Skip to main content

Polymer Gels as EAPs: Materials

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

Smart hydrogels, exhibiting response to various stimuli such as temperature, pH, light, electric field, etc., have been extensively explored due to their high potential in different areas ranging from actuators to biomedical applications. A number of synthetic pathways have been developed to synthesize hydrogels with desired chemical structure and to tune the mechanical properties and the swelling degree of these switchable materials. These synthetic approaches also provide the possibility of incorporating various functionalities inside hydrogel network and thus in turn controlling their response. The available methods for the fabrication of various types of functional hydrogels and their characteristic properties will be reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal G, Schürings M, Zhu X, Pich A (2012) Microgel/SiO2 hybrid colloids prepared using a water soluble silica precursor. Polymer 53:1189

    Google Scholar 

  • Agrawal G, Wang J, Brüster B, Zhu X, Möller M, Pich A (2013a) Degradable microgels synthesized using reactive polyvinylalkoxysiloxanes as crosslinkers. Soft Matter 9:5380

    Google Scholar 

  • Agrawal G, Schürings MP, van Rijn P, Pich A (2013b) Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process. J Mater Chem A 1:13244

    Google Scholar 

  • Ahmed EM (2013) Hydrogel: Preparation, characterization, and applications. J Adv Res. doi:10.1016/j.jare.2013.07.006

    Google Scholar 

  • Ankareddi I, Brazel CS (2011) Development of a thermosensitive grafted drug delivery system—synthesis and characterization of NIPAAm-based grafts and hydrogel structure. J Appl Polym Sci 120:1597

    Google Scholar 

  • Artyukhov A, Shtilman M, Kuskov A, Fomina A, Lisovyy D, Golunova A, Tsatsakis A (2011) Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol macromers. J Polym Res 18:667

    Google Scholar 

  • Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088

    Google Scholar 

  • Bencherif SA, Siegwart DJ, Srinivasan A, Horkay F, Hollinger JO, Washburn NR, Matyjaszewski K (2009) Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization. Biomaterials 30:5270

    Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35

    Google Scholar 

  • Bin Imran A, Esaki K, Gotoh H, Seki T, Ito K, Sakai Y, Takeoka Y (2014) Article number: 5124 Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 5:1 doi:10.1038/ncomms6124.

    Google Scholar 

  • Bixler HJ, Johndro K, Falshaw R (2001) Kappa-2 carrageenan: structure and performance of commercial extracts: II. Performance in two simulated dairy applications. Food Hydrocolloids 15:619

    Google Scholar 

  • Boonkaew B, Barber PM, Rengpipat S, Supaphol P, Kempf M, He J, John VT, Cuttle L (2014) Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization. J Pharm Sci 103:3244

    Google Scholar 

  • Bu H, Kjøniksen A-L, Knudsen KD, Nyström B (2004) Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules 5:1470

    Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23:H41

    Google Scholar 

  • Burkert S, Schmidt T, Gohs U, Dorschner H, Arndt K-F (2007) Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem 76:1324

    Google Scholar 

  • Cappello J, Crissman JW, Crissman M, Ferrari FA, Textor G, Wallis O, Whitledge JR, Zhou X, Burman D, Aukerman L, Stedronsky ER (1998) In-situ self-assembling protein polymer gel systems for administration, delivery, and release of drugs. J Control Release 53:105

    Google Scholar 

  • Carvalho J, Gonçalves C, Gil AM, Gama FM (2007) Production and characterization of a new dextrin based hydrogel. Eur Polym J 43:3050

    Google Scholar 

  • Cassano R, Trombino S, Muzzalupo R, Tavano L, Picci N (2009) A novel dextran hydrogel linking trans-ferulic acid for the stabilization and transdermal delivery of vitamin E. Eur J Pharm Biopharm 72:232

    Google Scholar 

  • Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard C-H, Yahia LH (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J Biomed Mater Res 51:107

    Google Scholar 

  • Chen Y-Y, Wu H-C, Sun J-S, Dong G-C, Wang T-W (2013) Injectable and thermoresponsive self-assembled nanocomposite hydrogel for long-term anticancer drug delivery. Langmuir 29:3721

