Skip to main content

Polymer Gels as EAPs: How to Start Experimenting with Them

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 2228 Accesses

Abstract

Electromechanically active polymers (EAP) show great potential for many actuator applications. In this context, hydrogels which are also considered as active polymers have shown also actuator and sensor applications due to their volume phase transition. Nevertheless, in the general term of electromechanically active polymers there is not an exact definition about what is an active polymer. Hydrogels can be considered as active polymer materials not only because of their volume phase transition but also due to their electrical and dielectric properties depending on their internal or chemical modification. The most spread definition of hydrogels is that they are soft and wet materials which show very intriguing properties regarding their volume phase transition. Applications of hydrogels are tightly restricted due to their relative mechanical weakness. In the past 10 years a lot of research has been done in the field of modifying the mechanical properties of hydrogels in order to adapt these materials to daily life requirements. They have been used as sensors and actuators in many fields of science and engineering including microfluidics and biomedicine. In this chapter, we briefly present the main properties of hydrogels, some of the methods used to characterize them as well as the principal applications from an engineering and general point of view. This chapter could be used as a general introduction to the topic of hydrogels, more specifically thermal responsive ones, and also represents an opportunity for all those who want to enter to the field of hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIBN:

Azobisisobutyronitrile

BIS:

N,N′-Methylenebisacrylamide

BPO:

Benzoyl peroxide

DMIAAm:

N, N-Dimethylmaleinimidethylacrylamide

EBL:

Electron beam lithography

LCST:

Lower critical solution temperature

mTM:

Microtransfer molding

NIPAAm:

N-Isopropyl acrylamide

PAAm:

Poly(acrylic acid)

PEG:

Poly(ethylene glycol)

PNIPAAm:

Poly(N-isopropyl acrylamide)

PVA:

Poly(vinyl alcohol)

PVME:

Poly(vinyl methyl ether)

RET:

Rubber elasticity theory

UCST:

Upper critical solution temperature

UV:

Ultraviolet

VPT:

Volume phase transition

μCP:

μ-Contact printing

A:

Structure factor (RET)

B:

Volume factor (RET)

c :

Concentration

d :

Diameter of a gel cylinder

D :

Diffusion coefficient

D coop :

Cooperative diffusion coefficient

F :

Helmholtz free energy

G :

Gibbs free energy

G′ :

Storage modulus

G″ :

Loss modulus

g (1)(t):

Electric field correlation function

g (2)(t):

Intensity correlation function

m :

Mass

n :

Number of moles

M :

Molecular weight

M w :

Weight average molecular weight

p :

Pressure

Q :

Degree of swelling

Q m :

Mass degree of swelling

Q v :

Volume degree of swelling

R:

Gas constant (8.314 J K−1 mol−1)

r :

Radius

R h :

Hydrodynamic radius

T :

Temperature

t :

Decay time

\( {\overline{V}}_i \) :

Partial molar volume of component i

V i :

Molar volume of component i

〈 〉:

Time average

I t,P :

Total time-averaged scattering intensity at a const. position

Δ:

Total change

λ :

Wavelength

μ i :

Chemical potential of component i

ρ :

Density

τ :

Time constant

υ c :

Cross-linking density (mol network chains/volume)

χ:

Huggins interaction parameter

References

  • Adam M, Lairez D (1996) Sol–gel transition. In: Cohen Addad JP (ed) Physical properties of polymeric gels. Wiley, Chichester

    Google Scholar 

  • Adam M, Delsanti M, Munch JP, Durand D (1987) Size and mass determination of clusters obtained by polycondensation near the gelation threshold. J Physique 48(10):1809–1819

    Article  Google Scholar 

  • Allerdissen M, Greiner R, Richter A (2012) Microfluidic microchemomechanical systems. Adv Sci Technol 81:84–89

    Article  Google Scholar 

  • Aoyagi T, Ebara M (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J Biomater Sci Polym Edn 11(1):101–110

    Article  Google Scholar 

  • Arndt K-F, Krahl F, Richter S, Steiner G (2009) Swelling-related processes in hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg

