Skip to main content

Dielectric Elastomers as EAPs: How to Start Experimenting with Them

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

As can be seen from the large number of videos of home-made dielectric elastomer actuators (DEAs) on YouTube, getting started making DEAs is straightforward and can be done at low cost. This chapter provides information on making two types of basic dielectric elastomer actuators, as well as detailed information on using DE for energy harvesting (converting mechanical energy into electrical energy).

A word of caution about high voltages: Voltages of several thousand volts are required to operate DEAs. The user must therefore exercise caution to avoid electrocution or electrical fires. In addition to taking steps to limit the current delivered by the power supply in the event of a short circuit or of accidental contact, one must also keep in mind that a DEA is a large capacitor capable of storing very large electrical charge, which means that even a “human-safe” current-limited power supply can expose the user to lethal shocks. Arcing in air can easily occur, and short-circuits through the thin membrane are common, linking the high-voltage side to the low-voltage side. Do not use high-voltage circuits unless you have appropriate safety training and experience, as they can be dangerous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Araromi OA, Gavrilovich I, Shintake J, Rosset S, Richard M, Gass V, Shea HR (2015) Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20(1):438–446. doi:10.1109/TMECH.2014.2329367

    Article  Google Scholar 

  • Foo CC, Cai S, Koh SJA, Bauer S, Suo Z (2012a) Model of dissipative dielectric elastomers. J Appl Phys 111:034102. doi:10.1063/1.3680878

    Article  Google Scholar 

  • Foo CC, Koh SJA, Keplinger C, Kaltseis R, Bauer S, Suo Z (2012b) Performance of dissipative dielectric elastomer generators. J Appl Phys 111:094107. doi:10.1063/1.4714557

    Article  Google Scholar 

  • Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Tech 69(1):59–61. doi:10.5254/1.3538357

    Article  Google Scholar 

  • Gisby TA, Xie SQ, Calius EP, Anderson IA (2010) Leakage current as a predictor of failure in dielectric elastomer actuators. Proc SPIE 7642:764213. doi:10.1117/12.847835

    Article  Google Scholar 

  • Graf C, Maas J (2011) Energy harvesting cycles based on electro active polymers. Proc SPIE 7642:764217. doi:10.1117/12.853597

    Article  Google Scholar 

  • Huang J, Shian S, Suo Z, Clarke DR (2013) Maximizing the energy density of dielectric elastomer generators using equal-biaxial loading. Adv Funct Mater 23:5056–5061. doi:10.1002/adfm.201300402

    Article  Google Scholar 

  • Kaltseis R, Keplinger C, Baumgartner R, Kaltenbrunner M, Li T, Mächler P, Schwödiauer R, Suo Z, Bauer S (2011) Method for measuring energy generation and efficiency of dielectric elastomer generators. Appl Phys Lett 99:162904. doi:10.1063/1.3653239

    Article  Google Scholar 

  • Kaltseis R, Keplinger C, Koh SJA, Baumgartner R, Goh YF, Ng WH, Kogler A, Tröls A, Foo CC, Suo Z, Bauer S (2014) Natural rubber for sustainable high-power electrical energy generation. RCS Adv 4:27905–27913. doi:10.1039/c4ra03090g

    Google Scholar 

  • Keplinger C, Sun J-Y, Foo CC, Rothemund P, Whitesides GM, Suo Z (2013) Stretchable, transparent, ionic conductors. Science 341(6149):984–987. doi:10.1126/science.1240228

    Article  Google Scholar 

  • Kofod G, Wirges W, Paajanen M, Bauer S (2007) Energy minimization for self-organized structure formation and actuation. Appl Phys Lett 90(8):081916. doi.org/10.1063/1.2695785

    Google Scholar 

  • Koh SJA, Zhao X, Suo Z (2009) Maximal energy that can be converted by a dielectric elastomer generator. Appl Phys Lett 94:262902. doi:10.1063/1.3167773

    Article  Google Scholar 

  • Koh SJA, Keplinger C, Li T, Bauer S, Suo Z (2010) Dielectric elastomer generators: how much energy can be converted? IEEE/ASME Trans Mech 16(1):33–41. doi:10.1109/TMECH.2010.2089635

    Article  Google Scholar 

  • Maffli L, Rosset S, Shea HR (2013) Zipping dielectric elastomer actuators: characterization, design and modeling. Smart Mater Struct 22(10):104013. doi:10.1088/0964-1726/22/10/104013

    Article  Google Scholar 

  • McKay T, O’Brien B, Calius E, Anderson I (2010) Self-priming dielectric elastomer generators. Smart Mater Struct 19:055025. doi:10.1088/0964-1726/19/5/055025

    Article  Google Scholar 

  • Pelrine R, Kornbluh RD, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100 %. Science 287(5454):836–839. doi:10.1126/science.287.5454.836

    Article  Google Scholar 

  • Pelrine R, Kornbluh RD, Eckerle J, Jeuck P, Oh S, Pei Q, Stanford S (2001) Dielectric elastomers: generator mode fundamentals and applications. In: Proceedings of SPIE 4329, smart structures and materials 2001: electroactive polymer actuators and devices, vol 148. doi:10.1117/12.432640

    Google Scholar 

  • Petralia MT, Wood RJ (2010) Fabrication and analysis of dielectric-elastomer minimum-energy structures for highly-deformable soft robotic systems. In: Proceedings of 2010 IEEE/RSJ international conference on intelligent robots and systems, Taipei, pp 2357–2363

    Google Scholar 

  • Rosset S, Shea HR (2012) Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A 110(2):281–307. doi:10.1007/s00339-012-7402-8

    Article  Google Scholar 

  • Rosset S, O’Brien BM, Gisby T, Xu D, Shea HR, Anderson I a (2013) Self-sensing dielectric elastomer actuators in closed-loop operation. Smart Mater Struct 22(10):104018. doi:10.1088/0964-1726/22/10/104018

    Article  Google Scholar 

  • Rosset S, Araromi OA, Schlatter S, Shea H (2015) Fabrication process of silicone-based dielectric elastomer actuators. J Vis Exp (108):e53423. doi:10.3791/53423

    Google Scholar 

  • Schausberger SE, Kaltseis R, Drack M, Cakmak UD, Major Z, Bauer S (2015) Cost-efficient open source desktop size radial stretching system with force sensor. IEEE Access 3:556

    Article  Google Scholar 

  • Shian S, Huang J, Zhu S, Clarke DR (2014) Optimizing the electrical energy conversion cycle of dielectric elastomer generators. Adv Mater 26:6617–6621. doi:10.1002/adma.201402291

    Article  Google Scholar 

  • Shintake J, Rosset S, Floreano D, Shea H (2013) Effect of mechanical parameters on dielectric elastomer minimum energy structures. In: Proceedings of SPIE 8687, electroactive polymer actuators and devices (EAPAD). doi:10.1117/12.2009368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Shea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Shea, H., Koh, S.J.A., Graz, I., Shintake, J. (2016). Dielectric Elastomers as EAPs: How to Start Experimenting with Them. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_34

Download citation

Publish with us

Policies and ethics