    Google Scholar 

  • Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155

    Google Scholar 

  • Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46:39

    Google Scholar 

  • Choi SG, Baek EJ, Davaa E, Nho Y-C, Lim Y-M, Park J-S, Gwon H-J, Huh KM, Park J-S (2013) Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam. Int J Pharm 447:102

    Google Scholar 

  • Corkhill PH, Hamilton CJ, Tighe B (1989) Synthetic hydrogels. VI. Hydrogel composites as wound dressings and implant materials. J Biomater 10:3

    Google Scholar 

  • Coviello T, Grassi M, Rambone G, Santucci E, Carafa M, Murtas E, Riccieri FM, Alhaique F (1999) Novel hydrogel system from scleroglucan: synthesis and characterization. J Control Release 60:367

    Google Scholar 

  • Crescenzi V, Francescangeli A, Capitani D, Mannina L, Renier D, Bellini D (2003) Hyaluronan networking via Ugi’s condensation using lysine as cross-linker diamine. Carbohydr Polym 53:311

    Google Scholar 

  • Crescenzi V, Cornelio L, Di Meo C, Nardecchia S, Lamanna R (2007) Novel hydrogels via click chemistry: synthesis and potential biomedical applications. Biomacromolecules 8:1844

    Google Scholar 

  • Cui J, Campo AD (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48:9302

    Google Scholar 

  • de Nooy AEJ, Masci G, Crescenzi V (1999) Versatile synthesis of polysaccharide hydrogels using the passerini and Ugi multicomponent condensations. Macromolecules 32:1318

    Google Scholar 

  • de Nooy AEJ, Capitani D, Masci G, Crescenzi V (2000) Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: Synthesis, behavior and solid-state NMR characterization. Biomacromolecules 1:259

    Google Scholar 

  • Deen GR, Lim EK, Mah CH, Heng KM (2012) New cationic linear copolymers and hydrogels of N-vinyl caprolactam and N-acryloyl-N′-ethyl piperazine: Synthesis, reactivity, influence of external stimuli on the LCST and swelling properties. Ind Eng Chem Res 51:13354

    Google Scholar 

  • Di Meo C, Capitani D, Mannina L, Brancaleoni E, Galesso D, De Luca G, Crescenzi V (2006) Synthesis and NMR characterization of new hyaluronan-based NO donors. Biomacromolecules 7:1253

    Google Scholar 

  • Dispenza C, Fiandaca G, Lo Presti C, Piazza S, Spadaro G (2007) Electrical properties of γ-crosslinked hydrogels incorporating organic conducting polymers. Radiat Phys Chem 76:1371

    Google Scholar 

  • Dispenza C, Sabatino MA, Niconov A, Chmielewska D, Spadaro G (2012) E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles. Radiat Phys Chem 81:1456

    Google Scholar 

  • Doring A, Birnbaum W, Kuckling D (2013) Responsive hydrogels--structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391

    Google Scholar 

  • Eiselt P, Lee KY, Mooney D (1999) Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)−diamines. J Macromol 32:5561

    Google Scholar 

  • El Salmawi K, Ibrahim S (2011) Characterization of superabsorbent carboxymethylcellulose/clay hydrogel prepared by electron beam irradiation. Macromol Res 19:1029

    Google Scholar 

  • Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA (2001) Protein delivery from materials formed by self-selective conjugate addition reactions. J Control Release 76:11

    Google Scholar 

  • Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, Polarek JW, Söderqvist M, Griffith M (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2:46ra61

    Google Scholar 

  • Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20:316

    Google Scholar 

  • Funami T, Hiroe M, Noda S, Asai I, Ikeda S, Nishinari K (2007) Influence of molecular structure imaged with atomic force microscopy on the rheological behavior of carrageenan aqueous systems in the presence or absence of cations. Food Hydrocolloids 21:617

    Google Scholar 

  • Gadelha M, Chieffo C, Bai S, Hu X, Frohman L (2012) A subcutaneous octreotide hydrogel implant for the treatment of acromegaly. Endocr Pract 18:870

    Google Scholar 

  • Garg T, Singh S, Goyal AK (2013) Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit Rev Ther Drug Carrier Syst 30:369

    Google Scholar 

  • Geever L, Lyons J, Higginbotham C (2011) Photopolymerisation and characterisation of negative temperature sensitive hydrogels based on N,N-diethylacrylamide J Mater Sci 46:509