    Google Scholar 

  • Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2(2):179–220

    Article  Google Scholar 

  • Bae YH, Okano T (1990) Temperature dependence of swelling of crosslinked poly (N, N-alkyl substituted acrylamides) in water. J Polym Sci Part B Polym Phys 28(6):923–936

    Article  Google Scholar 

  • Barry RA III, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv Mater 21(23):2407–2410

    Article  Google Scholar 

  • Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) Swelling equilibria for ionized temperature‐sensitive gels in water and in aqueous salt solutions. J Chem Phys 92(3):2061–2066

    Article  Google Scholar 

  • Berger J, Zweifel H (1983) Neue photoreaktive Polymere mit seitenständigen Dimethylmaleinimid-Gruppen. I. Radikalische homo-und copolymerisation von N-(5-methyl-3-oxa-4-oxo-hexen-5-yl)-dimethylmaleinimid. Angew Makromol Chem 115(1):163–181

    Article  Google Scholar 

  • Bhatia SN, Yarmush ML, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34(2):189–199

    Article  Google Scholar 

  • Boyko V, Richter S (2004) Monitoring of the gelation process on a radical chain cross-linking reaction based on N-vinylcaprolactam by using dynamic light scattering. Macromol Chem Phys 205(6):724–730

    Article  Google Scholar 

  • Chang CJ, Wu FM, Chang SJ, Hsu MW (2004) Influence of UV-curable compositions and rib properties on ink-jet-type color filter performance. Jpn J Appl Phys 43:6280–6285

    Article  Google Scholar 

  • Chang CJ, Chang SJ, Shih KC, Pan FL (2005) Improving mechanical properties and chemical resistance of ink-jet printer color filter by using diblock polymeric dispersants. J Polym Sci Polym Phys 43(22):3337–3353

    Article  Google Scholar 

  • Chang CJ, Hung ST, Lin CK, Chen CY, Kuo EH (2010) Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes. Thin Solid Films 519(5):1693–1698

    Article  Google Scholar 

  • Chapiro A (ed) (1962) Radiation chemistry of polymeric systems. Interscience, New York

    Google Scholar 

  • Charlesby A, Alexander P (1955) Reticulation of polymers in aqueous solution by γ-rays. J Chim Phys Phys Chim Biol 552:699–709

    Google Scholar 

  • Chen G, Hoffman AS (1995) Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 373(6509):49–52

    Article  Google Scholar 

  • Chen G, Imanishi Y, Ito Y (1998a) Photolithographic synthesis of hydrogels. Macromolecules 31(13):4379–4381

    Article  Google Scholar 

  • Chen G, Imanishi Y, Ito Y (1998b) pH-sensitive thin hydrogel microfabricated by photolithography. Langmuir 14(22):6610–6612

    Article  Google Scholar 

  • Coleman MM, Hu Y, Sobkowiak M, Painter PC (1998) Infrared characterization of poly(vinyl cinnamate) and its blends with poly(4-vinyl phenol) before and after UV exposure. J Polym Sci Part B: Polym Phys 36(9):1579–1590

    Article  Google Scholar 

  • Coqueret X (1999) Photoreactivity of polymers with dimerizable side-groups: kinetic analysis for probing morphology and molecular organization. Macromol Chem Phys 200(7):1567–1579

    Article  Google Scholar 

  • Coqueret X, El Achari A, Hajaiej A, Lablache-Combier A, Loucheux C, Randrianarisoa L (1991) Some aspects of the reactivity of photo-dimerizable esters grafted onto silicone main chain polymers. Makromol Chem 192(7):1517–1534

    Article  Google Scholar 

  • Dastidar P, Okabe S, Nakano K, Iida K, Miyata M, Tohnai N, Shibyama M (2005) Facile syntheses of a class of supramolecular gelator following a combinatorial library approach: dynamic light scattering and small-angle neutron scattering studies. Chem Mater 17(4):741–748

    Article  Google Scholar 

  • de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–213

    Article  Google Scholar 

  • Dušek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci A-2 6(7):1209–1216

    Article  Google Scholar 

  • Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T (2003) Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 4(2):344–349

