Skip to main content

Polymer Gels as EAPs: Applications

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

  • 2222 Accesses

Abstract

Stimuli-responsive hydrogels display a variety of interesting features that make them ideal candidates for technological applications. The applicable stimuli range from temperature, pH, and (bio)chemical species to electric fields and light; some materials can even be controlled by multiple stimuli. Hydrogel materials can be synthesized by a single-step free-radical polymerization, and various methods to introduce them into a final system are discussed. This chapter covers applications of smart hydrogels in various (micro-)systems starting from transparent conductors over stimuli-sensitive optical components and drug delivery devices for medical applications. Intensively discussed are microfluidic applications starting from single components as thermostats, chemostats, and valves toward complex integrated systems. Finally, we outline the implications of autonomous microfluidic devices to the field of chemical information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allerdißen M, Greiner R, Richter A (2013) Microfluidic microchemomechanical systems. In: Vincenzini P, Lorenzelli L (eds) Advances in science and technology. Trans Tech, Pfaffikon, Switzerland, pp 84–89

    Google Scholar 

  • Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for bioMEMS. Micromachines 2:179–220

    Article  Google Scholar 

  • Bae YM, Lee K-H, Yang J et al (2014) Hydrogel-based capillary flow pumping in a hydrophobic microfluidic channel. Jpn J Appl Phys 53:067201

    Article  Google Scholar 

  • Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: a review. J Spacecr Rockets 39:822–827

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  • Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7:245–251

    Article  Google Scholar 

  • Benito-Lopez F, Antoñana-Díez M, Curto VF et al (2014) Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators. Lab Chip 14:3530–3538

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134

    Article  Google Scholar 

  • Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486

    Article  Google Scholar 

  • Ding H, Zhong M, Kim YJ et al (2014) Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano 8:4348–4357

    Article  Google Scholar 

  • Donatin E, Drancourt M (2012) DNA microarrays for the diagnosis of infectious diseases. Méd Mal Infect 42:453–459

    Article  Google Scholar 

  • Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56:199–210

    Article  Google Scholar 

  • Elstner M, Axthelm J, Schiller A (2014) Sugar-based molecular computing by material implication. Angew Chem Int Ed 53:7339–7343

    Article  Google Scholar 

  • Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators: engineering and technology. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044

    Article  Google Scholar 

  • Hart RA, da Silva AK (2012) Self-optimizing, thermally adaptive microfluidic flow structures. Microfluid Nanofluid 14:121–132

    Article  Google Scholar 

  • Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64(Suppl):18–23

    Article  Google Scholar 

  • Hoffmann J, Plötner M, Kuckling D, Fischer W-J (1999) Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens Actuators Phys 77:139–144

    Article  Google Scholar 

  • Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Article  Google Scholar 

  • Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf B Biointerfaces 104:116–121

    Article  Google Scholar 

  • Keplinger C, Sun J-Y, Foo CC et al (2013) Stretchable, transparent, ionic conductors. Science 341:984–987

    Article  Google Scholar 

  • Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 54:53–77

    Article  Google Scholar 

  • Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513

    Article  Google Scholar 

  • Kim J, Singh N, Lyon LA (2007) Displacement-induced switching rates of bioresponsive hydrogel microlenses. Chem Mater 19:2527–2532

    Article  Google Scholar 

  • Kuckling D, Adler H-JP, Arndt K-F et al (1999) Photocrosslinking of thin films of temperature-sensitive polymers. Polym Adv Technol 10:345–352

    Article  Google Scholar 

  • Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20

    Article  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  Google Scholar 

  • Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882

    Article  Google Scholar 

  • Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41

    Article  Google Scholar 

  • Lin S, Wang W, Ju X-J et al (2014) A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control. Lab Chip 14:2626–2634

    Article  Google Scholar 

  • Linder V (2007) Microfluidics at the crossroad with point-of-care diagnostics. Analyst 132:1186–1192

    Article  Google Scholar 

  • Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C 36:405–430

    Article  Google Scholar 

  • Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003

    Article  Google Scholar 

  • Nawroth JC, Lee H, Feinberg AW et al (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797

    Article  Google Scholar 

  • Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250

    Article  Google Scholar 

  • Nuxoll E (2013) BioMEMS in drug delivery. Adv Drug Deliv Rev 65:1611–1625

    Article  Google Scholar 

  • Park S, Zhang Y, Lin S et al (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29:830–839

    Article  Google Scholar 

  • Paschew G, Körbitz R, Richter A (2013) Multimodal, high-resolution imaging system based on stimuli-responsive polymers. Advances in Science and Technology, In, pp 44–49

    Google Scholar 

  • Plueddemann EP (2013) Silane coupling agents. Springer Science & Business Media, New York

    Google Scholar 

  • Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64(Suppl):49–60

    Article  Google Scholar 

  • Richter A (2009) Hydrogels for Actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248

    Chapter  Google Scholar 

  • Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983

    Article  Google Scholar 

  • Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753

    Article  Google Scholar 

  • Richter A, Türke A, Pich A (2007) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112

    Article  Google Scholar 

  • Richter A, Klatt S, Paschew G, Klenke C (2009) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618

    Article  Google Scholar 

  • Rogers JA (2013) A clear advance in soft actuators. Science 341:968–969

    Article  Google Scholar 

  • Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243

    Article  Google Scholar 

  • Sekine S, Ido Y, Miyake T et al (2010) Conducting polymer electrodes printed on hydrogel. J Am Chem Soc 132:13174–13175

    Article  Google Scholar 

  • Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983

    Article  Google Scholar 

  • Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494

    Article  Google Scholar 

  • Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738

    Article  Google Scholar 

  • Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347

    Article  Google Scholar 

  • Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  Google Scholar 

  • Thompson AM, Paguirigan AL, Kreutz JE et al (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14:3135–3142

    Article  Google Scholar 

  • Tondu B, Emirkhanian R, Mathé S, Ricard A (2009) A pH-activated artificial muscle using the McKibben-type braided structure. Sens Actuators Phys 150:124–130

    Article  Google Scholar 

  • Tondu B, Mathé S, Emirkhanian R (2010) Low pH-range control of McKibben polymeric artificial muscles. Sens Actuators Phys 159:73–78

    Article  Google Scholar 

  • Unger MA, Chou H-P, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Voigt A, Greiner R, Allerdißen M et al (2014) Towards computation with microchemomechanical systems. Int J Found Comput Sci 25:507–523

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049

    Article  Google Scholar 

  • Yang E-H, Lee C, Mueller J, George T (2004) Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion. J Microelectromech Syst 13:799–807

    Article  Google Scholar 

  • Zhang D, Guo J (2011) The development and standardization of testing methods for genetically modified organisms and their derived productsF. J Integr Plant Biol 53:539–551

    Article  Google Scholar 

  • Zhang Z, Philen M (2011) Review: pressurized artificial muscles. J Intell Mater Syst Struct 53:539–551, 1045389X11420592

    Google Scholar 

  • Zhang Y, Liu Z, Swaddiwudhipong S et al (2012) pH-sensitive hydrogel for micro-fluidic valve. J Funct Biomater 3:464–479

    Article  Google Scholar 

  • Ziaie B, Baldi A, Lei M et al (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Elstner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Elstner, M., Richter, A. (2016). Polymer Gels as EAPs: Applications. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_4

Download citation

Publish with us

Policies and ethics