    Google Scholar 

  • Gehrke SH, Uhden LH, McBride JF (1998) Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J Control Release 55:21

    Google Scholar 

  • Gekko K, Ito H (1990) Competing solvent effects of polyols and guanidine hydrochloride on protein stability. J Biochem 107:572

    Google Scholar 

  • Giannouli P, Morris ER (2003) Cryogelation of xanthan. Food Hydrocolloids 17:495

    Google Scholar 

  • Griffin DR, Kasko AM (2012) Photodegradable macromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 134:13103

    Google Scholar 

  • Guan Y, Bian J, Peng F, Zhang X-M, Sun R-C (2014) High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydr Polym 101:272

    Google Scholar 

  • Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: Methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. InTech, Rijeka

    Google Scholar 

  • Gunavadhi M, Maria LAA, Chamundeswari VN, Parthasarathy M (2012) Nanotube-grafted polyacrylamide hydrogels for electrophoretic protein separation. Electrophoresis 33:1271

    Google Scholar 

  • Hain J, Eckert F, Pich A, Adler H-J (2008a) Multi-sensitive microgels filled with conducting poly(3,4-ethylenedioxythiophene) nanorods. Macromol Rapid Commun 29:472

    Google Scholar 

  • Hain J, Schrinner M, Lu Y, Pich A (2008b) Design of multicomponent microgels by selective deposition of nanomaterials. Small 4:2016

    Google Scholar 

  • Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(Nisopropylacrylamide) and clay. Macromolecules 35:10162

    Google Scholar 

  • He L, Fullenkamp DE, Rivera JG, Messersmith PB (2011) pH responsive self-healing hydrogels formed by boronate-catechol complexation. Chem Commun 47:7497

    Google Scholar 

  • Heller DA, Levi Y, Pelet JM, Doloff JC, Wallas J, Pratt GW, Jiang S, Sahay G, Schroeder A, Schroeder JE, Chyan Y, Zurenko C, Querbes W, Manzano M, Kohane DS, Langer R, Anderson DG (2013) Modular ‘Click-in-Emulsion’ bone-targeted nanogels. Adv Mater 25:1449

    Article  Google Scholar 

  • Hemp ST, Smith AE, Bunyard WC, Rubinstein MH, Long TE (2014) RAFT polymerization of temperature- and salt-responsive block copolymers as reversible hydrogels. Polymer 55:2325

    Article  Google Scholar 

  • Hendrickson GR, Smith MH, South AB, Lyon LA (2010) Design of multiresponsive hydrogel particles and assemblies. Adv Funct Mater 20:1697

    Article  Google Scholar 

  • Hennink WE, van Nostrum CF (2012) Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev 64(Suppl):223

    Article  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: Progress and challenges. Polymer 49:1993

    Article  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3

    Article  Google Scholar 

  • Hovgaard L, Brøndsted H (1995) Dextran hydrogels for colon-specific drug delivery. J Control Release 36:159

    Article  Google Scholar 

  • Hunt JN, Feldman KE, Lynd NA, Deek J, Campos LM, Spruell JM, Hernandez BM, Kramer EJ, Hawker C (2011) Tunable, high modulus hydrogels driven by ionic coacervation. J Adv Mater 23:2327

    Article  Google Scholar 

  • Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, Koshy ST, Khademhosseini A (2011) Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue Eng Part A 17:1713

    Article  Google Scholar 

  • Ibrahim S, Kang QK, Ramamurthi A (2010) The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels. J Biomed Mater Res A 94A:355

    Google Scholar 

  • Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13:2369

    Article  Google Scholar 

  • Ikeda S, Morris VJ, Nishinari K (2001) Microstructure of aggregated and nonaggregated κ-carrageenan helices visualized by atomic force microscopy. Biomacromolecules 2:1331

    Article  Google Scholar 

  • Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z (2014) Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials 35:4969

    Article  Google Scholar 

  • Jin Q, Liu X, Liu G, Ji J (2010) Fabrication of core or shell reversibly photo cross-linked micelles and nanogels from double responsive water-soluble block copolymers. Polymer 51:1311

    Article  Google Scholar 

  • Kaetsu I, Uchida K, Morita Y, Okubo M (1992) Synthesis of electro-responsive hydrogels by radiation polymerization of sodium acrylate. Int J Radiat Appl Instrum Part C Radiat Phy Chem 40:157

