Skip to main content

Polymer Electrets and Ferroelectrets as EAPs: Devices and Applications

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Polymer electret and ferroelectrets have unique characteristics such as electrostatic transduction without external voltage, light weight, flexibility, and so on. Their most successful applications are microphones and air filters, but various other types of devices have also been proposed. In this chapter, after giving overview of their applications, developments of acoustic devices and power generators/energy harvesters are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atoji N, Aoi T (1974) Electrostatic acoustic transducer. US Patent No 3,833,770

    Google Scholar 

  • Baia MR et al (2010) Experimental modeling and design optimization of push-pull electret loudspeakers. J Acoust Soc Am 127:2274–2281

    Article  Google Scholar 

  • Bartsch U et al (2009) Influence of parasitic capacitances on the power output of electret-based energy harvesting generators. In: 9th international workshop micro and nanotechnology for power generation and energy conversion applications (PowerMEMS 2009), Washington, DC, pp 332–335

    Google Scholar 

  • Beeby SP et al (2006) Energy harvesting vibration sources for micro systems applications. Meas Sci Technol 17:175–195

    Article  Google Scholar 

  • Boisseau S et al (2011) Cantilever-based electret energy harvester. Smart Mater Struct 20(10):105013

    Article  Google Scholar 

  • Boland J et al (2003) Micro electret power generator. In: 16th IEEE international conference micro electro mechanical systems (MEMS’03), Kyoto, pp 538–541

    Google Scholar 

  • Bruneel JL, Micheron F (1977) Optical display device using bistable electrets. Appl Phys Lett 30(8):382–383

    Article  Google Scholar 

  • Cao Y et al (1998) Study of porous dielectrics as electret materials. IEEE Trans Dielectr Electr Insul 5(1):58–62

    Article  Google Scholar 

  • Chen YC et al (2012) Tailoring the performance of flexible electret loudspeakers by varying cell actuator formation. IEEE Trans Dielectr Electr Insul 19(4):1094–1100

    Article  Google Scholar 

  • Chiang DM et al (2005) PALS and SPM/EFM investigation of charge nano-porous electret films. Chem Phys Lett 412(1–3):50–54

    Article  Google Scholar 

  • Chiu Y, Lee YC (2013) Flat and robust out-of-plane vibrational electret energy harvester. J Micromech Microeng 23(1):015012

    Article  Google Scholar 

  • Feng Y et al (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100(26):262901

    Article  Google Scholar 

  • Feng Y, Suzuki Y (2014) All-polymer piezoeelctret energy harvester with embedded PEDOT electrode. In: 27th IEEE international conference micro electro mechanical systems (MEMS’14), San Francisco, pp 374–377

    Google Scholar 

  • Fu Q, Suzuki Y (2014) MEMS vibration electret energy harvester with combined electrodes. In: 27th IEEE international conference micro electro mechanical systems (MEMS’14), San Francisco, pp 409–412

    Google Scholar 

  • Goto M et al (2011) Development of silicon electret condenser microphone with SiO2/Si3N4 electret. In: Proceedings of the 37th international conference micro and nano engineering (MNE 2011), O-MEMS-29, Berlin, p 417

    Google Scholar 

  • Hagiwara K et al (2010) Soft X-ray charging method for a silicon electret condenser microphone. Appl Phys Exp 3(9):091502

    Article  Google Scholar 

  • Hagiwara K et al (2012) Electret charging method based on soft X ray photoionization for MEMS transducers. IEEE Trans Dielectr Electr Insul 19(4):1291–1298

    Article  Google Scholar 

  • Hillenbrand J, Sessler GM (2000) Piezoelectricity in cellular electret films. IEEE Trans Dielectr Electr Insul 7(4):537–542

    Article  Google Scholar 

  • Horino T et al (2012) Application of cellular polypropylene to ultrasonic transducers in water. Proc Symp Ultrasonic Electr 33:525–526

    Google Scholar 

  • Hsieh WH et al (1997) A micromachined thin-film Teflon electret microphone. Int Conf Solid-State Sensors Actuators 1:425–428

