Skip to main content

Dielectric Elastomers (DEs) as EAPs: Materials

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

Dielectric elastomer actuators (DEAs) consist of a thin elastomer with even thinner compliant electrodes, both of equal importance for obtaining actuation. In this chapter, materials for both elastomers and electrodes will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson IA, Hale T, Gisby T et al (2010) A thin membrane artificial muscle rotary motor. Appl Phys Mater Sci Process 98:75–83

    Article  Google Scholar 

  • Araromi OA, Gavrilovich I, Shintake J et al (2014) Rollable multisegment dielectric elastomer minimum energy structures for a deployable microsatellite gripper. IEEE/ASME Trans Mechatron 20:438–446

    Article  Google Scholar 

  • Aschwanden M, Stemmer A (2007) Low voltage, highly tunable diffraction grating based on dielectric elastomer actuators. Proc SPIE 6524:65241N

    Article  Google Scholar 

  • Bates FS, Fredrickson GH (1999) Block copolymers – designer soft materials. Phys Today 52:32–38

    Article  Google Scholar 

  • Bayer O (1947) Das Di-isocyanat-polyadditionsverfahren; (polyurethane). Angew Chem 59:257–288

    Article  Google Scholar 

  • Bejenariu AG, Yu L, Skov AL (2012) Low moduli elastomers with low viscous dissipation. Soft Matter 8:3917–3923

    Article  Google Scholar 

  • Benslimane M, Gravesen P, Group MT et al (2002) Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes. Proc SPIE 4695:150–157

    Article  Google Scholar 

  • Benslimane M, Kiil H-E, Tryson MJ (2010a) Electro-mechanical properties of novel large strain PolyPower film and laminate components for DEAP actuator and sensor applications. Proc SPIE 7642:764231

    Article  Google Scholar 

  • Benslimane MY, Kiil H, Tryson MJ (2010b) Dielectric electro-active polymer push actuators: performance and challenges. Polym Int 59:415–421

    Article  Google Scholar 

  • Biggs J, Danielmeier K, Hitzbleck J et al (2013) Electroactive polymers: developments of and perspectives for dielectric elastomers. Angew Chem Int Ed 52:9409–9421

    Article  Google Scholar 

  • Böse H, Uhl D, Rabindranath R et al (2012) Novel DEA with organically modified silicone elastomer for permittivity enhancement. Proc SPIE 8340:83402E

    Article  Google Scholar 

  • Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromol Rapid Commun 31:10–36

    Article  Google Scholar 

  • Cameron CG, Underhill RS, Rawji M et al (2004) Conductive filler – elastomer composite for Maxwell stress actuator applications. Proc SPIE 5385:51–59

    Article  Google Scholar 

  • Carpi F, De Rossi D (2005) Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans Dielectr Electr Insul 12:835–843

    Article  Google Scholar 

  • Carpi F, Gallone G, Galantini F, et al (2008) Enhancing the dielectric permittivity of elastomers. In: Carpi F, De Rossi D, Kornbluh R, Pelrine RE, Sommer-Larsen P (eds) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models & applications of an emerging elect, Dielectric elastomers as electromechanical transducers. pp 51–68

    Google Scholar 

  • Chen B, Lu JJ, Yang CH et al (2014) Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl Mater Interfaces 6:7840–7845

    Article  Google Scholar 

  • Chiou BS, Lankford AR, Schoen PE (2003) Modifying tubule distribution in tubule-filled composites by using polyurethane-polydimethylsiloxane interpenetrating polymer networks. J Appl Polym Sci 89:1032–1038

    Article  Google Scholar 

  • Chwang CP, Liu CD, Huang SW et al (2004) Synthesis and characterization of high dielectric constant polyaniline/polyurethane blends. Synth Met 142:275–281

    Article  Google Scholar 

  • Corbelli G, Ghisleri C, Marelli M et al (2011) Highly deformable nanostructured elastomeric electrodes with improving conductivity upon cyclical stretching. Adv Mater 23:4504–4508

    Article  Google Scholar 

  • Elabd YA, Hickner MA (2011) Block copolymers for fuel cells. Macromolecules 44:1–11

    Article  Google Scholar 

  • Fukuda T, Luo ZW, Ito A (2012a) Development of dielectric elastomer actuators – Part I: performance of polyurethane film actuators with dangling chains and network structures. Adv Mater Res 557–559:1852–1856