    Article  Google Scholar 

  • Kamenjicki Maurer M, Lednev IK, Asher SA (2005) Photoswitchable spirobenzopyran- based photochemically cControlled photonic crystals. Adv Funct Mater 15:1401

    Article  Google Scholar 

  • Khampieng T, Brikshavana P, Supaphol P (2014) Silver nanoparticle-embedded poly(vinyl pyrrolidone) hydrogel dressing: gamma-ray synthesis and biological evaluation. J Biomater Sci Polym Ed 25:826

    Article  Google Scholar 

  • Khodaverdi E, Ganji F, Tafaghodi M, Sadoogh M (2013) Effects of formulation properties on sol–gel behavior of chitosan/glycerolphosphate hydrogel. Iran Polym J 22:785

    Article  Google Scholar 

  • Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324:59

    Article  Google Scholar 

  • Koh LB, Islam MM, Mitra D, Noel CW, Merrett K, Odorcic S, Fagerholm P, Jackson WB, Liedberg B, Phopase J, Griffith M (2013) Epoxy cross-linked collagen and collagen-laminin peptide hydrogels as corneal substitutes. J Funct Biomater 4:162

    Article  Google Scholar 

  • Kopecek J (2009) Hydrogels: From soft contact lenses and implants to self-assembled nanomaterials. J Polym Sci Part A Polym Chem 47:5929

    Article  Google Scholar 

  • Krogsgaard M, Behrens MA, Pedersen JS, Birkedal H (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14:297

    Article  Google Scholar 

  • Kuijpers AJ, van Wachem PB, van Luyn MJA, Engbers GHM, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000a) In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves. J Control Release 67:323

    Article  Google Scholar 

  • Kuijpers AJ, Engbers GHM, Meyvis TKL, de Smedt SSC, Demeester J, Krijgsveld J, Zaat SAJ, Dankert J, Feijen J (2000b) Combined gelatin−chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins. Macromolecules 33:3705

    Article  Google Scholar 

  • Kurihara S, Ueno Y, Nonaka T (1998) Preparation of poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membranes with triphenylmethane leucocyanide and permeation of solutes through the membranes. J Appl Polym Sci 67:1931

    Article  Google Scholar 

  • Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: A review Polym-Plast Technol Eng 50:1475

    Article  Google Scholar 

  • Lallana E, Fernandez-Trillo F, Sousa-Herves A, Riguera R, Fernandez-Megia E (2012) Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm Res 29:902

    Article  Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869

    Article  Google Scholar 

  • Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3:1038

    Article  Google Scholar 

  • Li X, Gao Y, Kuang Y, Xu B (2010) Enzymatic formation of a photoresponsive supramolecular hydrogel. Chem Commun 46:5364

    Article  Google Scholar 

  • Liang X, Kozlovskaya V, Chen Y, Zavgorodnya O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24:3707

    Article  Google Scholar 

  • Liao X, Chen G, Liu X, Chen W, Chen F, Jiang M (2010) Photoresponsive pseudopolyrotaxane hydrogels based on competition of host–guest interactions. Angewandte Chemie 122:4511

    Article  Google Scholar 

  • Lin Y-H, Liang H-F, Chung C-K, Chen M-C, Sung H-W (2005) Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials 26:2105

    Article  Google Scholar 

  • Liu Q, Zhang P, Qing A, Lan Y, Lu M (2006) Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer 47:2330

    Article  Google Scholar 

  • Magnin D, Lefebvre J, Chornet E, Dumitriu S (2004) Physicochemical and structural characterization of a polyionic matrix of interest in biotechnology, in the pharmaceutical and biomedical fields. Carbohydr Polym 55:437

    Article  Google Scholar 

  • Mangione MR, Giacomazza D, Bulone D, Martorana V, Cavallaro G, San Biagio PL (2005) K+ and Na+ effects on the gelation properties of κ-Carrageenan. Biophys Chem 113:129

    Article  Google Scholar 

  • Matsumoto S, Yamaguchi S, Ueno S, Komatsu H, Ikeda M, Ishizuka K, Iko Y, Tabata KV, Aoki H, Ito S, Noji H, Hamachi I (2008) Photo gel–sol/sol–gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials. Chem Eur J 14:3977

    Article  Google Scholar 

  • Messing R, Schmidt AM (2011) Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2:18

