone in male and female mice. J Mol Neurosci 38:41–49

    Article  CAS  PubMed  Google Scholar 

  • Andrae J, Gouveia L, Gallini R et al (2016) A role for PDGF-C/PDGFRα signaling in the formation of the meningeal basement membrane surrounding the cerebral cortex. Biol Open 5:461–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelov DN (1990) Distribution of activity of alkaline phosphatase and mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat. Cell Tissue Res 260:595–600

    Article  CAS  PubMed  Google Scholar 

  • Angelov DN, Vasilev VA (1989) Morphogenesis of rat cranial meninges. A light- and electron-microscopy study. Cell Tissue Res 257:207–216

    Article  CAS  PubMed  Google Scholar 

  • Ashby W, Butler E (1948) Carbonic anhydrase in the central nervous system of the developing fetus. J Biol Chem 175:425–432

    CAS  PubMed  Google Scholar 

  • Awatramani R, Soriano P, Rodriguez C et al (2003) Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat Genet 35:70–75

    Article  CAS  PubMed  Google Scholar 

  • Ayer-Le Lièvre C, Ståhlbom P-A, Sara VR (1991) Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 111:105–115

    PubMed  Google Scholar 

  • Azzam NA, Choudhury SR, Donohue JM (1978) Changes in the surface fine structure of choroid plexus epithelium following chronic acetazolamide treatment. J Anat 127:333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnall KM (1992) The migration and distribution of somite cells after labelling with the carbocyanine dye, DiI: the relationship of this distribution to segmentation in the vertebrate body. Anat Embryol 185:317–324

    Article  CAS  Google Scholar 

  • Bagnall KM, Higgins SJ, Sanders EJ (1988) The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the quail-chick chimaera model. Development 103:69–85

    CAS  PubMed  Google Scholar 

  • Bagnall KM, Higgins SJ, Sanders EJ (1989) The contribution made by cells from a single somite to tissues within a body segment and assessment of their integration with similar cells from adjacent segments. Development 107:931–943

    CAS  PubMed  Google Scholar 

  • Bagri A, Gurney T, He X et al (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129:4249–4260

    CAS  PubMed  Google Scholar 

  • Baker J, Liu J-P, Robertson EJ et al (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82

    Article  CAS  PubMed  Google Scholar 

  • Balaban E, Teillet MA, Le Douarin NM (1988) Application of the quail-chick chimera system to the study of brain development and behavior. Science 241:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Banks WA, Kastin AJ (1987) Saturable transport of peptides across the blood-brain barrier. Life Sci 41:1319–1338

    Article  CAS  PubMed  Google Scholar 

  • Barakat I, Wittendorp-Rechenmann E, Rechenmann RV et al (1981) Influence of meningeal cells on the proliferation of neuroblasts in culture. Dev Neurosci 4:363–372

    Article  CAS  PubMed  Google Scholar 

  • Barkho BZ, Monuki RS (2015) Proliferation of cultured mouse choroid plexus epithelial cells. PLoS One 10(3):e0121738. https://doi.org/10.1371/journal.pone.0121738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basmajian JV (1952) The depressions for the arachnoid granulations as a criterion of age. Anat Rec 112:843–846

    Article  CAS  PubMed  Google Scholar 

  • Bateman GA, Brown KM (2012) The movement of CSF flow through the aqueduct in normal and hydrocephalic children: from where does it come, to where does it go? Childs Nerv Syst 28:55–63

    Article  PubMed  Google Scholar 

  • Beauchemin KJ, Wells JM, Ko AT et al (2016) Temporal dynamics on the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development. PeerJ 4:e2318. https://doi.org/10.7717/peerj.2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck F, Samani NJ, Byrne S et al (1988) Histochemical localization of IGF-1 and IGF-11 mRNA in the rat between birth and adulthood. Development 104:29–39

    CAS  PubMed  Google Scholar 

  • Becker NH, Almazon R (1968) Evidence for the functional polarization of micropinocytotic vesicles in the rat choroid plexus. J Histochem Cytochem 16:278–280

    Article  CAS  PubMed  Google Scholar 

  • Becker NH, Novikoff AB, Zimmerman HM (1967) Fine structure of the uptake of intravenously injected peroxidase by the rat choroid plexus. J Histochem Cytochem 15:160–165

    Article  CAS  PubMed  Google Scholar 

  • Benedikt M (1874) Ueber die innervation des plexus chorioideus inferior. Virchows Arch 59:395–400

    Article  Google Scholar 

  • Bertossi M, Girolamo F, Errede M et al (2002) Developmental changes of HT7 expression in the microvessels of the chick embryo brain. Anat Embryol 205:229–233

    Article  CAS  Google Scholar 

  • Birge WJ, Rose AD, Haywood JR et al (1974) Development of the blood-cerebrospinal fluid barrier to proteins and differentiation of cerebrospinal in the chick embryo. Dev Biol 41:245–254

    Article  CAS  PubMed  Google Scholar 

  • Blake JA (1900) The roof and lateral recesses of the fourth ventricle, considered morphologically and embryologically. J Comp Neurol 10:79–108

    Article  Google Scholar 

  • Bleier R, Albrecht R, Crule JA (1975) Supraependymal cells of hypothalamic third ventricle: identification as resident phagocytes of the brain. Science 189:299–301

    Article  CAS  PubMed  Google Scholar 

  • Bleier R, Albrecht R (1980) Supraependymal macrophages of third ventricle of hamster: morphological, functional and histochemical characterization in situ and in culture. J Comp Neurol 192:489–504

    Article  CAS  PubMed  Google Scholar 

  • Böhme G (1988) Formation of the central canal and dorsal glial septum in the spinal cord of the domestic cat. J Anat 159:37–47

    PubMed  PubMed Central  Google Scholar 

  • Borell V, Marín O (2006) Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9:1284–1293

    Article  CAS  Google Scholar 

  • Born G (1897) Über Verwachsungsversuche mit Amphibienlarven. Archiv Entwickelungsmechanik der Organismen 4:349–465 (quoted by Harrison 1908)

    Article  Google Scholar 

  • Boulton M, Flessner M, Amstrong D et al (1997) Lymphatic drainage of the CNS: effects of lymphatic diversion I ligation on CSP protein transport to plasma. Am J Phys 272:1613–1619

    Google Scholar 

  • Boulton M, Flessner M, Amstrong D et al (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Phys 274:88–96

    Article  Google Scholar 

  • Boulton M, Flessner M, Amstrong D et al (1999) Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSP tracer in the rat. Am J Phys 276:818–823

    Google Scholar 

  • Boulton M, Young A, Hay J et al (1996) Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 1251-albumin clearance. Neuropathol Appl Neurobiol 22:325–333

    Article  CAS  PubMed  Google Scholar 

  • Brightman MW, Palay SL (1963) The fine structure of ependyma in the brain of the rat. J Cell Biol 19:415–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinker T, Stoppa E, Morrison J et al (2014) A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 11:10. https://doi.org/10.1186/2045-8118-11-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissenden JE, Ullrich A, Francke U (1984) Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor. Nature 310:781–784

    Article  CAS  PubMed  Google Scholar 

  • Brocklehurst G (1969) The development of the human cerebrospinal fluid pathway with particular reference to the roof of the fourth ventricle. J Anat 105:467–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brocklehurst G (1979) The significance of the evolution of the cerebrospinal fluid system. Ann R Coll Surg Eng 61:349–356

    CAS  Google Scholar 

  • Brooks PJ, Funabashi T, Kleopoulos SP et al (1992) Prolactin receptor messenger RNA is synthesized by the epithelial cells of the choroid plexus. Mol Brain Res 16:163–167

    Article  CAS  PubMed  Google Scholar 

  • Brown RS, Wyatt AK, Herbison RE et al (2016) Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 30:1002–1010

    Article  CAS  PubMed  Google Scholar 

  • Bruni JE, Clattenburg RE, Montemurro DG (1974) Ependymal tanycytes of the rabbit third ventricle: a scanning electron microscopic study. Brain Res 73:145–150

    Article  CAS  PubMed  Google Scholar 

  • Bruni JE, Montemurro DG, Clattenburg RE et al (1972) A scanning electron microscopic study of the ependymal surface of the lateral ventricle in the rabbit, rat, mouse and human brain. Anat Rec 174:407–420

    Article  CAS  PubMed  Google Scholar 

  • Bundgaard M, Van Deurs B (1982) Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus. Brain Res 240:65–75

    Article  CAS  PubMed  Google Scholar 

  • Cam Y, Sensenbrenner M, Mandel P (1975) A comparative study of the effects of brain extracts and mesodermal membrane extracts on nerve cell differentiation. Experientia 31:1430–1431

    Article  CAS  PubMed  Google Scholar 

  • Carnicero E, Alonso MI, Carretero R et al (2013) Embryonic cerebrospinal fluid activates neurogenesis of neural precursors within the subventricular zone of the adult mouse brain. Cells Tissues Organs 198:398–404

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SJ (1966) An electron microscopic study of the choroid plexuses of Necturus maculosus. J Comp Neurol 127:413–434

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SJ, McCarthy LE, Borison HL (1970) Electron microscopic study of the epiplexus (Kolmer) cells of the cat choroid plexus. Z Zellforsch 100:471–486

    Article  Google Scholar 

  • Castañera-Ruiz L, González-Marrero I, Hernández-Abad LG et al (2016) A distal to proximal gradient of human choroid plexus development, with antagonistic expression of Glut1 and AQP1in mature cells vs. calbindin and PCNA in proliferative cells. Front Neuroanat 10:87

    Google Scholar 

  • Catala M (1997) Carbonic anhydrase activity during development of the choroid plexus in the human fetus. Childs Nerv Syst 13:364–368

    Article  CAS  PubMed  Google Scholar 

  • Catala M (1998) Embryonic and fetal development of structures associated with the cerebro-spinal fluid in man and other species. Part I: the ventricular system, meninges and choroid plexuses. Arch Anat Cytol Pathol 46:153–169

    CAS  PubMed  Google Scholar 

  • Catala M (2017) The cerebellum and its wrapping meninge: developmental interplay between two major structures. Neuropediatrics 48:329–339

    Article  PubMed  Google Scholar 

  • Cavallaro T, Martone RL, Stylianopoulou F, Herbert J (1993) Differential expression of the insulin-like growth factor II and transthyretin genes in the developing rat choroid plexus. J Neuropath Exp Neurol 52:153–162

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh ME, Cornelis MEP, Dziegielewska KM et al (1983) Comparison of proteins in CSP of lateral and IVth ventricles during early development of fetal sheep. Dev Brain Res 11:159–167

    Article  CAS  Google Scholar 

  • Chamberlain JG (1973) Analysis of developing ependymal and choroidal surfaces in rat brains using scanning electron microscopy. Dev Biol 31:22–30

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Zhang L, Tam JP et al (2000) Dissecting G protein-coupled receptor signalling pathways with membrane-permeable blocking peptides. Endogeneous 5-HT(2C) receptors in the choroid plexus epithelial cells. J Biol Chem 275:7021–7029