    Article  Google Scholar 

  • Eckert F (2003) Bestimmung der kooperativen Diffusionskoeffzienten von Poly(acrylsäure)-Netzwerken. Diploma thesis, TU Dresden

    Google Scholar 

  • Eckert F (2008) Netzwerkheterogenität und kooperative Bewegung: Untersuchung von Netzwerken unterschiedlicher Vernetzungsmechanismen mit dynamischer Lichtstreuung. PhD-Thesis, TU Dresden

    Google Scholar 

  • Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26(10):2496–2500

    Article  Google Scholar 

  • Ferse B (2007) Smarte Nano-Komposit-Hydrogele. Diploma thesis, TU Dresden

    Google Scholar 

  • Ferse B, Richter S, Arndt K-F, Richter A (2007) Investigation of gelling aqueous clay dispersions with dynamic light scattering. Macromol Symp 254(1):378–385

    Article  Google Scholar 

  • Ferse B, Richter S, Eckert F, Kulkarni A, Papadakis CM, Arndt K-F (2008) Gelation mechanism of poly(N-isopropylacrylamide)−clay nanocomposite hydrogels synthesized by photopolymerization. Langmuir 24(21):12627–12635

    Article  Google Scholar 

  • Finter J, Widmer E, Zweifel H (1984) A new class of photopolymers with pendent dimethylmaleimide groups. II. Photocrosslinking of homo- and copolymers of N-(5-methyl-3-oxa-4-oxohexen-5-yl)-dimethylmaleimide. Angew Makromol Chem 128(1):71–97

    Article  Google Scholar 

  • Finter J, Haniotis Z, Lohse F, Meier K, Zweifel H (1985) A new class of photopolymers with pendent dimethylmaleimide groups III. Comparative study of different photopolymers with pendent olefinic structures including dimethylmaleimide groups. Angew Makromol Chem 133(1):147–170

    Article  Google Scholar 

  • Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35(1):51–75

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Flory PJ (1974) Introductory lecture. Disc Farad Soc 57(1):7–18

    Article  Google Scholar 

  • Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11(11):512–520

    Article  Google Scholar 

  • Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11(11):521–526

    Article  Google Scholar 

  • Flory PJ, Gordon M, McCrum NG (1976) Statistical thermodynamics of random networks. Proc R Soc Lond A 351:351–380

    Article  Google Scholar 

  • Fujie T, Desii A, Ventrelli L, Mazzolai B, Mattoli V (2012) Inkjet printing of protein microarrays on freestanding polymeric nanofilms for spatio-selective cell culture environment. Biomed Microdevices 14(6):1069–76

    Article  Google Scholar 

  • Gale MT (1997) Replication techniques for diffractive optical elements. Microelectron Eng 34:321–339

    Google Scholar 

  • Gaylord NG, Adler G (1963) Book reviews. In: Chapiro A (ed) Radiation chemistry of polymeric systems high polymers. Interscience, New York

    Google Scholar 

  • Geissler E (1993) Dynamic light scattering from polymer gels. In: Brown W (ed) Dynamic light scattering. Clarendon, Oxford

    Google Scholar 

  • Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12(23):5034–5044

    Article  Google Scholar 

  • Guenther M, Gerlach G, Corten C, Kuckling D, Sorber J, Arndt K-F (2008) Hydrogel-based sensor for a rheochemical characterization of solutions. Sens Actuatuators B 132(2):471

    Article  Google Scholar 

  • Guillen G, Wight S, Bennett J, Tarlov MJ (1994) Patterning of self assembled alkanethiol monolayers on silver by microfocus ion and electron beam bombardment. Appl Phys Lett 65(5):534–536

    Article  Google Scholar 

  • Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35(27):10162–10171

    Article  Google Scholar 

  • Hecht AM, Geissler E (1987) Kinetic observations by SAXS and centrifugation of a gelating system. Macromolecules 20(10):2485–2490

    Article  Google Scholar 

  • Hermans JJ (1947) Deformation and swelling of polymer networks containing comparatively long chains. Trans Faraday Soc 43(1):591–600

    Article  Google Scholar 

  • Hirokawa Y, Tanaka T (1984) Volume phase transition in a nonionic gel. J Chem Phys 81(12):6379–6380

