Skip to main content

IPMCs as EAPs: Fundamentals

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

This chapter reviews the fundamentals of ionic polymer–metal composites (IPMCs), which are used for sensors and actuators. First, the basic structure of IPMCs is described, and a brief review of their development is provided. Then, the configurations of various devices based on them, including those of the electrode materials and ionic polymers, are described. Then, the basic techniques used to characterize IPMCs are described. In the next section, electromechanical models and, in particular, a physics-based model of an IPMC actuator are discussed. Finally, electrochemical models, including an Alternating Current impedance equivalent circuit model and an electrode reaction model, and a mechanical model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric-ionic liquid electroactive actuators. Sens Actuators A 126:173–181

    Article  Google Scholar 

  • Aoyagi W, Omiya M (2013) Mechanical and electrochemical properties of an IPMC actuator with palladium electrodes in acid and alkaline solutions. Smart Mater Struct 22:055028 (10 pp)

    Article  Google Scholar 

  • Asaka K, Oguro K (2000) Bending of Polyelectrolyte Membrane-platinum composites by electric stimuli. Part II. Response kinetics. J Electroanal Chem 480:186–198

    Article  Google Scholar 

  • Asaka K, Oguro K (2009a) IPMC actuators: fundamentals. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 103–119

    Google Scholar 

  • Asaka K, Oguro K (2009b) Active microcatheter and biomedical soft devices based on IPMC actuators. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 103–119

    Google Scholar 

  • Asaka K, Okuzaki H (eds) (2014) Soft actuators – material, modeling, applications and future perspectives. Springer, Tokyo

    Google Scholar 

  • Aureli M, Porfiri M (2012) Effect of electrode surface roughness on the electrical impedance of ionic polymer–metal composites. Smart Mater Struct 21:105030

    Article  Google Scholar 

  • Aureli M, Lin W, Porfiri M (2009) On the capacitance-boost of ionic polymer metal composites due to electroless plating: theory and experiments. J Appl Phys 105:104911

    Article  Google Scholar 

  • Bard AJ, Falkner LF (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens Actuators A-Phys 115:79–90

    Article  Google Scholar 

  • Bisquert J (2000) Influence of the boundaries in the impedance of porous film electrodes. Phys Chem Chem Phys 2:4185–4192

    Article  Google Scholar 

  • Carpi F, Smela E (eds) (2009) Biomedical applications of electroactive polymer actuators. Wiley, Chichester

    Google Scholar 

  • Cha Y, Porfiri M (2013) Bias-dependent model of the electrical impedance of ionic polymer-metal composites. Phys Rev E 87:022403

    Article  Google Scholar 

  • Chen Z, Tan X (2008) A control-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans Mechatron 13(5):519–529

    Article  Google Scholar 

  • Chung CK, Fung PK, Hong YZ et al (2006) A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens Actuators B 117:367–375

    Article  Google Scholar 

  • de Gennes PG, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50:513–518

    Article  Google Scholar 

  • de Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8:751–780

    Article  Google Scholar 

  • de Levie R (1964) On porous electrodes in electrolyte solutions—IV. Electrochim Acta 9:1231–1245

    Article  Google Scholar 

  • DeRossi D, Kajiwara K, Osada Y, Yamauchi A (eds) (1991) Polymer gels – fundamentals and biomedical applications. Plenum Press, New York

    Google Scholar 

  • Doi M (2009) Gel dynamics. J Phys Soc Jpn 78(5): 052001

    Google Scholar 

  • Fujiwara N, Asaka K, Nishimura Y et al (1999) Preparation of gold-solid electrolyte composites as electric stimuli responsive materials. Chem Mater 12:1750–1754

    Article  Google Scholar 

  • Hamlen RP, Kent CE, Shafer SN (1965) Electrolytically activated contractile polymer. Nature 206:1149–1150

    Article  Google Scholar 

  • He Q, Yu M, Song L et al (2011) Experimental study and model analysis of the performance of IPMC membranes with various thickness. J Bionic Eng 8:77–85

    Article  Google Scholar 

  • Jo CH, Pugal D, Oh IK et al (2013) Recent advances in ionic polymer-metal composite actuators and their modeling and applications. Prog Polym Sci 38(7):1037–1066

    Article  Google Scholar 

  • Johanson U, Maeorg U, Sammelselg V et al (2008) Electrode reactions in Cu-Pt coated ionic polymer actuators. Sens Actuators B 31:340–346

    Article  Google Scholar 

  • Kikuchi K, Tsuchitani S (2009) Nafion based polymer actuators with ionic liquids as solvent incorporated at room temperature. J Appl Phys 106:053519

    Article  Google Scholar 

  • Kikuchi K, Sakamoto T, Tsuchitani S et al (2011) Comparative study of bending characteristics of ionic polymer actuators containing ionic liquids for modeling actuation. J Appl Phys 109:073505

    Article  Google Scholar 

  • Kim SM, Kim KJ (2008) Palladium buffer-layered high performance ionic polymer-metal composites. Smart Mater Struct 17:035011

    Article  Google Scholar 

  • Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites – II. Manufacturing techniques. Smart Mater Struct 12:65–79

    Article  Google Scholar 

  • Kim KJ, Tadokoro S (eds) (2007) Electroactive polymers for robotics applications. Springer, London

    Google Scholar 

  • Kim SM, Tiwari R, Kim KJ (2009) A novel ionic polymer-metal composites incorporating ZnO thin film. Smart Mater Struct Electroactive Polym Actuators Devices 7287:72870W-1-7