    Article  CAS  PubMed  Google Scholar 

  • Chauhan AN, Lewis PD (1979) A quantitative study of cell proliferation in ependyma and choroid plexus in the postnatal rat brain. Neuropathol Appl Neurobiol 5:303–309

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishina Y et al (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107:10725–10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodobski A, Wojcik BE, Loh YP et al (1998) Vasopressin gene expression in rat choroid plexus. Adv Exp Med Biol 449:59–65

    Article  CAS  PubMed  Google Scholar 

  • Chouaf-Lakhdar L, Fèvre-Montange M, Brisson C et al. (2003) Proliferative activity and nestin expression in periventricular cells of the adult brain. Neuroreport 14:633–636

    Article  PubMed  Google Scholar 

  • Clementi F, Marini D (1972) The surface fine structure of the walls of cerebral ventricles and of choroid plexus in cat. Z Zellforsch mikrosk Anatomie 123:82–95

    Article  CAS  Google Scholar 

  • Coates PW (1975) Scanning electron microscopy of a second type of supraependymal cell in the monkey third ventricle. Anat Rec 182:275–287

    Article  CAS  PubMed  Google Scholar 

  • Coates PW (1977) The third ventricle of monkeys; scanning electron microscopy of surface features in mature males and females. Cell Tissue Res 177:307–316

    Article  CAS  PubMed  Google Scholar 

  • Coben LA (1967) Absence of a foramen of Magendie in the dog, cat, rabbit, and goat. Arch Neurol 16:524–528

    Article  CAS  PubMed  Google Scholar 

  • Cobos I, Shimamura K, Rubenstein JL et al (2001) Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67

    Article  CAS  PubMed  Google Scholar 

  • Cooper ERA (1958) Arachnoid granulations in man. Acta Anat (Basel) 34:187–200

    Article  CAS  Google Scholar 

  • Coulombre AJ, Coulombre JL (1958) The role of mechanical factors in brain morphogenesis. Anat Rec 130:289–290

    Google Scholar 

  • Couly G (1982) Concepts nouveaux de la biologie du développement céphalique humain, observations et hypothèses. Ann Genet 25:201–206

    CAS  PubMed  Google Scholar 

  • Couly G (1983) Concepts nouveaux de la biologie du développement céphalique humain, observations et hypothèses. Semain Hôp Paris 59:1699–1704

    CAS  Google Scholar 

  • Couly GF, Coltey PM, Eichmann A et al (1995) The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 53:97–112

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1992) The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development 114:1–15

    CAS  PubMed  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in quail-chick chimeras. IL the prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Article  CAS  PubMed  Google Scholar 

  • Currle DS, Cheng X, C-m H et al (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132:3549–3559

    Article  CAS  PubMed  Google Scholar 

  • Dandy WE (1919) Experimental hydrocephalus. Ann Surg 70:129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental, clinical and pathological study. Am J Dis Child 8:406–482

    Article  Google Scholar 

  • Daneman R, Zhou L, Kebede AA et al (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidoff LM (1946) Coarctation of the walls of the lateral angles of the lateral cerebral ventricles. J Neurosurg 3:250–256

    Article  CAS  PubMed  Google Scholar 

  • Davis DA, Milhorat TH (1975) The blood-brain barrier of the rat choroid plexus. Anat Rec 181:779–790

    Article  CAS  PubMed  Google Scholar 

  • De Chiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345:78–80

    Article  Google Scholar 

  • Decker JF, Quay WB (1982) Stimulatory effects of melatonin on ependymal epithelium of choroid plexuses in golden hamsters. J Neural Transm 55:53–67

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME (1982) Description of the occlusion of the spinal cord lumen in early human embryos. Anat Rec 204:89–93

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME (1985) Reduced number of brain cells in so-called neural overgrowth. Anat Rec 212:195–198

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Duzy MJ, Federici BD (1993) Second messenger regulation of occlusion of the spinal neurocoel in the chick embryo. Dev Dyn 197:291–306

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Jacobson AG (1977) Embryonic brain enlargement requires cerebrospinal fluid pressure. Dev Biol 57:188–198

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Levitan ML (2002) Brain expansion in the chick embryo initiated by experimentally produced occlusion of the spinal neurocoele. Anat Rec 268:147–159

    Article  PubMed  Google Scholar 

  • Desmond ME, Levitan ML, Haas AR (2005) Internal luminal pressure during early chick embryonic growth: description and empirical observations. Anat Rec 285A:737–747

    Article  Google Scholar 

  • Desmond ME, Schoewolf GC (1985) Timing and positioning of occlusion of the spinal neurocele in the chick embryo. J Comp Neurol 235:479–487

    Article  CAS  PubMed  Google Scholar 

  • Desmond ME, Schoenwolf GC (1986) Evaluation of the roles of intrinsic and extrinsic factors in occlusion of the spinal neurocoel during rapid brain enlargement in the chick embryo. J Embryol Exp Morphol 97:25–46

    CAS  PubMed  Google Scholar 

  • De Spielgelaere W, Casteleyn C, Van den Broeck W, Simoens P (2008) Electron microscopic study of the porcine choroid plexus epithelium. Anat Histol Embryol 37:458–463

    Article  Google Scholar 

  • Deyst C, Casane D, Vernier P, Bourrat F, Joly J-S (2006) Morphological and gene expression similarities suggest that the ascidian neural gland may be osmoregulatory and homologous to vertebrate peri-ventricular organs. Eur J Neurosci 24:2299–2308

    Article  Google Scholar 

  • Dickson PW, Aldred AR, Marley PD et al (1986) Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin). Regulation of transthyretin synthesis in choroid plexus is independent from that in liver. J Biol Chem 261:3475–3478

    CAS  PubMed  Google Scholar 

  • Dietemann JL, Ludwiczak R, Heldt N et al (1979) Frontal horn coarctation: CT demonstration. A report of two cases. Neuroradiology 18:217–219

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohrman GJ (1970) Dark and light epithelial cells in the choroid plexus of mammals. J Ultrastruct Res 32:268–273

    Article  Google Scholar 

  • Dohrman GJ, Bucy PC (1970) Human choroid plexus: a light and electron microscopic study. J Neurosurg 33:506–516

    Article  Google Scholar 

  • Dontchev N, Hadjioloff A-I (1971) Histogénèse et histochimie du plexus choroïde du télencéphale chez l’embryon humain. Bull Assoc Anatom 146:480–485

    Google Scholar 

  • Doolin PF, Birge WJ (1969) Ultrastructural organization and histochemical profile of adult fowl choroid plexus epithelium. Anat Rec 165:515–530

    Article  CAS  PubMed  Google Scholar 

  • Dooling EC, Chi JG, Gilles FH (1977) Ependymal changes in the human fetal brain. Ann Neurol 1:535–541

    Article  CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Evans CAN, Fossan G et al (1980) Proteins in CSF and plasma of fetal sheep during development. J Physiol 300:441–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziegielewska KM, Evans CAN, Lai PCW et al (1981) Proteins in cerebrospinal fluid and plasma of fetal rats during development. Dev Biol 83:193–200

    Article  CAS  PubMed  Google Scholar 

  • Dziegielewska KM, Evans CA, Malinowska DH et al (1979) Studies on the development of brain barrier systems to lipid insoluble molecules in fetal sheep. J Physiol 292:207–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziegielewska KM, Evans CAN, New H et al (1984) Synthesis of plasma proteins by rat fetal brain and choroid plexus. Int J Dev Neurosci 2:215–222

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Håkanson R, Lindvall M, Owman C, Svensson K-G (1975) Ultrastructural and biochemical evidence for a sympathetic neural influence on the choroid plexus. Exp Neurol 48:241–251

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C (1973) Cholinergic innervation of choroid plexus in rabbits and cats. Brain Res 63:500–503

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Nielsen KC, Owman C, West KA (1974) Adrenergic innervation of the mammalian choroid plexus. Am J Anat 139:299–308

    Article  Google Scholar 

  • Ekström TJ, Cui H, Li X et al (1995) Promoter-specific IGF2 imprinting status and its plasticity during human liver development. Development 121:309–316

    PubMed  Google Scholar 

  • el-Gammal S (1981) The development of the diencephalic choroid plexus in the chick, a scanning electron-microscopic study. Cell Tissue Res 219:297–311

    Article  CAS  PubMed  Google Scholar 

  • el-Gammal S (1983) Regional surface changes during the development of the telencephalic choroid plexus in the chick, a scanning-electron microscopic study. Cell Tissue Res 231:251–263

    Article  CAS  PubMed  Google Scholar 

  • Ellis DZ, Nathanson JA, Sweadner KJ (2000) Carbachol inhibits Na+/K+-ATPase activity in choroid plexus via stimulation of the NO/cGMP pathway. Am J Physiol Cell Physiol 279:C1685–C1693

    Article  CAS  PubMed  Google Scholar 

  • Ernst SA, Palacios JR, Siegel GJ (1986) Immunocytochemical localization of Na+, K+-ATPase catalytic polypeptide in mouse choroid plexus. J Histochem Cytochem 34:189–195

    Article  CAS  PubMed  Google Scholar 

  • Esser S, Wolburg K, Wolburg H et al (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraci FM, Mayhan WG, Heistad DD (1990) Effect of vasopressin on production of cerebrospinal fluid: possible role of vasopressin (V1)-receptors. Am J Phys 258(1Pt2):94–98

    Google Scholar 

  • Faubel R, Westendorf C, Bodenchatz E et al (2016) Cilia-based flow network in the brain ventricles. Science 353:176–178

    Article  CAS  PubMed  Google Scholar 

  • Feeney JF, Watterson RL (1946) The development of the vascular pattern within the walls of the central nervous system of the chick embryo. J Morphol 78:231–303

    Article  PubMed  Google Scholar 

  • Firbas W, Volavsek C (1970) Zur Entwicklungsgeschichte der Adhaesio interthalamica (Massa intermedia) beim Menschen. Anat Anz 126:205–210

    CAS  PubMed  Google Scholar 

  • Flexner LB (1929) The development of the meninges in amphibian: a study of normal and experimental animals. Contr Embryo Carnegie Institut 20:31–50

    Google Scholar 

  • Flexner LB (1938) Changes in the chemistry and nature of the cerebrospinal fluid during fetal life in the pig. Am J Phys 124:131–135

    CAS  Google Scholar 

  • Frazier CH, Peet MM (1914) Factors of influence in the origin and circulation of the cerebrospinal fluid. Am J Phys 35:268–282

    Google Scholar 

  • Fu H, Qi Y, Tan M et al (2003) Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1 + ventral neural progenitor cells. J Comp Neurol 456:237–244

    Article  CAS  PubMed  Google Scholar 

  • Gato A, Moro JA, Alonso MI, Pastor JF, Represa JJ, Barbosa E (1993) Chondroitin sulphate proteoglycan and embryonic brain enlargement in the chick. Anat Embryol 188:101–106

    Article  CAS  Google Scholar 

  • Gato A, Moro JA, Alonso MI et al (2005) Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat Rec 284A:475–484