    Google Scholar 

  • Ichiya M et al (1995) Electrostatic actuator with electret. IEICE Trans Electron E78-C(2):128–131

    Google Scholar 

  • Ikeya M, Miki T (1980) Electret dosimeter utilizing as multiplication. Health Phys 39(5):797–799

    Google Scholar 

  • Jefimenko O, Walker DK (1971) Electrostatic motors. Phys Teach 9(3):121–128

    Article  Google Scholar 

  • Jefimenko O, Walker DK (1978) Electrostatic current generator having a disk electret as an active element. IEEE Trans Ind Appl IA-14(6):537–540

    Article  Google Scholar 

  • Kashiwagi K et al (2011) Nano-cluster-enhanced high-performance perfluoro-polymer electrets for micro power generation. J Micromech Microeng 21(12):125016

    Article  Google Scholar 

  • Kawakami H (1969) An electrostatic condenser type phonograph pickup cartridge. Audio Eng Soc 693:B-3

    Google Scholar 

  • Kodama H et al. (2009) A study of time stability of piezoelectricity in porous polypropylene electrets. In: Proceedings of IEEE international ultrasonics symposium, Roma, pp 1730–1733

    Google Scholar 

  • Lekkala J, Paayanen M (1999) EMFi – new electret material for sensor and actuators. In: Proceedings of the 10th international symposium on electrets, Athens, pp 743–746

    Google Scholar 

  • Luo Z et al (2015) Multilayer ferroelectret-based energy harvesting insole. J Phys Conf Ser 660:012118

    Article  Google Scholar 

  • Lo HW, Tai YC (2008) Parylene-based electret power generators. J Micromech Microeng 18(10):104006

    Google Scholar 

  • Masaki T (2011) Power output enhancement of a vibration-driven electret generator for wireless sensor applications. J Micromech Microeng 21(10):104004

    Article  Google Scholar 

  • Matsumoto K et al (2011) Vibration-powered battery-less sensor node using electret generator. In: 11th international workshop on micro and nanotechnology for power generation and energy conversion applications (PowerMEMS 2011), Seoul, pp 134–137

    Google Scholar 

  • Mellow T, Karkkainen L (2008) On the forces in single-ended and push-pull electret transducers. J Acoust Soc Am 124(3):1497–1504

    Article  Google Scholar 

  • Mitcheson EM et al (2008) Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:1457–1486

    Article  Google Scholar 

  • Naruse Y et al (2009) Electrostatic micro power generator from low frequency vibration such as human motion. J Micromech Microeng 19(9):094002

    Article  Google Scholar 

  • Neugschwandtner GS et al (2000) Large and broadband piezoelectricity in smart polymer-foam space-charge electrets. Appl Phys Lett 77(23):3827–3829

    Article  Google Scholar 

  • Paajanen M et al (1998) Electro-mechanical film EMFi-a new multipurpose electret material. Sensors Actuators A 84(1–2):95–102

    Google Scholar 

  • Paajanen M et al (2001) Electro-mechanical modeling and properties of the electret film EMFI. IEEE Trans Dielectr Electr Insul 8(4):629–636

    Article  Google Scholar 

  • Pondrom P et al (2015) Energy harvesting with single-layer and stacked piezoelectret films. IEEE Trans Dielectr Electr Insul 22(3):1470–1476

    Article  Google Scholar 

  • Roundy S et al (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26(11):1131–1144

    Article  Google Scholar 

  • Reinhard L et al (2007) Broadband ultrasonic transducer. In: 19th international congress on acoustics, Madrid

    Google Scholar 

  • Renaud M et al (2013) High performance electrostatic MEMS vibration energy harvester with corrugated inorganic SiO2-Si3N4 electret. In: 17th international conference solid-state sensors, actuators, and microsystems (transducers’ 13), Barcelona, pp 693–696

    Google Scholar 

  • Sakamoto N et al (1975) Frequency response of an electrostatic horn-tweeter with electret. In: 52th audio engineering society convention, p 1064, Audio Engineering Society, New York

    Google Scholar 

  • Sakamoto N et al (1979) Design of low distortion condenser microphone using push-pull electret transducer. In: 64th audio engineering society convention, New York, p 1517