    Article  Google Scholar 

  • Hirotsu S (1993) Coexistence of phases and the nature of first-order phase transition in poly-N-isopropylacrylamide gels. Adv Polym Sci 110:1–26

    Article  Google Scholar 

  • Hirotsu S (1994) Static and time-dependent properties of polymer gels around the volume phase transition. Phase Trans 47(3–4):183–240

    Article  Google Scholar 

  • Hooper HH, Baker JP, Blanch HW, Prausnitz JM (1990) Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules 23(4):1096–1104

    Article  Google Scholar 

  • Huang HL, Chen JK, Houng MP (2012) Using soft lithography to fabricate gold nanoparticle patterns for bottom-gate field effect transistors. Thin Solid Films 524:304–308

    Article  Google Scholar 

  • Huck WTS (2007) Self-assembly meets nanofabrication: recent developments in microcontact printing and dip-pen nanolithography. Angew Chem Int Ed 46(16):2754–2757

    Article  Google Scholar 

  • Huggins ML (1941) Solutions of long-chain compounds. J Chem Phys 9(5):440–440

    Article  Google Scholar 

  • Huggins ML (1943) Thermodynamic properties of solutions of high polymers. The empirical constant in the activity equation. Ann NY Acad Sci 44:431–443

    Article  Google Scholar 

  • Ito Y (1999) Photolithographic synthesis of intelligent microgels. J Intell Mater Syst Struct 10(7):541–547

    Article  Google Scholar 

  • James HM, Guth E (1943) Theory of the elastic properties of rubber. J Chem Phys 11(10):455–481

    Article  Google Scholar 

  • Kabiri K, Omidian H, Hashemi SA, Zohuriaan-Mehr MJ (2003) Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate. Eur Polym J 39(7):1341–1348

    Article  Google Scholar 

  • Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 31(18):6099–6105

    Article  Google Scholar 

  • Kelby TS, Huck WTS (2010) Controlled bending of microscale aupolyelectrolyte brush bilayers. Macromolecules 43(12):5382–5386

    Article  Google Scholar 

  • Kim E, Xia Y, Whitesides GM (1995) Polymer microstructures formed by moulding in capillaries. Nature 376:581–584

    Article  Google Scholar 

  • Klatt S, Allerdissen M, Körbitz R, Voit B, Arndt K-F, Richter A (2012) Hydrogel-based microfluidic systems. Adv Sci Technol 81:90–95

    Article  Google Scholar 

  • Kretschmer K (2005) Dünne, multi-sensitive Hydrogelschichten aus photovernetzbaren Blockcopolymeren. PhD thesis, TU Dresden

    Google Scholar 

  • Kuckling D, Hoffman J, Plötner M, Ferse D, Kretschmer K, Adler HJP, Arndt KF, Reichelt R (2003) Photo cross-linkable PNIPAAm copolymers 3: microfabricated temperature responsive hydrogels. Polymer 44:4455–4462

    Google Scholar 

  • Kuckling D, Arndt K-F, Richter S (2009) Synthesis of hydrogels. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kuckling D, Doering A, Krahl F, Arndt K-F (2012) Stimuli responsive polymer systems. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 8. Elsevier BV, Amsterdam, pp 377–413

    Chapter  Google Scholar 

  • Lang W (1996) Silicon microstructuring technology. Mater Sci Eng R17(1):1–55

    Article  Google Scholar 

  • Lercel M, Tiberio RC, Chapman PF, Craighead HG, Sheen CW, Parikh AN, Allara DL (1993) Self‐assembled monolayer electron‐beam resists on GaAs and SiO2. J Vac Sci Technol B 11(6):2823–2828

    Article  Google Scholar 

  • Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92(2):1365–1371

    Article  Google Scholar 

  • Li J, Gao W, Dong R, Pei A, Sattayasamitsathit S, Wang J (2014) Nanomotor lithography. Nat Commun 5:5026

    Article  Google Scholar 

  • Nakayama Y, Matsuda T (1992) Preparation and characteristics of photocrosslinkable hydrophilic polymer having cinnamate moiety. J Polym Sci A, Polym Chem 30:2451–2457