    Article  Google Scholar 

  • Gensburger C, Labourdette G, Sensenbrenner M (1986) Influence of meningeal cells on the proliferation and maturation of rat neuroblasts in culture. Exp Brain Res 63:321–330

    Article  CAS  PubMed  Google Scholar 

  • Ghabriel MN, Zhu C, Hermanis G et al (2000) Immunological targeting of the endothelial barrier antigen (EBA) in vivo leads to opening of the blood-brain barrier. Brain Res 878:127–135

    Article  CAS  PubMed  Google Scholar 

  • Ghabriel MN, Zhu C, Leigh C (2002) Electron microscope study of blood-brain barrier opening induced by immunological targeting of the endothelial barrier antigen. Brain Res 934:140–151

    Article  CAS  PubMed  Google Scholar 

  • Ghandour MS, Langley OK, Zhu XL et al (1992) Carbonic anhydrase IV on brain capillary endothelial cells: a marker associated with the blood-brain barrier. Proc Natl Acad Sci U S A 89:6823–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoukakis N, Deal C, Paquette J et al (1993) Parental genomic imprinting of the human IGF2 gene. Nature Genet 4:98–101

    Article  CAS  PubMed  Google Scholar 

  • Goldmann T, Wieghofer P, Jordão MJ et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17:797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez DG, Di Benedetto AT, Pavese AM et al (1981) Development of arachnoid villi and granulations in man. Acta Anat 111(247–258):1981

    Google Scholar 

  • Gomez DG, Ehrmann JE, Gordon-Potts D et al (1983) The arachnoid granulations of the newborn human: an ultrastructural study. Int J Dev Neurosci 1:138–147

    Article  Google Scholar 

  • Gomez DG, Potts G (1974) The surface characteristics of arachnoid granulations. A scanning electron microscopical study. Arch Neurol 31:88–93

    Article  CAS  PubMed  Google Scholar 

  • Gomez DG, Potts DG (1981) The lateral, third, and fourth ventricle choroid plexus of the dog: a structural and ultrastructural study. Ann Neurol 10:333–340

    Article  CAS  PubMed  Google Scholar 

  • Gomez DG, Potts G, Deonarine V et al (1973) Effects of pressure gradient changes on the morphology of arachnoid villi and granulations of the monkey. Lab Investig 28:648–657

    CAS  PubMed  Google Scholar 

  • Gonzalez-Martinez LM, Avila J, Marti E et al (1994) Expression of the beta-subunit isoforms of the Na, K-ATPase in rat embryo tissues, inner ear and choroid plexus. Biol Cell 81:215–222

    Article  CAS  PubMed  Google Scholar 

  • Götz M, Barde YA (2005) Radial glial cells defined and major intermediate between embryonic stem cells and CNS neurons. Neuron 46:369–372

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Howard S, Papadaki L (1990) The development of ependymal in the human fetal brain: an immunohistochemical and electron microscopic study. Dev Brain Res 55:255–267

    Article  CAS  Google Scholar 

  • Grasset P-P (1948) Traité de Zoologie. Tome XI. Les procordés. Masson, Paris

    Google Scholar 

  • Grossman CB, Potts DG (1974) Arachnoid granulations: radiology and anatomy. Radiology 113:95–100

    Article  CAS  PubMed  Google Scholar 

  • Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998) The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325

    CAS  PubMed  Google Scholar 

  • Gudeman DM, Brightman MW, Merisko EM et al (1989) Release from live choroid plexus of apical fragments and electrophoretic characterization of their synthesis products. J Neurosci Res 24:184–191

    Article  CAS  PubMed  Google Scholar 

  • Gudeman DM, Nelson SR, Merisko EM (1987) Protein secretion by choroid plexus: isolated apical fragments synthesize protein in vitro. Tissue Cell 19:101–109

    Article  CAS  PubMed  Google Scholar 

  • Guldbrandsen A, Vethe H, Farag Y et al (2014) In-depth characterization of the cerebrospinal fluid (CSF) proteome displayed through the CSF proteome resource (CSF-PR)*. Mol Cell Proteomics 13:3152–3163. https://doi.org/10.1074/mcp.M114.038554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagen GA, Elliott WJ (1973) Transport of thyroid hormones in serum and cerebrospinal fluid. J Clin Endocrinol Metab 37:415–422

    Article  CAS  PubMed  Google Scholar 

  • Halata Z, Grim M, Christ B (1990) Origin of spinal cord meninges, sheaths of peripheral nerves, and cutaneous receptors including Merkel cells. An experimental and ultrastructural study with avian chimeras. Anat Embryol 182:529–537

    Article  CAS  Google Scholar 

  • Harrison RG (1908) Embryonic transplantation and the development of the nervous system. Anat Rec 2:385–410

    Article  Google Scholar 

  • Hartmann D, Sievers J, Pehlemann FW et al (1992) Destruction of meningeal cells over the medial cerebral hemisphere of newborn hamsters prevents the formation of the infrapyramidal blade of the dentate gyrus. J Comp Neurol 320:33–61

    Article  CAS  PubMed  Google Scholar 

  • Hartmann D, Schulze M, Sievers J (1998a) Meningeal cells stimulate and direct the migration of cerebellar external granule cells in vitro. J Neurocytol 27:395–409

    Article  CAS  PubMed  Google Scholar 

  • Hartmann D, Ziegenhagen MW, Sievers J (1998b) Meningeal cells stimulate neuronal migration and the formation of radial glial fascicles from the cerebellar external granular layer. Neurosci Lett 244:129–132

    Article  CAS  PubMed  Google Scholar 

  • Harvey MB, Kaye PL (1992) IGF-2 stimulates growth and metabolism of early mouse embryos. Mech Dev 38:169–174

    Article  CAS  PubMed  Google Scholar 

  • Harvey SC, Burr HS (1926) The development of the meninges. Arch Neurol Psychiatr 15:545–567

    Article  Google Scholar 

  • Harvey SC, Burr HS, van Campenout E (1933) Development of the meninges. Further experiments. Arch Neurol Psychiatr 29:683–690

    Article  Google Scholar 

  • Haushalter C, Schuhbaur B, Dollé P et al (2017) Biol Open 6:148–160

    Article  CAS  PubMed  Google Scholar 

  • Haywood JR, Vogh BP (1979) Some measurements of autonomic nervous system influence on production of cerebrospinal fluid in the cat. J Pharmacol Exp Ther 208:341–346

    CAS  PubMed  Google Scholar 

  • Hébert JM, Mishina Y, McConnell SK (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron 35:1029–1041

    Article  PubMed  Google Scholar 

  • Heins N, Malatesta P, Cecconi F et al (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315

    Article  CAS  PubMed  Google Scholar 

  • Hetzel W (1978) Ependyma and ependymal protrusions of the lateral ventricles of the rabbit brain. Cell Tissue Res 192:475–488

    Article  CAS  PubMed  Google Scholar 

  • Hetzel W (1980) Post-mortem modifications of the ependymal of the lateral ventricular wall. Acta Neuropathol 51:15–22

    Article  CAS  PubMed  Google Scholar 

  • Himmelstein DS, Bi C, Clark BS et al (2010) Balanced Shh signaling is required for proper formation and maintenance of dorsal telencephalic midline structures. BMC Dev Biol 10:118. https://doi.org/10.1186/1471-213-X-10-118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano A, Zimmerman HM (1967) Some new cytological observations of the normal ependymal cell. Anat Rec 158:293–301

    Article  CAS  PubMed  Google Scholar 

  • Holash JA, Noden DM, Stewart PA (1993) Re-evaluating the role of astrocytes in blood-brain barrier induction. Dev Dyn 197:14–25

    Article  CAS  PubMed  Google Scholar 

  • Hong-Goka BC, Chang FL (2004) Estrogen receptors alpha and beta in choroid plexus epithelial cells in Alzheimer’s disease. Neurosci Lett 360:113–116

    Article  CAS  PubMed  Google Scholar 

  • Hori A, Bardosi A, Tsuboi K et al (1984) Accessory cerebral ventricle of the occipital lobe. Morphogenesis and clinical and pathological appearance. J Neurosurg 61:767–771

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Ketova T, Fleming JT et al (2009) Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development 136:2535–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchins M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  Google Scholar 

  • Hunter NL, Dymecki SM (2007) Molecularly and temporally separable lineages from the hindbrain roof plate contribute differentially to the choroid plexus. Development 134:3449–3460

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Shimogori T, Ohtsuka T et al (2008) Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135:2531–2541

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen M, Møllgård K, Reynolds ML et al (1983) The choroid plexus in fetal sheep during development with special reference to intracellular plasma protein. Dev Brain Res 8:77–88

    Article  Google Scholar 

  • Jacquet BV, Salinas-Mondragon R, Liang H et al (2009) FoxJ1-dependent gene expression is required for differentiation of radial glia into ependymal cells and a subset of astrocytes in the postnatal brain. Development 136:4021–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen SF, van der Spek SJ, ten Brink JB et al (2013) Gene expression and functional annotation of the human and mouse choroid plexus epithelium. PLoS One 8(12):e83345. https://doi.org/10.1371/journal.pone.0083345 eCollection 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzer RC, Raff MC (1987) Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257

    Article  CAS  PubMed  Google Scholar 

  • Jefferies WA, Brandon MR, Hunt SV et al (1984) Transferrin receptor on endothelium of brain capillaries. Nature 312:62–163

    Article  Google Scholar 

  • Jelinek R, Pexieder T (1970) Pressure of the CSF and the morphogenesis of the CNS. Folia Morphol (Praha) 18:102–110

    CAS  Google Scholar 

  • Jiang X, Iseki S, Maxson RE et al (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116

    Article  CAS  PubMed  Google Scholar 

  • Johansson PA, Dziegielewska KM, Ek CJ et al (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:353–364

    Article  CAS  PubMed  Google Scholar 

  • Johansson PA, Dziegielewska K, Ek CJ et al (2006) Blood-CSF barrier function in the rat embryo. Eur J Neurosci 24:65–76

    Article  CAS  PubMed  Google Scholar 

  • Johansson P, Dziegielewska K, Saunders N (2008) Low levels of Na, K-ATPase and carbonic anhydrase II during choroid plexus development suggest limited involvement in early CSF secretion. Neurosci Lett 442:77–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson PA, Irmler M, Acampora D et al (2013) The transcription factor Otx2 regulates choroid plexus development and function. Development 140:1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Johnston MC (1966) A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anat Rec 156:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jones HC (1980) Intercellular pores between the ependymal cells lining the roof of the fourth cerebral ventricle in mammalian fetuses. Z Kinderchir 31:309–316

    Google Scholar 

  • Jones HC, Sellars RA (1982) The movement of fluid out of the cerebral ventricles in fetal and neonatal rats. Z Kinderchir 37:130–133

    Google Scholar 

  • Junghans U, Koops A, Westmeyer A et al (1995) Purification of a meningeal cell-derived chondroitin sulphate proteoglycan with neurotrophic activity for brain neurons and its identification as biglycan. Eur J Neurosci 7:2341–2350