    Article  Google Scholar 

  • Morris ER, Rees DA, Robinson G (1980) Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. J Mol Biol 138:349

    Article  Google Scholar 

  • Mortisen D, Peroglio M, Alini M, Eglin D (2010) Tailoring thermoreversible hyaluronan hydrogels by “Click” chemistry and RAFT polymerization for cell and drug therapy. Biomacromolecules 11:1261

    Article  Google Scholar 

  • Moschou EA, Madou MJ, Bachas LG, Daunert S (2006) Voltage-switchable artificial muscles actuating at near neutral pH. Sens Actuators B 115:379

    Article  Google Scholar 

  • Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92:1

    Article  Google Scholar 

  • Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007

    Article  Google Scholar 

  • Nimmo CM, Shoichet MS (2011) Regenerative biomaterials that “Click”: Simple, aqueous-based protocols for hydrogel synthesis, surface immobilization, and 3D patterning. Bioconjug Chem 22:2199

    Article  Google Scholar 

  • Ning J, Kubota K, Li G, Haraguchi K (2013) Characteristics of zwitterionic sulfobetaine acrylamide polymer and the hydrogels prepared by freeradical polymerization and effects of physical and chemical crosslinks on the UCST. React Funct Polym 73:969

    Article  Google Scholar 

  • Noda S, Funami T, Nakauma M, Asai I, Takahashi R, Al-Assaf S, Ikeda S, Nishinari K, Phillips GO (2008) Molecular structures of gellan gum imaged with atomic force microscopy in relation to the rheological behavior in aqueous systems. 1. Gellan gum with various acyl contents in the presence and absence of potassium. Food Hydrocolloids 22:1148

    Article  Google Scholar 

  • Omobono MA, Zhao X, Furlong MA, Kwon C-H, Gill TJ, Randolph MA, Redmond RW (2014) Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J Biomed Mater Res A. doi:10.1002/jbm.a.35266

    Google Scholar 

  • Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242

    Article  Google Scholar 

  • Ossipov DA, Hilborn J (2006) Poly(vinyl alcohol)-based hydrogels formed by “Click Chemistry”. Macromolecules 39:1709

    Google Scholar 

  • Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58:101

    Article  Google Scholar 

  • Park K (1988) Enzyme-digestible swelling hydrogels as platforms for long-term oral drug delivery: synthesis and characterization. Biomaterials 9:435

    Article  Google Scholar 

  • Park YH, Park SB (2002) Preparation and electroactivity of poly(methylmethacrylate-co-pyrrolylmethylstyrene)–g-polypyrrole. Synth Met 128:229

    Article  Google Scholar 

  • Park J-S, Kuang J, Gwon H-J, Lim Y-M, Jeong S-I, Shin Y-M, Seob Khil M, Nho Y-C (2013) Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation. Radiat Phys Chem 88:60

    Article  Google Scholar 

  • Pena-Francesch A, Montero L, Borrós S (2014) Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD. Langmuir 30:7162

    Article  Google Scholar 

  • Peng K, Tomatsu I, Kros A (2010) Light controlled protein release from a supramolecular hydrogel. Chem Commun 46:4094

    Article  Google Scholar 

  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv Mater 18:1345

    Article  Google Scholar 

  • Phelps EA, Enemchukwu NO, Fiore VF, Sy JC, Murthy N, Sulchek TA, Barker TH, García A (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. J Adv Mater 24:64

    Article  Google Scholar 

  • Plunkett KN, Moore JS (2004) Patterned dual pH-responsive core-shell hydrogels with controllable swelling kinetics and volumes. Langmuir 20:6535

    Article  Google Scholar 

  • Priya James H, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B 4:120

    Article  Google Scholar 

  • Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321

    Article  Google Scholar 

  • Qiu Z, Yu H, Li J, Wang Y, Zhang Y (2009) Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligandreceptor interaction. Chem Commun 23:3342

    Google Scholar 

  • Rahimi N, Molin DG, Cleij TJ, van Zandvoort MA, Post M (2012) Electrosensitive polyacrylic acid/fibrin hydrogel facilitates cell seeding and alignment. J Biomacromol 13:1448

    Article  Google Scholar 

  • Ramanathan S, Block LH (2001) The use of chitosan gels as matrices for electrically-modulated drug delivery. J Control Release 70:109