    Article  Google Scholar 

  • Fukuda T, Luo ZW, Ito A (2012b) Development of dielectric elastomer actuators – Part II: preparation of the high dielectric constant film actuators containing BaTiO3 particles. Adv Mater Res 557–559:1869–1874

    Article  Google Scholar 

  • Galantini F, Gallone G, Carpi F (2012) Effects of corona treatment on electrical and mechanical properties of a porous dielectric elastomer. IEEE Trans Dielectr Electr Insul 19:1203–1207

    Article  Google Scholar 

  • Galantini F, Bianchi S, Castelvetro V et al (2013) Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Mater Struct 22:055025

    Article  Google Scholar 

  • Gallone G, Carpi F, De Rossi D et al (2007) Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate-lead titanate. Mater Sci Eng C 27:110–116

    Article  Google Scholar 

  • Gallone G, Galantini F, Carpi F (2010) Perspectives for new dielectric elastomers with improved electromechanical actuation performance: composites versus blends. Polym Int 59:400–406

    Article  Google Scholar 

  • Guiffard B, Seveyrat L, Sebald G et al (2006) Enhanced electric field-induced strain in non-percolative carbon nanopowder/polyurethane composites. J Phys D Appl Phys 39:3053–3057

    Article  Google Scholar 

  • Guo L, Deweerth SP (2010) An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small 6:2847–2852

    Article  Google Scholar 

  • Ha SM, Yuan W, Pei Q et al (2006) Interpenetrating polymer networks for high-performance electroelastomer artificial muscles. Adv Mater 18:887–891

    Article  Google Scholar 

  • Hamley IW (1998) The physics of block copolymers. Oxford University Press, New York/Oxford

    Google Scholar 

  • Holden G, Legge NR, Quirk RP (2004) Thermoplastic elastomers, 3rd edn. Hanser, Munich

    Google Scholar 

  • Huang C, Zhang QM, DeBotton G et al (2004) All-organic dielectric percolative three-component composite materials with high electromechanical response. Appl Phys Lett 84:4391–4393

    Article  Google Scholar 

  • Keplinger C, Kaltenbrunner M, Arnold N et al (2010) Rontgen’s electrode-free elastomer actuators without electromechanical pull-in instability. Proc Natl Acad Sci U S A 107:4505–4510

    Article  Google Scholar 

  • Keplinger C, Sun J, Foo CC et al (2013) Stretchable, transparent, ionic conductors. Science 341:984–987

    Article  Google Scholar 

  • Kiil H-E, Benslimane M (2009) Scalable industrial manufacturing of DEAP. Proc SPIE 7287:72870R

    Article  Google Scholar 

  • Kofod G, Risse S, Stoyanov H et al (2011) Broad-spectrum enhancement of polymer composite dielectric constant at ultra-low doping caused by silica-supported copper nanoparticles. Composites 5:1623–1629

    Google Scholar 

  • Kornbluh RD, Pelrine R, Joseph J et al (1999) High-field electrostriction of elastomeric polymer dielectrics for actuation. Proc SPIE 3669:149–161

    Article  Google Scholar 

  • Krishnan AS, Vargantwar PH, Ghosh TK et al (2011) Electroactuation of solvated triblock copolymer dielectric elastomers: decoupling the roles of mechanical prestrain and specimen thickness. J Polym Sci B Polym Phys 49:1569–1582

    Article  Google Scholar 

  • Krishnan AS, Smith SD, Spontak RJ (2012) Ternary phase behavior of a triblock copolymer in the presence of an endblock-selective homopolymer and a midblock-selective oil. Macromolecules 45:6056–6067

    Article  Google Scholar 

  • Kujawski M, Pearse JD and Smela E (2010) Elastomers filled with exfoliated graphite as compliant electrodes. Carbon Elsevier Ltd 48:2409–2417

    Google Scholar 

  • Kurita Y, Ueda T and Kasazaki T (1999) Polyurethane elastomer actuator. U.S. Patent N. 5,977,685

    Google Scholar 

  • Kussmaul B, Risse S, Kofod G et al (2011) Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Adv Funct Mater 21:4589–4594

    Article  Google Scholar 

  • Kussmaul B, Risse S, Wegener M et al (2013) New DEA materials by organic modification of silicone and polyurethane networks. Proc SPIE 8687:86872S

    Article  Google Scholar 

  • Kyokane J, Ishimoto H, Yugen H et al (1999) Electro-striction effect of polyurethane elastomer (PUE) and its application to actuators. Synth Met 103:2366–2367