    Article  CAS  PubMed  Google Scholar 

  • Kamba T, Tam BY, Hashizume H et al (2006) VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290:H560–H576

    Article  CAS  PubMed  Google Scholar 

  • Kamiryo T, Orita T, Nishizaki T et al (1990) Development of the rat meninx: experimental study using bromodeoxyuridine. Anat Rec 227:207–210

    Article  CAS  PubMed  Google Scholar 

  • Kaplan GP, Hartman BK, Creveling CR (1981) Localization of catechol-0-methyltransferase in the leptomeninges, choroid plexus and ciliary epithelium: implications for the separation of central and peripheral catechols. Brain Res 204:353–360

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MS (1980) Proliferation of epithelial cells in the adult primate choroid plexus. Anat Rec 197:495–502

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MH (1983) Occlusion of the neural lumen in early mouse embryos analysed by light and electron microscopy. J Embryol Exp Morphol 78:211–228

    CAS  PubMed  Google Scholar 

  • Kawamata S, Stumpf WE, Bidmon HJ (1995) Adhesion and fusion of ependymal in rat brain. Acta Anat (Basel) 152:205–214

    Article  CAS  Google Scholar 

  • Keep RF, Jones HC (1990) A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res 56:47–53

    Article  CAS  Google Scholar 

  • Keep RF, Jones HC, Cawkwell RD (1986) A morphometric analysis of the development of the fourth ventricle choroid plexus in the rat. Dev Brain Res 27:77–85

    Article  Google Scholar 

  • Key EAH, Retzius MG (1875) Studien in der Anatomie des Nervensystems und des Bindegewebes. Samson and Wallin, Stockholm (Quoted by Zenker et al. 1994)

    Google Scholar 

  • Kho AT, Bhattacharya S, Tantisira KG et al (2010) Transcriptomic analysis of human lung development. Am J Respir Crit Care Med 181:54–63

    Article  CAS  PubMed  Google Scholar 

  • Kida E, Palminiello S, Golabek AA et al (2006) Carbonic anhydrase II in the developing and adult human brain. J Neuropathol Exp Neurol 65:664–674

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa T, Hosoya K, Takahashi T et al (2000) In-vivo and in­ vitro evidence of a carrier-mediated afflux transport system for oestrone-3-sulphate across the blood-cerebrospinal fluid barrier. J Pharm Pharmacol 52:281–288

    Article  CAS  PubMed  Google Scholar 

  • Kitraki E, Alexis MN, Papalopoulou M et al (1996) Glucocorticoid receptor gene expression in the embryonic rat brain. Neuroendocrinology 63:305–317

    Article  CAS  PubMed  Google Scholar 

  • Klika E (1968) L'ultrastructure des méninges en ontogénèse chez l'homme. Z Mikrosk Anat Forsch 79:209–222

    CAS  PubMed  Google Scholar 

  • Klinkerfuss GH (1964) An electron microscopic study of the ependyma and supraependymal glia of the lateral ventricle of the cat. Am J Anat 115:71–99

    Article  CAS  PubMed  Google Scholar 

  • Koh L, Zakharov A, Nagra G et al (2006) Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinate. Anat Embryol 211:335–344

    Article  Google Scholar 

  • Korzhevskii DÉ (2000) Proliferative zones in the epithelium of the choroid plexuses in the human embryo brain. Neurosci Behav Physiol 30:509–512

    Article  CAS  PubMed  Google Scholar 

  • Koshiba K, Hayashi S, Oshima T, Uematsu H (1979) The fine structure of the choroid plexus in the musk rat. J Electron Microsc (Tolyo) 28:131–133

    CAS  Google Scholar 

  • Koshiba K, Hayashi S, Kato S, Uematsu H (1980a) Surface fine structure of the choroid plexus and cerebral ventricle in pigeon by scanning electron microscopy. J Electron Microsc 29:119–128

    Google Scholar 

  • Koshiba K, Oshima H, Uematsu H (1980b) Fine structure of the choroid plexus in pigeon by transmission electron microscopy. J Electron Microsc 29:129–138

    Google Scholar 

  • Koshida R, Oishi H, Hamada M et al (2017) Maf B is required for development of the hindbrain choroid plexus. Biochem Biophys Res Commun 483:288–293

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski GP, Scott DE, Murphy JA (1972) Scanning electron microscopy of the lateral ventricles of sheep. Am J Anat 135:561–566

    Article  CAS  PubMed  Google Scholar 

  • Krahn V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol 164:257–263

    Article  CAS  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1983) The meningeal compartments of the median eminence and the cortex. a comparative analysis in the rat. Cell Tissue Res 228:597–640

    Article  CAS  PubMed  Google Scholar 

  • Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238:459–474

    Article  CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1970) The central nervous system of vertebrates. Volume 3 part 1: structural elements: biology of nervous tissue. Karger, Basel

    Google Scholar 

  • Kusaka H, Hirano A, Bornstein MB et al (1984) The organization of astrocytes in organotypic mouse spinal cord culture: an electron microscope study. Neuropathol Appl Neurobiol 10:411–422

    Article  CAS  PubMed  Google Scholar 

  • Kusaka H, Hirano A, Bornstein MB et al (1985) Basal lamina formation by astrocytes in organotypic cultures of mouse spinal cord tissue. J Neuropath Exp Neurol 44:295–303

    Article  CAS  PubMed  Google Scholar 

  • Lavado A, Oliver G (2011) Six3 is required for ependymal cell maturation. Development 138:5291–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Douarin NM (1969) Particularités du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ces particularités comme "marquage biologique" dans les recherches sur les interactions tissulaires et les migrations cellulaires au cours de l'ontogénèse. Bull Biol Fr Belg 103:435–452

    PubMed  Google Scholar 

  • Lee L (2013) Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary cilia dyskinesia. J Neurosci Res 91:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Le Gros Clark WE (1920) On the Pacchionian bodies. J Anat 55:40–48

    PubMed  PubMed Central  Google Scholar 

  • Lehtinen MK, Zappatera MW, Chen X et al (2011) The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69:893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenoir D, Honegger P (1983) Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Dev Brain Res 7:205–213

    Article  CAS  Google Scholar 

  • Levitan ML, Desmond ME (2009) Expansion of the human embryonic brain during rapid growth: area analysis. Anat Rec 292:472–480

    Article  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen J, Chopp M (2002) Cell proliferation and differentiation from ependymal, subependymal and choroid plexus in response to stroke in rats. J Neurol Sci 193:137–146

    Article  PubMed  Google Scholar 

  • Liddelow SA, Dziegielewska KM, Ek CJ et al (2013) Mechanisms that determine the internal environment of the developing brain: a transcriptomic, functional and ultrastructural approach. PLoS One 8(7):e65629. https://doi.org/10.1371/journal.pone.0065629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddelow SA, Dziegielewska KM, Van de Berg JL et al (2010) Development of the lateral ventricular choroid plexus in a marsupial, Monodelphis domestica. Cerebropsinal Fluid Research 7:16

    Article  Google Scholar 

  • Liddelow SA, Temple S, Møllgård K et al (2012) Molecular characterization of transport mechanisms at the developing mouse blood-CSF interface: a transcriptome approach. PLoS One 7(3):e33554. https://doi.org/10.1371/journal.pone.0033554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall M (1979) Fluorescence histochemical study on regional differences in the sympathetic nerve supply from various laboratory animals. Cell Tissue Res 198:261–267

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1977) Histochemical study on regional differences in the cholinergic nerve supply of the choroid plexus from various laboratory animals. Exp Neurol 55:152–159

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978a) Reduced cerebrospinal fluid formation through cholinergic mechanisms. Neurosci Lett 10:311–316

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1978b) Sympathetic nervous control of cerebrospinal fluid production from the choroid plexus. Science 201:176–178

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Alumets J, Edvinsson L et al (1978c) Peptidergic (VIP) nerves in the mammalian choroid plexus. Neurosci Lett 9:77–82

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Edvinsson L, Owman C (1979) Effects of sympathomimetic drugs and corresponding receptor antagonists on the rate of cerebrospinal fluid production. Exp Neurol 64:132–145

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Gustafson A, Hedner P et al (1985) Stimulation of cyclic adenosine 3′,5′-monophosphate formation in rabbit choroid plexus by β-receptor agonists and vasoactive intestinal polypeptide. Neurosci Lett 54:153–157

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Owman C (1978) Early development of noradrenergic-containing sympathetic nerves in the choroid plexus system of the rabbit. Cell Tissue Res 192:195–203

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Owman C (1980) Evidence for the presence of two types of monoamine oxidase in rabbit choroid plexus and their role in breakdown of amines influencing cerebrospinal fluid formation. J Neurochem 34:518–522

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Owman C, Winbladh B (1981) Sympathetic influence on transport functions in the choroid plexus of rabbit and rat. Brain Res 223:160–164

    Article  CAS  PubMed  Google Scholar 

  • Lindvall M, Owman C, Winbladh B (1982) Sympathetic influence on sodium-potassium activated adenosine triphosphatase activity of rabbit and rat choroid plexus. Brain Res Bull 9:761–763

    Article  CAS  PubMed  Google Scholar 

  • Lindvall-Axelsson M, Hedner P, Owman C (1989) Corticosteroid action on choroid plexus: reduction in Na+-K+-ATPase activity, choline transport capacity, and rate of CSF formation. Exp Brain Res 77:605–610

    Article  CAS  PubMed  Google Scholar 

  • Lindvall-Axelsson M, Hedner P, Owman C et al (1985) Influence of thyroid hormones on transport function and Na+K+-ATPase activity in the rat choroid plexus. Acta Physiol Scand 125:627–632

    Article  CAS  PubMed  Google Scholar 

  • Lindvall-Axelsson M, Owman C (1989) Changes in transport functions of isolated rabbit choroid plexus under the influence of oestrogene and progesterone. Acta Physiol Scand 136:107–111

    Article  CAS  PubMed  Google Scholar 

  • Lindvall-Axelsson M, Owman C (1990) Actions of sex steroids and corticosteroids on rabbit choroid plexus as shown by changes in transport capacity and rate of cerebrospinal fluid formation. Neural Res 12:181–186

    Article  CAS  Google Scholar 

  • Ling EA (1981) Ultrastructure and mode of formation of epiplexus cells in the choroid plexus in the lateral ventricles of the monkey (Macaca fascicularis). J Anat 133:555–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J-P, Baker J, Perkins AS et al (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1IGF receptor (Igf1r). Cell 75:59–72

    CAS  PubMed  Google Scholar 

  • Login IS, Mac Leod RM (1977) Prolactin in human serum and cerebrospinal fluid. Brain Res 132:477–483

    Article  CAS  PubMed  Google Scholar 

  • Lopes CAS, Mair WGP (1974a) Ultrastructure of the outer cortex and the pia mater in man. Acta Neuropathol (Berl) 28:79–86