    Google Scholar 

  • Kim D, Kim KJ, Nam JD et al (2011) Electro-chemical operation of ionic polymer–metal composites. Sens Actuators B 155(2011):106–113

    Article  Google Scholar 

  • Lee JW, Yoo YT (2009) Anion effects in imidazolium ionic liquids on the performance of IPMCs. Sens Actuators B 137:539–546

    Article  Google Scholar 

  • Levitsky IA, Kanelos P, Euler WB (2004) Electromechanical actuation of composite material from carbon nanotubes and ionomeric polymer. J Chem Phys 121:1058–1165

    Article  Google Scholar 

  • Lin J, Liu Y, Zhang QM (2011) Charge dynamics and bending actuation in Aquivion membrane swelled with ionic liquids. Polymer 52:540–546

    Article  Google Scholar 

  • Liu Y, Zhao R, Ghaffari M et al (2012) Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sens Actuators A 181:70–76

    Article  Google Scholar 

  • Lu L, Liu J, Zhang Y et al (2013) Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design. Adv Mater 25:1270–1274

    Article  Google Scholar 

  • Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys 92:2899–2915

    Article  Google Scholar 

  • Nemat-Nasser S, Wu Y (2003) Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93:5255–5267

    Article  Google Scholar 

  • Nemat-Nasser S, Zamani S (2006) Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents. J Appl Phys 100:064310

    Article  Google Scholar 

  • Oguro K, Kawami Y, Takenaka H (1992) Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage. J Micromach Soc 5:27–30

    Google Scholar 

  • Palmre V, Lust E, Janes A et al (2011) Electroactive polymer actuators with carbon aerogel electrodes. J Mater Chem 21:2577–2583

    Article  Google Scholar 

  • Panwar V, Lee C, Ko SY et al (2012) Dynamic mechanical, electrical, and actuation properties of ionic polymer metal composites using PVDF/PVP/PSSA blend membranes. Mater Chem Phys 135:928–937

    Article  Google Scholar 

  • Paquette JW, Kim KJ, Nam JD et al (2003) An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique. J Intell Mater Syst Struct 14:633–642

    Article  Google Scholar 

  • Pasquale GD, Graziani S, Messina FG et al (2014) An investigation of the structure–property relationships in ionic polymer polymer composites (IP2Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion R 117. Smart Mater Struct 23:035018 (12pp)

    Article  Google Scholar 

  • Porfiri M (2008) Charge dynamics in ionic polymer metal composites. J Appl Phys 104:104915

    Article  Google Scholar 

  • Pugal D, Kim KJ, Aabloo A (2011) An explicit physics-based model of ionic polymer-metal composite actuators. J Appl Phys 110(8):084904

    Article  Google Scholar 

  • Pugal D, Solin P, Aabloo A, Kim KJ (2013) IPMC mechanoelectric transduction: its scalability and optimization. Smart Mater Struct 22(12):125029

    Article  Google Scholar 

  • Punning A, Kruusmaa M, Aabloo A (2007) Surface resistance experiments with IPMC sensors and actuators. Sens Actuators A 133:200–209

    Article  Google Scholar 

  • Rajagopalan M, Jeon JH, Oh IK (2010) Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide. Sens Actuators B 151:198–204

    Article  Google Scholar 

  • Shahinpoor M (1992) Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater Struct 1:91–94

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ (2000) The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles. Smart Mater Struct 9:543–551

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites – I. Fundamentals. Smart Mater Struct 10:819–833

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ (2004) Ionic polymer-metal composites – III. Modeling and simulation as biomimetic sensors, actuators, transducers and artificial muscles. Smart Mater Struct 13:1362–1388

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ (2005) Ionic polymer-metal composites – IV. Industrial and mechanical applications. Smart Mater Struct 14:197–214

    Article  Google Scholar 

  • Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct 7:R15–R30

    Article  Google Scholar 

  • Shahinpoor M, Kim KJ, Mojarrad M (2007) Artificial muscles – applications of advanced polymeric nanocomposites. CRC Press, New York/London

    Google Scholar 

  • Tadokoro S, Yamagami S, Takamori T et al (2000) Modeling of nafion-Pt composite actuators (ICPF) by ionic motion. Smart Mater Struct Electroactive Polym Actuators Devices 3987:92–102

    Google Scholar 

  • Vunder V, Itik M, Poldsalu I et al (2014) Inversion based control of ionic polymer–metal composite actuators with nanoporous carbon based electrodes. Smart Mater Struct 23:025010

    Article  Google Scholar 

  • Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912

    Article  Google Scholar 

  • Wang XL, Oh IK, Lee S (2010) Electroactive artificial muscle based on crosslinked PVA/SPTES. Sens Actuators B 150:57–64

    Article  Google Scholar 

  • Wang Y, Zhu Z, Chen H et al (2014) Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater Struct 23:125015

    Article  Google Scholar 

  • Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356

    Article  Google Scholar 

  • Zhang L, Yang Y (2007) Modeling of an ionic polymer–metal composite beam on human tissue. Smart Mater Struct 16:S197–S206

    Article  Google Scholar 

  • Zhu Z, Asaka K, Chang L et al (2013a) Multiphysics of ionic polymer-metal composite actuator. J Appl Phys 114:084902

    Article  Google Scholar 

  • Zhu Z, Asaka K, Chang L et al (2013b) Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 114:184902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinji Asaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Asaka, K., Kim, K., Oguro, K., Shahinpoor, M. (2016). IPMCs as EAPs: Fundamentals. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_6

Download citation

Publish with us

Policies and ethics