    Article  Google Scholar 

  • Lam T, Tran H, Yuan W et al (2008) Polyaniline nanofibers as a novel electrode material for fault- tolerant dielectric elastomer actuators. Proc SPIE 6927:69270O

    Article  Google Scholar 

  • Lotz P, Matysek M, Lechner P et al (2008) Dielectric elastomer actuators using improved thin film processing and nanosized particles. Proc SPIE 6927:692723

    Article  Google Scholar 

  • Low S-H, Lau G-K (2013) The effect of folds in thin metal film electrodes used in dielectric elastomer actuators. Proc SPIE 8687:86872P

    Article  Google Scholar 

  • Madsen FB, Dimitrov I, Daugaard AE et al (2013) Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym Chem 4:1700–1707

    Article  Google Scholar 

  • Madsen FB, Javakhishvili I, Jensen RE et al (2014) Synthesis of telechelic vinyl/allyl functional siloxane copolymers with structural control. Polym Chem R Soc Chem 5:7054–7061

    Article  Google Scholar 

  • Matsen MW, Thompson RB (1999) Equilibrium behavior of asymmetric ABA triblock copolymer melts. J Chem Phys 111:7139–7146

    Article  Google Scholar 

  • Matysek M, Lotz P, Flittner K et al (2010) Vibrotactile display for mobile applications based on dielectric elastomer stack actuators. Proc SPIE 7642:76420D

    Article  Google Scholar 

  • Molberg M, Crespy D, Rupper P et al (2010) High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater 20:3280–3291

    Article  Google Scholar 

  • Niklaus M, Shea HR (2011) Electrical conductivity and Young’s modulus of flexible nanocomposites made by metal-ion implantation of polydimethylsiloxane: the relationship between nanostructure and macroscopic properties. Acta Mater 59:830–840

    Article  Google Scholar 

  • Niu X, Stoyanov H, Hu W et al (2013) Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. J Polym Sci B Polym Phys 51:197–206

    Article  Google Scholar 

  • Opris DM, Molberg M, Walder C et al (2011) New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil. Adv Funct Mater 21:3531–3539

    Article  Google Scholar 

  • Pelrine R, Kornbluh R, Joseph J et al (2000a) High-field deformation of elastomeric dielectrics for actuators. Mater Sci Eng C 11:89–100

    Article  Google Scholar 

  • Pelrine R, Kornbluh R, Pei Q et al (2000b) High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–839

    Article  Google Scholar 

  • Pimpin A, Suzuki Y, Kasagi N (2007) Microelectrostrictive actuator with large out-of-plane deformation for flow-control application. J Microelectromech Syst 16:753–764

    Article  Google Scholar 

  • Plante J, Dubowsky S (2006) On the nature of dielectric elastomer actuators and its implications for their design. Proc SPIE 6168:61681J

    Article  Google Scholar 

  • Rambarran T, Gonzaga F, Brook MA (2012) Generic, metal-free cross-linking and modification of silicone elastomers using click ligation. Macromolecules 45:2276–2285

    Article  Google Scholar 

  • Riffle JS, Yilgor I, Tran C et al (1983) Elastomeric polysiloxane modifiers for epoxy network – synthesis of functional oligomers and network formation studies. ACS Symp Ser 221:21–54

    Article  Google Scholar 

  • Risse S, Kussmaul B, Krüger H et al (2012) Synergistic improvement of actuation properties with compatibilized high permittivity filler. Adv Funct Mater 22:3958–3962

    Article  Google Scholar 

  • Romasanta LJ, Leret P, Casaban L et al (2012) Towards materials with enhanced electro-mechanical response: CaCu3Ti4O12–polydimethylsiloxane composites. J Mater Chem 22:24705–24712

    Article  Google Scholar 

  • Rosset S, Shea HR (2013) Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A Mater Sci Process 110:281–307

    Article  Google Scholar 

  • Roussel M, Malhaire C, Deman A-L et al (2014) Electromechanical study of polyurethane films with carbon black nanoparticles for MEMS actuators. J Micromech Microeng 24:055011

    Article  Google Scholar 

  • Schlaak HF, Jungmann M, Matysek M et al (2005) Novel multilayer electrostatic solid-state actuators with elastic dielectric. Proc SPIE 5759:121–133