    Google Scholar 

  • Sakane Y et al (2008) Development of high-performance perfluoriented polymer electret film and its application to micro power generation. J Micromech Microeng 18(10):104011

    Article  Google Scholar 

  • Sato R, Takamatsu T (1986) An electret switch. IEEE Trans Electr Insul 32(3):449–455

    Article  Google Scholar 

  • Schaffert RM (1975) Electrophotography. Wiley, New York

    Google Scholar 

  • Sessler GM, West JE (1962) US Patent 3,118,022

    Google Scholar 

  • Sessler GM et al (1973) New touch actuator based on the foil-electret principle. IEEE Trans Com 21(1):61–65

    Article  Google Scholar 

  • Sessler GM, West JE (1973) Electret transducers: a review. J Acoust Soc Am 53(6):1589–1600

    Article  Google Scholar 

  • Sessler GM, West JE (1987) Applications. In: Sessler GM (ed) Electret, vol 33, Topics in applied physics. Springer, Berlin, pp 347–381

    Chapter  Google Scholar 

  • Son C, Babak Z (2006) A micromachined electret-based transponder for in-situ radiation measurement. IEEE Electr Dev Lett 27(11):884–886

    Article  Google Scholar 

  • Sonoda K et al (2015) Improvement of power generation in low acceleration for electrostatic energy harvester by using bipolar charging method. IEEJ Trans Sens Micromach 135(9):372–377

    Article  Google Scholar 

  • Sterken T et al (2003) An electret-based electrostatic μ-generator. In: 12nd international conference solid-state sensors, actuators and microsystems (transducers ’03), Boston, pp 1291–1294

    Google Scholar 

  • Suzuki Y, Tai YC (2006) Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers. J Microelectromech Syst 15(5):1364–1370

    Article  Google Scholar 

  • Suzuki Y et al (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy harvesting applications. J Micromech Microeng 20(10):104002

    Article  Google Scholar 

  • Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans Electr Electr Eng 6(2):101–111

    Article  Google Scholar 

  • Suzuki M et al (2012) Electrostatic micro power generator using potassium ion electret forming on a comb-drive actuator, In: 12nd Int. Workshop micro and nanotechnology for power generation and energy conversion applications (PowerMEMS 2012), Atlanta, pp. 247–250

    Google Scholar 

  • Tada Y (1992) Experimental characteristics of electret generator using polymer film electrets. Jpn J Appl Phys 31(3):846–851

    Article  Google Scholar 

  • Tada Y (1993) Improvement of conventional electret motors. IEEE Trans Electr Insul 23(3):402–410

    Article  Google Scholar 

  • Takahashi T (2013) A miniature harvester of vertical vibratory capacitive type achieving several tens microwatt for broad frequency of 20–40 Hz. In: 17th international conference solid-state sensors, actuators, and microsystems (transducers’ 13), Barcelona, pp 1340–1343

    Google Scholar 

  • Thakur R, Das D, Das A (2013) Electret air filters. Sep Purif Rev 42(2):87–129

    Article  Google Scholar 

  • van Turnhout J et al (1980) Electret filters for high-efficiency air cleaning. J Electrostat 8(4):369–379

    Article  Google Scholar 

  • Vullers R et al (2009) Micropower energy harvesting. Solid-State Electron 53:684–693

    Article  Google Scholar 

  • Yasuno Y, Riko Y (1999) An approach to integrated electret electroacoustic transducer -Experimental digital microphone. In: Proceedings of the 10th international symposium on electret (ISE10), Athens, pp 727–730

    Google Scholar 

  • Yasuno Y et al (2010) Electro-acoustic transducers with cellular polymer electrets. In: 20th international congress on acoustics, Sydney

    Google Scholar 

  • Zhang X et al (2007) Improvement of piezoelectric coefficient of cellular polypropylene films by repeated expansions. J Electrostatics 62:94–100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Suzuki, Y., Yasuno, Y. (2016). Polymer Electrets and Ferroelectrets as EAPs: Devices and Applications. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_27

Download citation

Publish with us

Policies and ethics