    Google Scholar 

  • Mönch I, Makarov D, Koseva R, Baraban L, Karnaushenko D, Kaiser C, Arndt K-F, Schmidt OG (2011) Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects. ACS Nano 5(9):7436–7442

    Article  Google Scholar 

  • Munch JP, Ankrim M, Hild G, Candau S (1983) Dynamic light scattering study of the radical copolymerization of styrene-meta divinylbenzene. J Phys Lett 44(2):73–78

    Article  Google Scholar 

  • Ngai T, Wu C, Chen Y (2004) Origins of the speckles and slow dynamics of polymer gels. J Phys Chem B 108(18):5532–5540

    Article  Google Scholar 

  • Nijenhuis K (2007) On the nature of crosslinks in thermoreversible gels. Polym Bull 58(1):27–42

    Article  Google Scholar 

  • Norisuye T, Takeda M, Shibayama M (1998) Cluster-size distribution of cross-linked polymer chains across the gelation threshold. Macromolecules 31(16):5316–5322

    Article  Google Scholar 

  • Norrish RGW (1937) On the principle of primary recombination in relation to the velocity of thermal reactions in solution. Trans Faraday Soc 33:1521–1528

    Article  Google Scholar 

  • Nuzzo RG (2001) The future of electronics manufacturing is revealed in the fine print. Proc Natl Acad Sci 98(9):4827–4829

    Article  Google Scholar 

  • Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23(1):283–289

    Article  Google Scholar 

  • Paschew G (2006) Entwicklung eines hoch aufgelösten taktilen Displays. Diploma thesis, TU Dresden

    Google Scholar 

  • Perl A, Reinhoudt DN, Huskens J (2009) Microcontact printing: limitations and achievements. Adv Mater 21(22):2257–2268

    Article  Google Scholar 

  • Peters A, Candau SJ (1986) Kinetics of swelling of polyacrylamide gels. Macromolecules 19(7):1952–1955

    Article  Google Scholar 

  • Peters A, Candau SJ (1988) Kinetics of swelling of spherical and cylindrical gels. Macromolecules 21(7):2278–2282

    Article  Google Scholar 

  • Pierik A, Dijksman F, Raaijmakers A, Wismans T, Stapert H (2008) Quality control of inkjet technology for DNA microarray fabrication. Biotechnol J 3(12):1581–1590

    Article  Google Scholar 

  • Quesada-Perez M, Maroto-Centeno JA, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7(22):10536–10547

    Article  Google Scholar 

  • Richter S (2006) Contributions to the dynamical behavior of cross-linked and cross-linking systems: stimulus-sensitive microgels and hydrogels, reversible and irreversible gelation processes. Habilitationsschrift, TU Dresden

    Google Scholar 

  • Richter S (2007) Recent gelation studies on irreversible and reversible systems with dynamic light scattering and rheology. A concise summary. Macromol Chem Phys 208(14):1495–1502

    Article  Google Scholar 

  • Richter A (2009) Hydrogels for actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators, Springer Series on chemical sensors and biosensors. Springer, Berlin/Heidelberg, pp 221–248

    Chapter  Google Scholar 

  • Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21(9):979–983

    Article  Google Scholar 

  • Richter A, Kuckling D, Howitz S, Gehring T, Arndt K-F (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12(5):748–753

    Article  Google Scholar 

  • Richter A, Bund A, Keller M, Arndt K-F (2004a) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuators B Chem 99(2–3):579–585

    Article  Google Scholar 

  • Richter A, Klenke C, Arndt K-F (2004b) Adjustable low dynamic pumps based on hydrogels. Macromol Symp 210(1):377–384

    Article  Google Scholar 

  • Richter A, Türke A, Pich A (2007a) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19(8):1109–1112

    Article  Google Scholar 

  • Richter A, Wenzel J, Kretschmer K (2007b) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuators B Chem 125(2):569–573

    Article  Google Scholar 

  • Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-J (2008) Review on hydrogel-based pH sensors and microsensors. Sensors 8(1):561–581