    Article  Google Scholar 

  • Shian S, Diebold RM, McNamara A et al (2012) Highly compliant transparent electrodes. Appl Phys Lett 101:061101

    Article  Google Scholar 

  • Skov AL, Vudayagiri S, Benslimane M (2013) Novel silicone elastomer formulations for DEAPs. Proc SPIE 8687:86871I

    Article  Google Scholar 

  • Stoyanov H, Brochu P, Niu X et al (2013) Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Adv 3:2272–2278

    Article  Google Scholar 

  • Sudarsan AP, Wang J, Ugaz VM (2005) Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems. Anal Chem 77:5167–5173

    Article  Google Scholar 

  • Szabo JP, Hiltz JA, Cameron CG et al (2003) Elastomeric composites with high dielectric constant for use in Maxwell stress actuators. Proc SPIE 5051:180–190

    Article  Google Scholar 

  • Tallury SS, Spontak RJ, Pasquinelli MA (2014) Dissipative particle dynamics of triblock copolymer melts: a midblock conformational study at moderate segregation. J Chem Phys 141:047448

    Google Scholar 

  • Tartarisco G, Gallone G, Carpi F, et al (2009) Polyurethane unimorph bender microfabricated with pressure assisted microsyringe (PAM) for biomedical applications. Mater Sci Eng C Elsevier B.V. 29:1835–1841

    Google Scholar 

  • Ueda T, Kasazaki T, Kunitake N et al (1997) Polyurethane elastomer actuator. Synth Met 85:1415–1416

    Article  Google Scholar 

  • Urdaneta MG, Delille R, Smela E (2007) Stretchable electrodes with high conductivity and photo-patternability. Adv Mater 19:2629–2633

    Article  Google Scholar 

  • Vargantwar PH, Shankar R, Krishnan AS et al (2011) Exceptional versatility of solvated block copolymer/ionomer networks as electroactive polymers. Soft Matter 7:1651–1655

    Article  Google Scholar 

  • Vargantwar PH, Özçam AE, Ghosh TK et al (2012) Prestrain-free dielectric elastomers based on acrylic thermoplastic elastomer gels: a morphological and (electro)mechanical property study. Adv Funct Mater 22:2100–2113

    Article  Google Scholar 

  • Vega DA, Sebastian JM, Loo YL et al (2001) Phase behavior and viscoelastic properties of entangled block copolymer gels. J Polym Sci B Polym Phys 39:2183–2197

    Article  Google Scholar 

  • Wang J, Wu C, Liu R et al (2014) Enhanced dielectric behavior in nanocomposites of polyurethane bonded with copper phthalocyanine oligomers. Polym J 46:285–292

    Article  Google Scholar 

  • Watanabe M, Suzuki M, Hirako Y et al (2001) Hysteresis in bending electrostriction of polyurethane films. J Appl Polym Sci 79:1121–1126

    Article  Google Scholar 

  • Yuan W, Lam T, Biggs J et al (2007) New electrode materials for dielectric elastomer actuators. Proc SPIE 6524:65240N

    Article  Google Scholar 

  • Yuan W, Hu L, Yu Z et al (2008) Fault-tolerant dielectric elastomer actuators using single-walled carbon nanotube electrodes. Adv Mater 20:621–625

    Article  Google Scholar 

  • Yuan W, Brochu P, Ha SM et al (2009) Dielectric oil coated single-walled carbon nanotube electrodes for stable, large-strain actuation with dielectric elastomers. Sensors Actuators A Phys 155:278–284

    Article  Google Scholar 

  • Zhang QM, Su J, Kim CH et al (1997) An experimental investigation of electromechanical response in a dielectric acrylic elastomer. J Appl Phys 81:2770–2776

    Article  Google Scholar 

  • Zhang Z, Liu L, Fan J et al (2008) New silicone dielectric elastomer with a high dielectric constant. Proc SPIE 6926:692610

    Article  Google Scholar 

  • Zhang H, Düring L, Kovacs G et al (2010) Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range. Polym Int 59:384–390

    Article  Google Scholar 

  • Zhao X, Suo Z (2007) Method to analyze electromechanical stability of dielectric elastomers. Appl Phys Lett 91:061921

    Article  Google Scholar 

  • Zhu S, So JH, Mays R et al (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne L. Skov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Skov, A.L. et al. (2016). Dielectric Elastomers (DEs) as EAPs: Materials. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_31

Download citation

Publish with us

Policies and ethics