    Article  Google Scholar 

  • Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979

    Article  Google Scholar 

  • Riedinger A, Pernia Leal M, Deka SR, George C, Franchini IR, Falqui A, Cingolani R, Pellegrino T (2011) “Nanohybrids” based on pH-responsive hydrogels and inorganic nanoparticles for drug delivery and sensor applications. Nano Lett 11:3136

    Article  Google Scholar 

  • Rudick JG (2013) Innovative macromolecular syntheses via isocyanide multicomponent reactions. J Polym Sci Part A Polym Chem 51:3985

    Article  Google Scholar 

  • Sakai T, Murayama H, Nagano S, Takeoka Y, Kidowaki M, Ito K, Seki T (2007) Photoresponsive slide-ring gel. Adv Mater 19:2023

    Article  Google Scholar 

  • Samal SK, Dash M, Dubruel P, Van Vlierberghe S (2014) In: Aguilar MR, Román JS (eds) Smart polymer hydrogels: properties, synthesis and applications. Woodhead, Cambridge, UK

    Google Scholar 

  • Samchenko Y, Ulberg Z, Korotych O (2011) Adv Colloid Interface Sci 168:247

    Article  Google Scholar 

  • Schoener CA, Hutson HN, Peppas NA (2012) pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the delivery of hydrophobic therapeutic agents. Polym Int 61:874

    Article  Google Scholar 

  • Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19

    Article  Google Scholar 

  • Seidel JM, Malmonge SM (2000) Synthesis of polyHEMA hydrogels for using as biomaterials. Bulk and solution radical-initiated polymerization techniques. Mater Res 3:79

    Article  Google Scholar 

  • Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33:1898

    Article  Google Scholar 

  • Shi D, Matsusaki M, Akashi M (2009) Photo-cross-linking induces size change and stealth properties of water-dispersible cinnamic acid derivative nanoparticles. Bioconjug Chem 20:1917

    Article  Google Scholar 

  • Shih H, Lin C-C (2012) Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules 13:2003

    Article  Google Scholar 

  • Shih H, Lin C-C (2013) Visible-light-mediated thiol-ene hydrogelation using eosin-Y as the only photoinitiator. Macromol Rapid Commun 34:269

    Article  Google Scholar 

  • Shin J, Han SG, Lee W (2012) Dually tunable inverse opal hydrogel colorimetric sensor with fast and reversible color changes. Sens Actuators B 168:20

    Article  Google Scholar 

  • Shirakura T, Kelson TJ, Ray A, Malyarenko AE, Kopelman R (2014) Hydrogel nanoparticles with thermally controlled drug release. ACS Macro Lett 3:602

    Article  Google Scholar 

  • Singh A, Sharma PK, Garg VK, Garg G (2010) Hydrogels: A review Int J Pharm Sci Rev Res 4:97

    Google Scholar 

  • Song W, Guo Z, Yao Y, Zheng H, Zhao Z (2014) Cross-link copolymerization of cationic starch by gamma irradiation and its swelling-shrinking and flocculating behaviors. Starch-Stärke 66:345

    Article  Google Scholar 

  • Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101

    Article  Google Scholar 

  • Sturesson C, Degling Wikingsson L (2000) Comparison of poly(acryl starch) and poly(lactide-co-glycolide) microspheres as drug delivery system for a rotavirus vaccine. J Control Release 68:441

    Article  Google Scholar 

  • Sun S, Cao H, Su H, Tan T (2009) Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull 62:699

    Article  Google Scholar 

  • Tahtat D, Mahlous M, Benamer S, Nacer Khodja A, Larbi Youcef S, Hadjarab N, Mezaache W (2011) Influence of some factors affecting antibacterial activity of PVA/Chitosan based hydrogels synthesized by gamma irradiation. J Mater Sci Mater Med 22:2505

    Article  Google Scholar 

  • Takigami M, Amada H, Nagasawa N, Yagi T, Kasahara T, Takigami S, Tamada M (2007) Preparation and properties of CMC gel. Trans Mater Res Soc Jpn 32:713

    Google Scholar 

  • Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem 122:7623

    Article  Google Scholar 

  • Tan H, Rubin JP, Marra KG (2011) Direct synthesis of biodegradable polysaccharide derivative hydrogels through aqueous diels-alder chemistry. Macromol Rapid Commun 32:905