    Article  CAS  Google Scholar 

  • Lopes CAS, Mair WGP (1974b) Ultrastructure of the arachnoid structure in man. Acta Neuropathol (Berl) 28:167–173

    Article  CAS  Google Scholar 

  • Lopez-Gimenez JF, Mengod D, Palacios JM et al (2001a) Regional distribution and cellular localization of 5-HT2C receptor m RNA in monkey brain: comparison with [3H] mesulergine binding site and choline acetyltransferase mRNA. Synapse 42:12–26

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Gimenez JF, Vilaro MT, Palacios JM et al (2001b) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H] MD2 100, 907 autoradiography and in situ hybridization studies. J Comp Neurol 429:571–598

    Article  CAS  PubMed  Google Scholar 

  • Lorez HP, Richards JG (1982) Supra-ependymal serotoninergic nerves in mammalian brain: morphological, pharmacological and functional studies. Brain Res Bull 9:727–741

    Article  CAS  PubMed  Google Scholar 

  • Lossinsky AS, Vorbrodt AW, Wisniewski HM (1986) Characterization of endothelial cell transport in the developing mouse blood-brain barrier. Dev Neurosci 8:61–75

    Article  CAS  PubMed  Google Scholar 

  • Lowery LA, Sive H (2005) Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a1 gene products. Development 132:2057–2067

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Kaur C, Ling EA (1993) Uptake of tracer by the epiplexus cells via the choroid plexus epithelium following an intravenous or intraperitoneal injection of horseradish peroxidase in rats. J Anat 183:609–617

    PubMed  PubMed Central  Google Scholar 

  • Lun MP, Johnson MB, Broadbelt KG et al (2015) Spatially heterogeneous choroid plexus transcriptomes encode positional identity and contribute to regional CSF production. J Neurosci 35:4903–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luse SA (1956) Electron microscopic observations of the central nervous system. J Biophys Biochem Cytol 2:531–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBratney-Owen B, Iseki S, Bamforth SD et al (2008) Development and tissue origins of the mammalian cranial base. Dev Biol 322:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLone DG, Dias MS (2003) The Chiari II malformation: cause and impacts. Childs Nerv Syt 19:540–550

    Article  Google Scholar 

  • Ma Q, Jones D, Borghesani PR et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF1- deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangold U, Sievers T, Berry M (1984) 6-hydroxydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopy study. J Comp Neurol 227:267–284

    CAS  PubMed  Google Scholar 

  • Mantyth CR, Kruger L, Brecha NC et al (1987) Localization of specific sites for atrial natriuretic factor in the central nervous system of rat, Guinea pig, cat and human. Brain Res 412:329–342

    Article  Google Scholar 

  • Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (2012) The human brain intracerebral microvascular system: development and structure. Front Neuroanat 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques F, Sousa JC, Coppola G et al (2011) Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS 8(1):10. https://doi.org/10.1186/2045-8118-8-10

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin C, Alonso MI, Santiago C et al (2009) Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int J Dev Neurosci 27:733–740

    Article  CAS  PubMed  Google Scholar 

  • Martin C, Bueno D, Alonso MI et al (2006) FGF2 plays a key role in embryonic cerebrospinal trophic properties over chick embryo neuroepithelial stem cells. Dev Biol 297:402–416

    Article  CAS  PubMed  Google Scholar 

  • Masuzawa T, Ohta T, Kawamura M et al (1984) Immunohisto­chemical localization of Na+, K+-ATPase in the choroid plexus. Brain Res 302:357–362

    Article  CAS  PubMed  Google Scholar 

  • Masuzawa T, Ohta T, Kawakami K et al (1985) Immunocyto­chemical localization of Na+, K+-ATPase in the canine choroid plexus. Brain 108:625–646

    Article  PubMed  Google Scholar 

  • Masuzawa T, Sato F (1983) The enzyme histochemistry of the choroid plexus. Brain 106:55–99

    Article  PubMed  Google Scholar 

  • Matsuoka Y, Okazaki M, Kitamura Y et al (1999) Developmental expression of P-glycoprotein (multidrug resistance gene product) in the rat brain. J Neurobiol 39:383–392

    Article  CAS  PubMed  Google Scholar 

  • Mathew TC (2007) Diversity in the surface morphology of adjacent epithelial cells of the choroid plexus: an ultrastructural analysis. Mol Cell Biochem 301:235–239

    Article  CAS  PubMed  Google Scholar 

  • Mathew TC (2008) Regional analysis of the ependymal of the third ventricle of rat by light and electron microscopy. Anat Histol Embryol 37:9–18

    CAS  PubMed  Google Scholar 

  • Matthews SG, Parrott RF, Sirinathsinghji DJ (1993) Distribution and cellular localization of vasopressin mRNA in the ovine brain, pituitary and pineal glands. Neuropeptides 25:11–17

    Article  CAS  PubMed  Google Scholar 

  • Matthiessen HP, Schmalenbach C, Millier HW (1991) Identification of meningeal cell released neurite promoting activities for embryonic hippocampal neurons. J Neurochem 56:759–768

    Article  CAS  PubMed  Google Scholar 

  • Maxwell DS, Pearse DC (1956) The electron microscopy of the choroid plexus. J Biophys Biochem Cytol 2:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milhorat TH (1969) Choroid plexus and cerebrospinal fluid production. Science 166:1514–1516

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH (1976) Structure and function of the choroid plexus and other sites of cerebrospinal fluid formation. Int Rev Cytol 47:225–288

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH, Clark RG, Hammock MK et al (1970) Structural, ultrastructural, and permeability changes in the ependymal and surrounding brain favoring equilibration in progressive hydrocephalus. Arch Neurol 22:397–407

    Article  CAS  PubMed  Google Scholar 

  • Milhorat TH, Davis DA, Lloyd BJ (1973) Two morphologically distinct blood-brain barriers preventing entry of cytochrome c into cerebrospinal fluid. Science 180:76–78

    Article  CAS  Google Scholar 

  • Milhorat TH, Hammock MK, Fenstermacher JD et al (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173:330–332

    Article  CAS  PubMed  Google Scholar 

  • Millen JW, Rogers GE (1956) An electron microscopic study of the choroid plexus in the rabbit. J Biophys Biochem Cytol 2:407–416

    Article  CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    Article  CAS  PubMed  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M et al (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzadeh Z, Kusne Y, Duran-Moreno M et al (2017) Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories. Nat Commun 8:13759. https://doi.org/10.1038/ncomms13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell W, Kim CS, O'Tuama LA et al (1982) Choroid plexus, brain and kidney Na+, K+-ATPase: comparative activities in fetal, newborn and young adult rabbits. Neurosci Lett 31:37–40

    Article  CAS  PubMed  Google Scholar 

  • Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnson M (2001) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Physiol 281:R1215–R1223

    Article  CAS  Google Scholar 

  • Møllgård K, Dziegielewska KM, Saunders NR et al (1988) Synthesis and localization of plasma proteins in the developing human brain. Integrity of the fetal blood-brain barrier to endogenous proteins of hepatic origin. Dev Biol 128:207–221

    Article  PubMed  Google Scholar 

  • Møllgård K, Jacobsen M, Krag Jacobsen G et al (1979a) Immunohistochemical evidence for an intracellular localization of plasma proteins in human foetal choroid plexus and brain. Neurosci Lett 14:85–90

    Article  PubMed  Google Scholar 

  • Møllgård K, Lauritzen B, Saunders NR (1979b) Double replica technique applied to choroid plexus from early foetal sheep: completeness and complexity of tight junctions. J Neurocytol 8:139–149

    Article  PubMed  Google Scholar 

  • Møllgård K, Saunders NR (1986) The development of the human blood-brain and blood-CSF barriers. Neuropathol Applied Neurobiol 12:337–358

    Article  Google Scholar 

  • Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604

    Article  CAS  PubMed  Google Scholar 

  • Morel F (1947) La massa intermedia ou commissure grise. Contributions à l’étude statistique de cette formation inconstante chez l’Homme. Acta Anat (Basel) 4:203–207

    Article  Google Scholar 

  • Mott FW (1910) The Oliver-Sharpey lectures on the cerebrospinal fluid. Lecture I: the physiology of the cerebrospinal fluid. Lancet 176:1–8

    Article  Google Scholar 

  • Müller F, O'Rahilly R (1986) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205–222

    Article  Google Scholar 

  • Müller F, O'Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176:413–430

    Article  Google Scholar 

  • Müller F, O'Rahilly R (1990) The human brain at stages 18-20, including the choroid plexuses and the amygdaloid and septal nuclei. Anat Embryol 182:285–306

    Google Scholar 

  • Murakami M (1961) An electron microscopic study of the choroid plexus in the lizard, Gecko japonicus. J Electron 10:77–86

    Google Scholar 

  • Murray M, Jones H, Cserr HF, Rall DP (1975) The blood-brain barrier and ventricular system of Myxine glutinosa. Brain Res 99:17–33

    Article  CAS  PubMed  Google Scholar 

  • Nabeshima S, Reese TS, Landis DMD et al (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–170

    Article  CAS  PubMed  Google Scholar 

  • Narita K, Kawate T, Nakinuma N, Takeda S (2010) Multiple primary cilia modulates the fluid transcytosis in choroid plexus epithelium. Traffic 11:287–301

    Article  CAS  PubMed  Google Scholar 

  • Narita K, Takeda S (2015) Cilia in the choroid plexus: their roles in hydrocephalus and beyond. Frontiers Cell Neurosci 9:39. https://doi.org/10.3389/fncel.2015.00039 eCollection 2015

    Article  CAS  Google Scholar 

  • Nataf S, Strazielle N, Hatterer E et al (2006) Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 54:160–171

    Article  PubMed  Google Scholar 

  • Nathanson JA (1979) Beta-adrenergic-sensitive adenylate cyclase in secretory cells of choroid plexus. Science 204:843–844

    Article  CAS  PubMed  Google Scholar 

  • Nelson E, Blinzinger K, Hager H (1961) Electron microscopic observations on subarachnoid and perivascular spaces of the Syrian hamster brain. Neurology 11:285–295

    PubMed  Google Scholar 

  • Nelson DJ, Wright EM (1974) The distribution, activity, and function of the cilia in the frog brain. J Physiol 243:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New H, Dziegielewska KM, Saunders NR (1983) Transferrin in fetal rat brain and cerebrospinal fluid. Int J Dev Neurosci 1:396–373

    Article  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI et al (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson C, Billa SF (1984) Vasoactive intestinal polypeptide (VIP): effects in the eye and on regional blood flow. Acta Physiol Scand 121:385–392

    Article  CAS  PubMed  Google Scholar 

  • Nilsson C, Ekman R, Lindvall-Axelsson M et al (1990) Distribution of peptidergic nerves in the choroid plexus, focusing on coexistence of neuropeptide Y, vasoactive intestinal polypeptide and peptide histidine isoleucine. Regul Pept 27:11–26

    Article  CAS  PubMed  Google Scholar 

  • Nilsson C, Fahrenkrug J, Lindvall-Axelsson M et al (1991a) Epithelial cells purified from choroid plexus have receptors for vasoactive intestinal polypeptide. Brain Res 542:241–247