    Article  Google Scholar 

  • Richter A, Klatt S, Paschew G, Klenke C (2009) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9(4):613–618

    Article  Google Scholar 

  • Salgado-Rodríguez R, Licea-Claveríe A, Arndt K-F (2004) Smart pH/temperature sensitive hydrogels with tailored transition temperature. J Mex Chem Soc 57(2):118–126

    Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide)-experiment, theory and application. Progr Polym Sci 17(2):163–249

    Article  Google Scholar 

  • Schmidt T, Mönch JI, Arndt K-F (2006) Temperature-sensitive hydrogel pattern by electron-beam lithography. Macromol Mater Eng 291(7):755–761

    Article  Google Scholar 

  • Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79(12):1799–1819

    Article  Google Scholar 

  • Shibayama M (2012) Structure–mechanical property relationship of tough hydrogels. Soft Matter 8(31):8030–8038

    Article  Google Scholar 

  • Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75(4):641–659

    Article  Google Scholar 

  • Singh D, Kuckling D, Choudhary V, Adler HJ, Koul V (2006) Synthesis and characterization of poly(N-isopropylacrylamide) films by photopolymerisation. Polym Adv Technol 17(3):186–192

    Article  Google Scholar 

  • Stauffer D (1998) Gelierungstheorie: Versäumte Zusammenarbeit von Physik und Chemie. Ber Bunsen Ges Phys Chem 102(11):1672–1678

    Article  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44:103–158

    Article  Google Scholar 

  • Stenekes RJH, Hennink WE (2000) Polymerization kinetics od dextran-bound methacrylate in an aqueous two phase system. Polymer 41(15):5563–5569

    Article  Google Scholar 

  • Suzuki K, Matsui S, Ochiai Y (eds) (2000) Sub-half-micron lithography for ULSIs. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40(12):820–823

    Article  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218

    Article  Google Scholar 

  • Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59(9):5151–5159

    Article  Google Scholar 

  • Thiel J, Maurer G, Prausnitz JM (1995) Hydrogele: Verwendungsmöglichkeiten und thermodynamische Eigenschaften. Chem Ing Tech 67(12):1567–1583

    Article  Google Scholar 

  • Tsuda Y, Kikuchi A, Yamato M, Sakurai Y, Umezu M, Okano T (2004) Control of cell adhesion and detachment using temperature and thermoresponsive copolymer grafted culture surfaces. J Biomed Mater Res 69A(1):70–78

    Article  Google Scholar 

  • Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T (2005) The use of patterned dual thermoresponsive surfaces for collective recovery as co-cultured cell sheets. Biomaterials 26(14):1885–1893

    Article  Google Scholar 

  • Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10(2):132–134

    Article  Google Scholar 

  • Wall FT (1943) Statistical thermodynamics of rubber. III. J Chem Phys 11(11):527–530

    Article  Google Scholar 

  • Wall FT (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19(12):1435–1439

    Article  Google Scholar 

  • Ward JH, Bashir R, Peppas NA (2001) Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J Biomed Mater Res 56(3):351–360

    Article  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transitions. Adv Polym Sci 134:165–234

    Article  Google Scholar 

  • Wounters D, Schubert US (2003) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanmeter-sized devices. Angew Chem Int Ed 43:2480–2495

    Google Scholar 

  • Wounters D, Schubert US (2004) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices. Angew Chem Int Ed 43(19):2480–2495

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Inter Ed 37(5):550–575

    Article  Google Scholar 

  • Zhao X, Xia Y, Whitesides GM (1996) Fabrication of three-dimensional micro-structures: microtransfer molding. Adv Mater 8(10):837–840

    Article  Google Scholar 

  • Zweifel H (1983) Polymers with pendent dimethylmaleimide groups as highly sensitive photocrosslinkable systems. Photogr Sci Eng 27(3):114–118

    Google Scholar 

Download references

Acknowledgment

The authors thank M. Dziewiencki (TU Dresden) for DSC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ferse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Ferse, B., Pedrero, L., Tietze, M., Richter, A. (2016). Polymer Gels as EAPs: How to Start Experimenting with Them. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_5

Download citation

Publish with us

Policies and ethics