    Article  Google Scholar 

  • Tang A, Wang C, Stewart RJ, Kopeček J (2001) The coiled coils in the design of protein-based constructs: hybrid hydrogels and epitope displays. J Control Release 72:57

    Article  Google Scholar 

  • Tomatsu I, Peng K, Kros A (2011) Photoresponsive hydrogels for biomedical applications. Adv Drug Deliv Rev 63:1257

    Article  Google Scholar 

  • Trinetta V, Cutter CN, Floros JD (2011) Effects of ingredient composition on optical and mechanical properties of pullulan film for foodpackaging applications. LWT Food Sci Technol 44:2296

    Article  Google Scholar 

  • Tyagi P, Kumar A, Kumar Y, Lahiri SS (2011) Synthesis and characterization of poly(HEMA-MAA) hydrogel carrier for oral delivery of insulin. J Appl Polym Sci 122:2004

    Article  Google Scholar 

  • Uliniuc A, Popa M, Hamaide T, Dobromir M (2012) New approaches in hydrogel synthesis e click chemistry: a review. Cellul Chem Technol 46:1

    Google Scholar 

  • van der Linden HJ, Herber S, Olthuis W, Bergveld P (2003) Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. Analyst 128:325

    Article  Google Scholar 

  • van Dijk M, van Nostrum CF, Hennink WE, Rijkers DTS, Liskamp RM (2010) Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry. J Biomacromol 11:1608

    Article  Google Scholar 

  • van Gemert GML, Peeters JW, Söntjens SHM, Janssen HM, Bosman AW (2012) Self-healing supramolecular polymers in action. Macromol Chem Phys 213:234

    Article  Google Scholar 

  • VanBlarcom D, Peppas N (2011) Microcantilever sensing arrays from biodegradable, pH-responsive hydrogels. Biomed Microdevices 13:829

    Article  Google Scholar 

  • Varshney L (2007) Role of natural polysaccharides in radiation formation of PVA–hydrogel wound dressing. Nucl Instrum Methods Phys Res Sect B 255:343

    Article  Google Scholar 

  • Vashist A, Ahmad S (2013) Hydrogels: smart materials for drug delivery. Orient J Chem 29:861

    Article  Google Scholar 

  • Vilozny B, Schiller A, Wessling RA, Singaram B (2011) Multiwell plates loaded with fluorescent hydrogel sensors for measuring pH and glucose concentration. J Mater Chem 21:7589

    Article  Google Scholar 

  • Wang C, Stewart RJ, KopeCek J (1999) Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains. Nature 397:417

    Article  Google Scholar 

  • Wang C, Liu H, Gao Q, Liu X, Tong Z (2008) Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydr Polym 71:476

    Article  Google Scholar 

  • Wang J, Sutti A, Wang X, Lin T (2011) Fast responsive and morphologically robust thermo-responsive hydrogel nanofibres from poly(N-isopropylacrylamide) and POSS crosslinker. Soft Matter 7:4364

    Google Scholar 

  • Wei H-L, Yang Z, Zheng L-M, Shen Y-M (2009) Thermosensitive hydrogels synthesized by fast Diels–Alder reaction in water. Polymer 50:2836

    Article  Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic Gels for Biological Use Nature 185:117

    Article  Google Scholar 

  • Wong Po Foo CTS, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci 106:22067

    Article  Google Scholar 

  • Wu P, Imai M (2012) Novel Biopolymer Composite Membrane Involved with Selective Mass Transfer and Excellent Water Permeability In: Ning RY (ed) Advancing desalination. InTech, Rijeka

    Google Scholar 

  • Xia L-W, Xie R, Ju X-J, Wang W, Chen Q, Chu L-Y (2013) Nano-structured smart hydrogels with rapid response and high elasticity. Nat Commun 4:1 2226. doi:10.1038/792ncomms3226

    Google Scholar 

  • Xiao C, Gao Y (2008) Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels. J Appl Polym Sci 107:1568

    Article  Google Scholar 

  • Xu F-J, Kang E-T, Neoh K-G (2006) pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials 27:2787