    Article  CAS  PubMed  Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1991b) Simultaneous and continuous measurement of choroid plexus blood flow and cerebrospinal fluid production. Effects of vasoactive intestinal polypeptide. J Cereb Blood Flow Metab 11:861–867

    Article  CAS  PubMed  Google Scholar 

  • Nilsson C, Lindvall-Axelsson M, Owman C (1992) Neuroendocrine regulatory mechanisms in the choroid plexus­ cerebrospinal fluid system. Brain Res Rev 17:109–138

    Article  CAS  PubMed  Google Scholar 

  • Nógrádi A, Kelly C, Carter ND (1993) Localization of acetazolamide-resistant carbonic anhydrase III in human and rat choroid plexus by immunocytochemistry and in situ hybridization. Neurosci Lett 151:162–165

    Article  PubMed  Google Scholar 

  • Nonami Y, Narita K, Nakamura H et al (2013) Developmental changes in ciliary motility on choroid plexus epithelial cells during the perinatal period. Cytoskeleton (Hoboken) 70:797–803

    Article  CAS  Google Scholar 

  • Oda Y, Nakanishi I (1984) Ultrastructure of the mouse leptomeninx. J Comp Neurol 225:448–457

    Article  CAS  PubMed  Google Scholar 

  • Oda I, Nakanishi I (1987) Ultrastructure of the caudal portion of the fourth ventricular roof in the mouse. J Comp Neurol 256:299–307

    Article  CAS  PubMed  Google Scholar 

  • Ogunshola OO, Stewart WB, Mihalcik V et al (2000) Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119:139–153

    Article  CAS  PubMed  Google Scholar 

  • Ohlsson R, Hedborg F, Holmgren L et al (1994) Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. Development 120:361–368

    CAS  PubMed  Google Scholar 

  • Ohlsson R, Nyström A, Pfeifer-Ohlsson S et al (1993) IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genet 4:94–97

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F, Hutchins GM et al (1987) Computer ranking of the sequence of appearance of 73 features of the brain and related structures in staged human embryos during the sixth week of development. Am J Anat 180:69–86

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F, Hutchins GM et al (1988) Computer ranking of the sequence of appearance of 40 features of the brain and related structures in staged human embryos during the seventh week of development. Am J Anat 182:295–317

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1990) Ventricular system and choroid plexuses of the human brain during the embryonic period proper. Am J Anat 189:285–302

    Article  PubMed  Google Scholar 

  • Orlin JR, Osen KK, Hovig F (1991) Subdural compartment in pig: a morphologic study with blood and horseradish peroxidase infused subdurally. Anat Rec 230:22–37

    Article  CAS  PubMed  Google Scholar 

  • Osaka K, Handa H, Matsumoto S et al (1980) Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6:26–38

    CAS  PubMed  Google Scholar 

  • Oshio K, Watanabe H, Song Y et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel Aquaporin-1. FASEB J 19:76–78

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski NL, Lolait DJ, Young WS (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135:1511–1528

    Article  CAS  PubMed  Google Scholar 

  • Osumi-Yamashita N, Ninomiya Y, Doi H et al (1994) The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 164:409–419

    Article  CAS  PubMed  Google Scholar 

  • Otani H, Tanaka O (1988) Development of the choroid plexus anlage and supraependymal structures in the fourth ventricular roof plate of human embryos: scanning electron microscopic observations. Am J Anat 181:53–66

    Article  CAS  PubMed  Google Scholar 

  • Pacheco MA, Marks RW, Schoenwolf GC et al (1986) Quantification of the initial phases of rapid brain enlargement in the chick embryo. Am J Anat 175:403–411

    Article  CAS  PubMed  Google Scholar 

  • Page RB, Rosenstein JM, Leure-du Pree AE (1979) The morphology of extrachoroidal ependymal overlying gray and white matter in the rabbit lateral ventricle. Anat Rec 194:67–81

    Article  CAS  PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. cytology and organization. Springer, New York

    Book  Google Scholar 

  • Palha JA, Fernandes R, de Escobar GM et al (2000) Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology 141:3267–3272

    Article  CAS  PubMed  Google Scholar 

  • Panrucker DE, Dziegielewska KM, Lorscheider FL et al (1984) Acute-phase a2-macroglobulin in CSF during development of the fetal rat. Int J Dev Neurosci 1:31–34

    Article  Google Scholar 

  • Pappas GD, Tennyson V (1962) An electron microscopic study of the passage of colloidal particles from the blood vessels of the ciliary processes and choroid plexus of rabbit. J Cell Biol 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parada C, Gato A, Aparicio M et al (2006) Proteome analysis of chick embryonic cerebrospinal fluid. Proteomics 6:312–320

    Article  CAS  PubMed  Google Scholar 

  • Parada C, Gato A, Bueno D (2005) Mammalian embryonic cerebrospinal fluid proteome has greater apolipoprotein and enzyme pattern complexity than the avian proteome. J Proteome Res 4:2420–2428

    Article  CAS  PubMed  Google Scholar 

  • Paspalas CD, Papadopoulos GC, Michaloudi H (1994) Serotoninergic supraependymal plexus in the ventricular system of the hedgehog: organization principles and functional implications. J Hirnforsch 35:333–342

    CAS  PubMed  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M et al (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger mRNA in human brain. Neuroscience 92:601–611

    Article  CAS  PubMed  Google Scholar 

  • Pease DC, Schultz RL (1958) Electron microcopy of rat cranial meninges. Am J Anat 102:301–321

    Article  CAS  PubMed  Google Scholar 

  • Pehlemann FW, Sievers J, Berry M (1985) Meningeal cells are involved in foliation, lamination, and neurogenesis of the cerebellum: evidence from 6-hydroxydopamine-induced destruction of meningeal cells. Dev Biol 110:136–146

    Article  CAS  PubMed  Google Scholar 

  • Peters A (1974) The surface fin structure of the choroid plexus and ependymal lining of the rat lateral ventricle. J Neurocytol 3:99–108

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Swan RC (1979) The choroid plexus of the mature and aging rat: the choroidal epithelium. Anat Rec 194:325–354

    Article  CAS  PubMed  Google Scholar 

  • Petrov T, Howarth AG, Krukoff TL, Stevenson BR (1994) Distribution of the tight junction-associated protein ZO-1 in circumventricular organs of the CNS. Brain Res Mol Brain Res 21:235–246

    Article  CAS  PubMed  Google Scholar 

  • Pi X, Voogt JL, Grattam DR (2002) Detection of prolactin receptor mRNA in the corpus striatum and substantia nigra of the rat. J Neurosci Res 67:551–558

    Article  CAS  PubMed  Google Scholar 

  • Pietri T, Eder O, Blanche M et al (2003) The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo. Dev Biol 259:176–187

    Article  CAS  PubMed  Google Scholar 

  • Platt JB (1893) Ectodermic origin of the cartilage of the head. Anat Anz 8:506–509

    Google Scholar 

  • Platt JB (1898) The development of the cartilaginous skull and of the branchial and hypoglossal musculature in Necturus. Morphol Jahrb 25:375–465

    Google Scholar 

  • Powell-Braxton L, Hollingshead P, Warburton C et al (1993) IGF-I is required for normal embryonic growth in mice. Genes Dev 7:2609–2617

    Article  CAS  PubMed  Google Scholar 

  • Praetorius J, Damkier HH (2017) Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 312:C673–C686

    Article  PubMed  Google Scholar 

  • Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67

    Article  CAS  PubMed  Google Scholar 

  • Prasongchean W, Vernay B, Asgarian Z et al (2015) The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Front Neurosci 9:103. https://doi.org/10.3389/fnins.2015.00103 eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Pringle NP, Huthrie S, Lumsden A et al (1998) Dorsal spinal cord neuroepithelium generates astrocytes but not oligodendrocytes. Neuron 20:883–893

    Article  CAS  PubMed  Google Scholar 

  • Puymirat J, Miehle M, Marchand R et al (1991) Immunocytochemical localization of thyroid hormone receptors in the adult rat brain. Thyroid 1:173–184

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Sato TN (1995) Mouse multidrug resistance 1a/3 gene is the earliest known endothelial cell differentiation marker during blood-brain barrier development. Dev Dyn 202:172–180

    Article  CAS  PubMed  Google Scholar 

  • Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  • Quintela T, Gonçalvez I, Carrero LC et al (2013) Analysis of the effects of sex hormone background on the rat choroid plexus transcriptome by cDNA microarryas. PLoS One 8(4):e60199. https://doi.org/10.1371/journal.pone.0060199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raidoo DM, Narotam PK, van Dellen J et al (1998) Cellular orientation of natriuretic peptide in the human brain. J Chem Neuroanat 14:207–213

    Article  CAS  PubMed  Google Scholar 

  • Rajtová V (2000) The plexus chorioideus in the adult goat: a scanning electron microscopic study. Acta Vet Brno 69:167–171

    Article  Google Scholar 

  • Rajtová V (2002) Scanning electron microscopy of plexus chorioideus in adult sheep. Acta Vet Brno 71:279–282

    Article  Google Scholar 

  • Ramsey HJ (1965) Fine structure of the surface of the cerebral cortex of human brain. J Cell Biol 26:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao VV, Dahlheimer JL, Bardgett ME et al (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci U S A 96:3900–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rascol M, Izard J (1976) The subdural neurothelioum of the cranial meninges in rat. Anat Rec 186:429–436

    Article  CAS  PubMed  Google Scholar 

  • Rascol M, Izard J (1978) Arachnoidea and subarachnoid spaces of the vault of the skull in man. Acta Neuropathol (Berl) 41:41–44

    Article  CAS  Google Scholar 

  • Redzic ZB, Preston JE, Duncan JA et al (2005) The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 71:1–52

    Article  CAS  PubMed  Google Scholar 

  • Reese TS, Karnovsky MJ (1967) Fine structural localization of a blood-brain barrier to exogeneous peroxidase. J ell Biol 34:207–217

    Article  CAS  Google Scholar 

  • Richards JG, Lorez HP, Colombo VE et al (1981) Demonstration of supra-ependymal 5-HT nerve fibres in human brain and their immunohistochemical identification in rat brain. J Physiol Paris 77:219–224

    CAS  PubMed  Google Scholar 

  • Risau W, Hallmann R, Albrecht U (1986a) Differentiation-dependent expression of proteins in brain endothelium during development of the blood-brain barrier. Dev Biol 117:537–545

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Hallmann R, Albrecht U (1986b) Brain induces the expression of an early cell surface marker for blood-brain barrier-specific endothelium. EMBO J 5:3179–3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risau W, Wolburg H (1990) Development of the blood-brain barrier. Trends Neurosci 13:174–178

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Wolburg H (1991) Reply Trends Neurosci 14:15

    Article  Google Scholar 

  • Roky R, Paut-Pagano L, Goffin V et al (1996) Distribution of prolactin receptors in the rat forebrain. Immunohistochemical study Neuroendocrinology 63:422–429

    Article  CAS  PubMed  Google Scholar 

  • Rotter A, Birdsall NJ, Burgen AS et al (1979) Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]propylbenzilylcholine mustard and its distribution in the forebrain. Brain Res 180:141–165

    Article  CAS  PubMed  Google Scholar 

  • Roussel G, Delaunoy J-P, Nussbaum J-L et al (1979) Demonstration of a specific localization of carbonic anhydrase C in glial cells of rat CNS by an immunohistochemical method. Brain Res 160:47–55

    Article  CAS  PubMed  Google Scholar 

  • Russell DS (1949) Observations on the pathology of hydrocephalus. HM Stationery Office, London, pp 10–19

    Google Scholar 

  • Santoyala RC, Rodriguez EL, Chandia E (1968) The surface of the choroid plexus cell under normal and experimental conditions. Zeit Zellforsch mikrosk Anatomie 92:43–51

    Article  Google Scholar 

  • Sarnat HB (1992) Role of human fetal ependyma. Pediatr Neurol 8:163178

    Article  Google Scholar 

  • Saunders NR, Dziegielewska KM, Mollgard K (1991) The importance of the blood-brain barrier in fetuses and embryos. Trends Neurosci 14:14

    Article  CAS  PubMed  Google Scholar 

  • Scala G, Corona M, Pavone LM et al (2007) Structural and functional features of choroid epithelium from Buffalo brain. Anat Rec 290:1399–1412

    Article  CAS  Google Scholar 

  • Schachenmayr W, Friede RL (1978) The origin of subdural neomembranes. I. Fine structure of the dura-arachnoid interface in man. Am J Pathol 92:53–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schinkel AH, Smit JJM, Van Tellingen O et al (1994) Disruption of the mouse mdr 1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1985) Shaping and bending of the avian neuroepithelium: morphometric analyses. Dev Biol 109:127–139

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1988) Microsurgical analyses of avian neurulation: separation of medial and lateral tissues. J Comp Neurol 276:498–507

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1991) Cell movements during neurulation in avian embryos. Development S2:157–168

    Google Scholar 

  • Schoenwolf GC, Alvarez IS (1989) Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106:427–439

    CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Desmond ME (1984a) Neural tube occlusion precedes rapid brain enlargement. J Exp Zool 230:405–407

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Desmond ME (1984b) Descriptive studies of occlusion and reopening of the spinal canal of the early chick embryo. Anat Rec 209:251–263

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Desmond ME (1986) Timing and positioning of reopening of the occluded spinal neurocele in the chick embryo. J Comp Neurol 246:459–466

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Everaert S, Bortier H et al (1989) Neural plate- and neural tube-forming potential in isolated epiblast areas in avian embryos. Anat Embryol 179:541–549

    Article  CAS  Google Scholar 

  • Schoenwolf GC, Sheard P (1989) Shaping and bending of the avian neural plate as analyzed with a fluorescent-histochemical marker. Development 105:17–25

    CAS  PubMed  Google Scholar 

  • Schreiber G, Richardson SJ, Prapunpoj P (2001) Structure and expression of the transthyretin gene in the choroid plexus: a model for the study of the mechanisms of evolution. Microsc Res Tech 52:21–30

    Article  CAS  PubMed  Google Scholar 

  • Schulingkamp RJ, Pagano TC, Hung D et al (2000) Insulin receptors and insulin action in the brain: review and clinical implication. Neurosci Biobehav Res 24:855–872

    Article  CAS  Google Scholar 

  • Scott DE, Paull WK, Dudley GK (1972) A comparative scanning electron microscopic analysis of the human cerebral ventricular system. I. the third ventricle. Z Zellforsch 132:203–215

    Article  CAS  PubMed  Google Scholar 

  • Scott DE, Van Dyke DH, Paull WK, Kozlowski GP (1974) Ultrastructural analysis of the human cerebral ventricular system. III. The choroid plexus. Cell Tissue Res 150:389–397

    Article  CAS  PubMed  Google Scholar 

  • Shabo AL, Maxwell DS (1968) The morphology of the arachnoid villi: a light and electron microscopic study in the monkey. J Neurosurg 29:451–463

    Article  Google Scholar 

  • Shuangshoti S, Netsky MG (1966) Histogenesis of choroid plexus in man. Am J Anat 118:283–316

    Article  CAS  PubMed  Google Scholar 

  • Siegel GJ, Holm C, Schreiber JH et al (1984) Purification of mouse brain Na+-K+-ATPase catalytic unit, characterization of antiserum, and immunocytochemical localization in cerebellum, choroid plexus, and kidney. J Histochem Cytochem 32:1309–1318

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler JA, Ashique AM, Zarbalis K et al (2009) Retinoic acid from the meninges regulates cortical neuron generation. Cell 139:597–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievers J, Mangold U, Berry M (1983) 6-0HDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. Genesis and topography. Cell Tissue Res 230:309–336

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Mangold U, Berry M et al (1981) Experimental studies on cerebellar foliation. I.a qualitative morphological analysis of cerebellar fissuration defects after neonatal treatment with 6-0HDA in the rat. J Comp Neurol 203:751–769

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Pehlemann F-W, Baumgarten H-G et al (1985) Selective destruction of meningeal cells by 6-hydroxy­ dopamine: a tool to study meningeal-neuroepithelial interaction in brain development. Dev Biol 110:127–135

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S et al (1994a) A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 23:117–134

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S et al (1994b) Meningeal cells organize the superficial glia limitans of the cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Von Knebel DC et al (1986) Meningeal cells influence cerebellar development over a critical period. Anat Embryol 175:91–100

    Article  CAS  Google Scholar 

  • Silverman WF, Walsh RJ, Posner BI (1986) The ontogeny of specific prolactin binding sites in the rat choroid plexus. Dev Brain Res 24:11–19

    Article  CAS  Google Scholar 

  • Siyahhan B, Knobloch V, Asgari M et al (2014) Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface 11(94):20131189. https://doi.org/10.1098/rsif.2013.1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner DC, Malpaux B (1999) High melatonin concentration in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405

    Article  CAS  PubMed  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Schoenwolf GC (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J Exp Zool 250:49–62

    Article  CAS  PubMed  Google Scholar 

  • Sousa RJ, Tannery NH, Lafer EM (1989) In situ hybridisation mapping of glucocorticoid receptor messenger ribonucleic acid in rat brain. Mol Endocrinol 3:481–494

    Article  CAS  PubMed  Google Scholar 

  • Southwell BR, Duan W, Allorn D et al (1993) Thyroxine transport to the brain: role of protein by the choroid plexus. Endocrinology 133:2116–2212

    Article  CAS  PubMed  Google Scholar 

  • Stan RV, Kubitza M, Palade GE (1999) PV-1 is a component of the fenestrated and stomatal diaphragms in fenestrated endothelium. Proc Natl Acad Sci U S A 96:13203–13207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Tkachenko E, Niesman IR (2004) PV1 is a key structural component for the formation of the stomatal and fenestrated diaphragms. Mol Biol Cell 15:3615–3630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stan RV, Tse D, Deharvengt SJ et al (2012) The diaphragm of fenestrated endothelia – gatekeepers of vascular permeability and blood composition. Dev Cell 23:1203–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stankov B, Cozzi B, Lucini V et al (1991) Localization and characterization of melatonin binding sites in the brain of rabbit (Oryctolagus cuniculus) by autoradiography and in vitro ligand-receptor binding. Neurosci Lett 133:68–72

    Article  CAS  PubMed  Google Scholar 

  • Stasny F, Lisy V (1981) Cortisol regulation of gamma-glutamyl­transpeptidase in liver, choroids plexus, blood plasma and cerebrospinal fluid of developing chick embryo. Dev Neurosci 4:408–415

    Article  Google Scholar 

  • Stasny F, Rychter Z (1976) Effect of hydrocortisone on the growth of choroid plexus and composition of cerebrospinal fluid in the developing chick embryo. Acta Neurol Scand 53:260–274

    Article  Google Scholar 

  • Stenman JM, Rajagopal J, Carroll TJ et al (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–1250

    Article  CAS  PubMed  Google Scholar 

  • Sternberger NH, Sternberger LA (1987) Blood-brain barrier protein recognized by monoclonal antibody. Proc Natl Acad Sci U S A 84:8169–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PA, Hayakawa K (1994) Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Dev Brain Res 78:25–34

    Article  CAS  Google Scholar 

  • Stewart PA, Wiley MJ (1981) Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail-chick transplantation chimeras. Dev Biol 84:183–192

    Article  CAS  PubMed  Google Scholar 

  • Streeter GL (1912) The development of the nervous system. In: Keibel F, Mall FP (eds) Manual of human embryology. JB Lippincott Company, Philadelphia/London, pp 1–156

    Google Scholar 

  • Sturrock RR (1979a) A comparison of the process of ventricular coarctation and choroid and ependymal fusion in the mouse brain. J Anat 129:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sturrock RR (1979b) A morphological study of the development of the mouse choroid plexus. J Anat 129:777–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stylianopoulou F, Efstratiadis A, Herbert J et al (1988) Pattern of the insulin-like growth factor II gene expression during rat embryogenesis. Development 103:497–506

    CAS  PubMed  Google Scholar 

  • Super H, Martinez A, Soriano E (1997) Degeneration of Cajal-Retzius cells in the developing cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Brain Res Dev Brain Res 98:15–20

    Article  CAS  PubMed  Google Scholar 

  • Sussenbach JS, Steenbergh PH, Jansen E et al (1991) Structural and regulatory aspects of the human genes encoding IGF-I and –II. Adv Exp Med Biol 293:1–14

    Article  CAS  PubMed  Google Scholar 

  • Swetloff A, Ferretti P (2005) Changes in E2F5 intracellular localization in mouse and human choroid plexus epithelium with development. Int J Dev Biol 49:859–865

    Article  CAS  PubMed  Google Scholar 

  • Tamega OJ, Tirapelli LF, Petroni S (2000) Scanning electron microscopy of the choroid plexus in the monkey (Cebus apella apella). Arq Neuropsiquiatr 58:820–8250

    Article  CAS  PubMed  Google Scholar 

  • Tannahill D, Harris LW, Keynes R (2005) Role of morphogens in brain growth. J Neurobiol 64:367–375

    Article  CAS  PubMed  Google Scholar 

  • Tauc M, Vignon X, Bouchaud C (1984) Evidence for the effectiveness of the blood-CSF barrier in the fetal rat choroid plexus. A freeze-fracture and peroxidase diffusion study. Tissue Cell 16:65–74

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Dziadek M (1993) Capacity to form choroid plexus-like cells in vitro is restricted to specific regions of the mouse neural ectoderm. Development 117:253–262

    CAS  PubMed  Google Scholar 

  • Thomas T, Power B, Hudson P et al (1988) The expression of transthyretin mRNA in the developing rat brain. Dev Biol 128:415–427

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Schreiber G, Jaworowski A (1989) Developmental patterns of gene expression of secreted proteins in brain and choroid plexus. Dev Biol 134:38–47