    Article  Google Scholar 

  • Xu X-D, Chen C-S, Wang Z-C, Wang G-R, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) “Click” chemistry for in situ formation of thermoresponsive P(NIPAAm-co-HEMA)-based hydrogels. J Polym Sci Part A Polym Chem 46:5263

    Article  Google Scholar 

  • Xu X-D, Chen C-S, Lu B, Wang Z-C, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Modular synthesis of thermosensitive P(NIPAAm-co-HEMA)/β-CD based hydrogels via click chemistry. Macromol Rapid Commun 30:157

    Article  Google Scholar 

  • Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A (2012) Photoswitchable gel assembly based on molecular recognition. Nat Commun 3:603

    Article  Google Scholar 

  • Yan B, Boyer J-C, Habault D, Branda NR, Zhao Y (2012) Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J Am Chem Soc 134:16558

    Article  Google Scholar 

  • Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73:401

    Article  Google Scholar 

  • Yang JY, Zhou XS, Fang J (2011) Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr Polym 86:1113

    Article  Google Scholar 

  • Yildiz B, Işik B, Kiş M (2002) Thermoresponsive poly(N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) hydrogels. React Funct Polym 52:3

    Article  Google Scholar 

  • Yoon JA, Gayathri C, Gil RR, Kowalewski T, Matyjaszewski K (2010) Comparison of the thermoresponsive deswelling kinetics of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels prepared by ATRP and FRP. Macromolecules 43:4791

    Article  Google Scholar 

  • Yoon JA, Kowalewski T, Matyjaszewski K (2011) Comparison of thermoresponsive deswelling kinetics of poly(oligo(ethylene oxide) methacrylate)-based thermoresponsive hydrogels prepared by “Graft-from” ATRP. Macromolecules 44:2261

    Article  Google Scholar 

  • Yoshikawa HY, Rossetti FF, Kaufmann S, Kaindl T, Madsen J, Engel U, Lewis AL, Armes SP, Tanaka M (2011) Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels. J Am Chem Soc 133:1367

    Article  Google Scholar 

  • Young JL, Engler A (2011) Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro. J Biomater 32:1002

    Article  Google Scholar 

  • Yu Y, Deng C, Meng F, Shi Q, Feijen J, Zhong Z (2011) Novel injectable biodegradable glycol chitosan-based hydrogels crosslinked by Michael-type addition reaction with oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) copolymers. J Biomed Mater Res A 99A:316

    Google Scholar 

  • Yu Y, Liu Y, Kong Y, Zhang E, Jia F, Li S (2012) Synthesis and characterization of temperature-sensitive poly(N-isopropylacryamide) hydrogel with comonomer and semi-IPN material. Polym-Plast Technol Eng 51:854

    Article  Google Scholar 

  • Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromolecules 12:2894

    Article  Google Scholar 

  • Zhang H, Yan Q, Kang Y, Zhou L, Zhou H, Yuan J, Wu S (2012) Fabrication of thermo-responsive hydrogels from star-shaped copolymer with a biocompatible β-cyclodextrin core. Polymer 53:3719

    Article  Google Scholar 

  • Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. React Funct Polym 73:923

    Article  Google Scholar 

  • Zhao Y-L, Stoddart JF (2009) Azobenzene-based light-responsive hydrogel system. Langmuir 25:8442

    Article  Google Scholar 

  • Zhao QS, Ji QX, Xing K, Li XY, Liu CS, Chen XG (2009a) Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydr Polym 76:410

    Article  Google Scholar 

  • Zhao C, Zhuang X, He P, Xiao C, He C, Sun J, Chen X, Jing X (2009b) Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer 50:4308

    Article  Google Scholar 

  • Zhao L, Gwon H-J, Lim Y-M, Nho Y-C, Kim SY (2014) Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique. Carbohydr Polym 102:598

    Article  Google Scholar 

  • Zhou L, Li J, Luo Q, Zhu J, Zou H, Gao Y, Wang L, Xu J, Dong Z, Liu J (2013) Dual stimuli-responsive supramolecular pseudo-polyrotaxane hydrogels. Soft Matter 9:4635

    Article  Google Scholar 

  • Zhu C-H, Hai Z-B, Cui C-H, Li H-H, Chen J-F, Yu S-H (2012) In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 8:930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrij Pich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Agrawal, G., Pich, A. (2016). Polymer Gels as EAPs: Materials. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_2

Download citation

Publish with us

Policies and ethics