    Article  CAS  PubMed  Google Scholar 

  • Tong Y, Pelletier G (1990) Ontogeny of atrial natriuretic factor (ANF) binding in various areas of rat brain. Neuropeptides 16:63–68

    Article  CAS  PubMed  Google Scholar 

  • Tricoli JV, Rall LB, Scott J et al (1984) Localization of insulin-like growth factor genes to human chromosome 11 and 12. Nature 310:784–786

    Article  CAS  PubMed  Google Scholar 

  • Tsai CE, Daood MJ, Lane RH et al (2002) P-glycoprotein expression in mouse brain increases with maturation. Biol Neonate 81:56–64

    Article  Google Scholar 

  • Tsutsumi M, Skinner MK, Sanders-Bush E (1989) Transferrin gene expression and synthesis by cultured choroid plexus epithelial cells. J Biol Chem 264:9626–9631

    CAS  PubMed  Google Scholar 

  • Toyama E, Doi Y, Kudo H, Fujimura T (1997) Diversity in distribution of Na+.K+ ATPase of the choroid epithelium of prenatal rats; an immunocytochemical study. Arch Histol Cytol 60:235–244

    Article  CAS  PubMed  Google Scholar 

  • Tu GF, Cole T, Southwell BR et al (1990) Expression of the genes for transthyretin, cystatin C and beta A4 amyloid precursor protein in sheep choroid plexus during development. Bran Res Dev Brain Res 55:203–208

    Article  CAS  Google Scholar 

  • Turkewistch N (1935) Die Entwicklung des Aquaeductus cerebri des Menschen. Morphol Jahrb 76:421–447

    Google Scholar 

  • Vandenabeele F, Creemers J, Lambrichts I (1996) Ultrastructure of the human spinal arachnoid mater and dura mater. J Anat 189:417–430

    PubMed  PubMed Central  Google Scholar 

  • Van Deurs B (1980) Structural aspects of brain barriers, with special reference to the permeability of the cerebral endothelium and choroidal epithelium. Int Rev Cytol 65:117–191

    Article  PubMed  Google Scholar 

  • Van Dijk MA, Van Schik FMA, Bootsma HJ et al (1991) Initial characterization of the four promoters of the human insulin-like growth factor II gene. Mol Cell Endocrinol 81:81–94

    Article  PubMed  Google Scholar 

  • Vanecek J (1988) Melatonin binding sites. J Neurochem 51:1436–1440

    Article  CAS  PubMed  Google Scholar 

  • Vera A, Stanic K, Montesinos H et al (2013) SCO-spondin from embryonic cerebrospinal fluid is required for neurogenesis during early brain development. Front Cell Neurosci 7:80. https://doi.org/10.3389/fncel.2013.00080 eCollection 2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertongen P, Schiffmann SN, Gourlet P et al (1997) Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain. Peptides 18:1547–1554

    Article  CAS  PubMed  Google Scholar 

  • Vígh B, Manzano e Silva MJ, Frank CL et al (2004) The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol Histopathol 19:607–628

    PubMed  Google Scholar 

  • Virgintino D, Errede M, Girolamo F et al (2008) Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol 67:50–61

    Article  CAS  PubMed  Google Scholar 

  • Voetmann E (1949) On the structure and surface area of the human choroid plexus: a quantitative anatomical study. Acta Anat (Basel) 8(Suppl 10):1–116

    Google Scholar 

  • Von Knebel DC, Sievers J, Sadler M et al (1986) Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydrocydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience 17:409–426

    Article  Google Scholar 

  • Von Schroeder HP, Nishimura R, Mc Intosh CH et al (1985) Autoradiographic localization of binding sites for atrial natriuretic factor. Can J Physiol Pharmacol 63:1373–1377

    Article  Google Scholar 

  • Vorbrodt AW, Dobrogowska DH (2003) Molecular anatomy of intercellular junctions in brain endothelial and epithelial barriers: electron microscopist’s view. Brain Res Reviews 42:221–242

    Article  CAS  Google Scholar 

  • Vorbrodt AW, Lossinsky AS, Wisniewski HM (1986) Localization of alkaline phosphatase activity in endothelia of developing and mature blood-brain barrier. Dev Neurosci 8:1–13

    Article  CAS  PubMed  Google Scholar 

  • Vulpian MA (1859) Note sur les phénomènes de développement qui se manifestent dans la queue des très-jeunes embryons de grenouille, après qu’on l’a séparée du corps par une section transversale. C R Acad Sci 48:807–811

    Google Scholar 

  • Wagner HJ, Pilgrim CH, Brandl J (1974) Penetration and removal of cerebral horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium, and microglia. Acta Neuropathol 27:299–315

    Article  CAS  PubMed  Google Scholar 

  • Wakai S, Hirokawa N (1978) Development of blood-cerebrospinal fluid barrier to horseradish peroxidase in the chick embryo. Cell Tissue Res 195:195–203

    Article  CAS  PubMed  Google Scholar 

  • Walsh RJ, Posner BI, Kopri BM et al (1978) Prolactin binding sites in the rat brain. Science 201:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Nykanen M, Yang N et al (2011) Altered cellular localization of aquaporin-1 in experimental hydrocephalus in mice and reduced ventriculomegaly in aquaporin-1 deficiency. Mol Cell Neurosci 46:318–324

    Article  CAS  PubMed  Google Scholar 

  • Watts AG, Sanchez-Watts G, Emmanuel JR et al (1991) Cell-specific expression of mRNAs encoding Na+, K+-ATPase a and b-subunit isoforms within the rat central nervous system. Proc Natl Acad Sci U S A 88:7425–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1914) Studies on cerebro-spinal fluid. III. The pathways of escape from the subarachnoid spaces with particular references to the arachnoid villi. J Med Res 31:51–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1916a) The establishment of the circulation of cerebro-spinal fluid. Anat Rec 10:256–258

    Article  Google Scholar 

  • Weed LH (1916b) The formation of the cranial subarachnoid spaces. Anat Rec 10:475–481

    Article  Google Scholar 

  • Weed LH (1917) The development of the cerebro-spinal spaces in pig and man. Contrib Embryol Carnegie Inst 5:1–116

    Google Scholar 

  • Weed LH (1923) The absorption of cerebrospinal fluid into the venous system. Am J Anat 31:191–221

    Article  CAS  Google Scholar 

  • Weindl A, Joynt RJ (1972) Ultrastructure of the ventricular walls. Three dimensional study of regional specialization. Arch Neurol 26:420–427

    Article  CAS  PubMed  Google Scholar 

  • Weiss P (1934) Secretory activity of the inner layer of the embryonic mid-brain of the chick as revealed by tissue culture. Anat Rec 58:299–302

    Article  Google Scholar 

  • Welch K (1975) The principles of physiology of the cerebrospinal fluid in relation to hydrocephalus including normal pressure hydrocephalus. Adv Neurol 13:247–332

    CAS  PubMed  Google Scholar 

  • Westergaard E (1971) The lateral cerebral ventricles of human fetuses with a crown-rump length of 26-178 mm. Acta Anat (Basel) 79:409–421

    Article  CAS  Google Scholar 

  • Whish S, Dziegielewska KM, Møllgård K et al (2015) The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci 9:16. https://doi.org/10.3389/fnins.2015.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Wijnholds J, de Lange ECM, Scheffer GL et al (2000) Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 105:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams B (1973) Is aqueduct stenosis a result of hydrocephalus? Brain 96:399–412

    Article  CAS  PubMed  Google Scholar 

  • Williams LM, Hannah LT, Bassett JM (1999) Melatonin receptors in neonatal pig brain and pituitary gland. J Pineal Res 26:43–49

    Article  CAS  PubMed  Google Scholar 

  • Wilson JT (1937) On the nature and mode of origin of the foramen of Magendie. J Anat 71:423–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilting J, Christ B (1989) An experimental and ultrastructural study on the development of the avian choroid plexus. Cell Tissue Res 255:487–494

    Article  CAS  PubMed  Google Scholar 

  • Winkelman NW, Fay T (1930) The Pacchionian system, histologic and pathologic changes with particular reference to the idiopathic and symptomatic convulsive states. Arch Neurol Psychiatr 23:44–64

    Article  Google Scholar 

  • Wray GA (1997) Echinoderms. In: Gilbert SF, Raunio AM (eds) Embryology, constructing the organism. Sinauer, Sunderland, pp 309–329

    Google Scholar 

  • Wright DE, Seroogy RB, Lundgren KH et al (1995) Comparative localization of serotonin 1A, 1C and 2 receptor subtypes mRNAs in rat brain. J Comp Neurol 351:357–373

    Article  CAS  PubMed  Google Scholar 

  • Yamadori T, Yagihashi S (1975) A scanning and transmission electron microscopic observation of the fourth ventricular floor in the mouse. Arch Histol Jpn 37:415–432

    Article  CAS  PubMed  Google Scholar 

  • Yamashima T (1988) Functional channels in human arachnoid villi. Neurosurgery 22:633–641

    Article  CAS  PubMed  Google Scholar 

  • Yoshida Y, Yamada M, Wakabayashi K et al (1988) Endothelial fenestrae in the rat fetal cerebrum. Dev Brain Res 44:211–219

    Article  CAS  Google Scholar 

  • Zappaterra MD, Lisgo SN, Lindsay S et al (2007) A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res 6:3537–3548

    Article  CAS  PubMed  Google Scholar 

  • Zaki W (1977) Développement des granulations arachnoïdiennes. Bull Assoc Anat 61:131–138

    Google Scholar 

  • Zenker W, Bankoul S, Braun JS (1994) Morphological indications for considerable diffuse reabsorption of cerebrospinal fluid in spinal meninges particularly in the areas of meningeal funnels. Anat Embryol 189:243–258

    Article  CAS  Google Scholar 

  • Zervas NT, Lisczak TM, Meyberg MR et al (1982) Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J Neurosurg 56:475–481

    Article  CAS  PubMed  Google Scholar 

  • Zhang ET, Inman CBE, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Smith D, Yamamoto M et al (2003) The meninges is a source of retinoic acid for the late-developing hindbrain. J Neurosci 23:7610–7620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV, Mackie JB, Wang L et al (1993) Differential expression of Na,K-ATPase alpha and beta subunits isoforms at the blood-brain barrier and the choroid plexus. J Biol Chem 268:8019–8025

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Catala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Catala, M. (2019). Development of the Cerebrospinal Fluid Pathways during Embryonic and Fetal Life in Humans. In: Cinalli, G., Ozek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-31889-9_2-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31889-9_2-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31889-9

  • Online ISBN: 978-3-319-31889-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Development of the Cerebrospinal Fluid Pathways during Embryonic and Fetal Life in Humans
    Published:
    23 October 2018

    DOI: https://doi.org/10.1007/978-3-319-31889-9_2-2

  2. Original

    Development of the Cerebrospinal Fluid Pathways during Embryonic and Fetal Life in Humans
    Published:
    18 September 2018

    DOI: https://doi.org/10.1007/978-3-319-31889-9_2-1