Skip to main content

Conducting Polymers as EAPs: Applications

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

Artificial muscles are the longtime dream of human being to replace the existing engines, motors, and piezoelectric actuators because of the low-noise, environment-friendly, and energy-saving actuators (or power force generators). This chapter describes applications of conducting polymers (CPs) to EAPs such as bending actuators, microactuators, and linear actuators. The bending actuators were applied to diaphragm pumps, swimming devices, and flexural-jointed grippers with the trilayer configurations. On the other hand, the microactuators have the advantage of short diffusion times and thus fast actuation. Since the CP actuators operate in any salt solutions, such as a saline solution, cell culture media, and biological liquid, the PPy microactuators have potential applications in microfluidics and drug delivery, cell biology, and medical devices. Furthermore, the linear actuators were developed for the applications to the Braille cells, artificial muscles for soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alici G, Huynh NN (2007) Performance quantification of conducting polymer actuators for real applications: a microgripping system. IEEE/ASME Trans Mechatron 12:73–84

    Article  Google Scholar 

  • Alici G, Spinks G, Huynh NN, Sarmadi L, Minato R (2007) Establishment of a biomimetic device based on tri-layer polymer actuators – propulsion fins. Bioinspir Biomim 2:S18

    Article  Google Scholar 

  • Alici G, Devaud V, Renaud P, Spinks G (2009) Conducting polymer microactuators operating in air. J Micromech Microeng 19:025017

    Article  Google Scholar 

  • Berdichevsky Y, Lo Y-H (2004) Polymer microvalve based on anisotropic expansion of polypyrrole. In: Materials Research Society symposium- proceedings, 2003, vol 782, Materials Research Society, Boston, p A4.4.1

    Google Scholar 

  • Carlsson D, Jager E, Krogh M, Skoglund M (2007) Systems, device and object comprising electroactive polymer material, methods and uses relating to operation and provision thereof. Patent WO2009038501

    Google Scholar 

  • Carpi F, Kornbluh R, Sommer-Larsen P, Alici G (2011) Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir Biomim 6:045006

    Article  Google Scholar 

  • Ding J, Liu L, Spinks GM, Zhou D, Wallace GG, Gillespie J (2003) High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth Met 138:391–398

    Article  Google Scholar 

  • Eamex HP. http://www.eamex.co.jp/features/koubunshi/koubunsi/

  • Fang Y, Tan X (2010) A novel diaphragm micropump actuated by conjugated polymer petals: fabrication, modeling, and experimental results. Sens Actuators A 158:121–131

    Article  Google Scholar 

  • Fay C, Lau KT, Beirne S et al (2010) Wireless aquatic navigator for detection and analysis (WANDA). Sens Actuators B 150:425–435

    Article  Google Scholar 

  • Fonner JM, Forciniti L, Nguyen H, Byrne JD, Kou YF, Syeda-Nawaz J, Schmidt CE (2008) Biocompatibility implications of polypyrrole synthesis techniques. Biomed Mater 3:034124

    Article  Google Scholar 

  • Gaihre B, Alici G, Spinks GM, Cairney JM (2011) Effect of electrolyte storage layer on performance of PPy-PVDF-PPy microactuators. Sens Actuators B 155:810–816

    Article  Google Scholar 

  • Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014a) Bioelectronic nanofibre scaffolds for tissue engineering and whole-cell biosensors. Biosensors 2014. Melbourne

    Google Scholar 

  • Gelmi A, Ljunggren M, Rafat M, Jager EWH (2014b) Influence of conductive polymer doping on the viability of cardiac progenitor cells. J Mater Chem B 2:3860–3867

    Google Scholar 

  • Göttsche T, Haeberle S (2009) Chapter 15. Integrated oral drug delivery system with valve based on polypyrrole. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. John Wiley & Sons, Chichester, UK

    Google Scholar 

  • Göttsche T, Kohnle J, Schumacher A, Kattinger G, Jager E, Krogh M (2006) Ventil. Patent DE102006005517

    Google Scholar 

  • Gumm D (2002) Rotating stent delivery system for side branch access and protection and method of using same. Patent WO03/017872

    Google Scholar 

  • Immerstrand C, Peterson KH, Magnusson K-E, Jager E, Krogh M, Skoglund M, Selbing A, Inganäs O (2002) Conjugated-polymer micro- and milliactuators for biological applications. MRS Bull 27:461–464

    Article  Google Scholar 

  • Jager EWH (2010) Chapter 8, Conjugated polymers as actuators for medical devices and microsystems. In: Leger J, Carter S, Berggren M (eds) Iontronics – ionic carriers in organic electronic materials and devices. CRC Press, Boca Raton, pp 141–162

    Google Scholar 

  • Jager EWH, Smela E, Inganäs O (1999) On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. Sens Actuators B 56:73–78

    Article  Google Scholar 

  • Jager EWH, Inganäs O, Lundström I (2000a) Microrobots for micrometer-size objects in aqueous media: potential tools for single cell manipulation. Science 288:2335–2338

    Article  Google Scholar 

  • Jager EWH, Smela E, Inganäs O (2000b) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Article  Google Scholar 

  • Jager EWH, Inganäs O, Lundström I (2001) Perpendicular actuation with individually controlled polymer microactuators. Adv Mater 13:76–79

    Article  Google Scholar 

  • Jager EWH, Immerstrand C, Petersson KH, Magnusson K-E, Lundström I, Inganäs O (2002) The cell clinic: closable microvials for single cell studies. Biomed Microdevices 4:177–187

    Article  Google Scholar 

  • Jager E, Carlsson D, Krogh M, Skoglund M (2007) Electroactive polymer actuator devices and systems comprising such devices. Patent WO2008113372

    Google Scholar 

  • Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013) Patterning and electrical interfacing of individually controllable conducting polymer microactuators. Sens Actuators B 183:283–289

    Article  Google Scholar 

  • Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Chevrot C, Teyssié D (2011a) Dry etching process on a conducting interpenetrating polymer network actuator for a flapping fly micro robot. In: ASME 2011 international mechanical engineering congress and exposition, IMECE 2011, vol 2, Denver, pp 755–757

    Google Scholar 

  • Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011b) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101

    Google Scholar 

  • Krogh M, Jager E (2005) Medical devices and methods for their fabrication and use. Patent WO2007057132

    Google Scholar 

  • Krogh M, Inganäs O, Jager E (2001) Fibre-reinforced microactuator. Patent WO03039859

    Google Scholar 

  • Lee AP, Hong KC, Trevino J, Northrop MA (1994) Thin film conductive polymer for microactuator and micromuscle applications. In: Dynamic and systems and control session, international mechanical engineering congress, vol DSC-2. ASME Publications, Chicago, pp 725–732

    Google Scholar 

  • Lee KKC, Munce NR, Shoa T, Charron LG, Wright GA, Madden JD, Yang VXD (2009) Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters. Sens Actuators A 153:230–236

    Article  Google Scholar 

  • Low L-M, Seetharaman S, He K-Q, Madou MJ (2000) Microactuators toward microvalves for responsive controlled drug delivery. Sens Actuators B 67:149–160

    Article  Google Scholar 

  • Lundin V, Herland A, Berggren M, Jager EWH, Teixeira AI (2011) Control of neural stem cell survival by electroactive polymer substrates. PLoS One 6:e18624

    Article  Google Scholar 

  • Madden JDW, Vandesteeg NA, Anquetil PA, Madden PGA, Takshi A, Pytel RZ, Lafontaine SR, Wieringa PA, Hunter IW (2004) Artificial muscle technology: physical principles and naval prospects. IEEE J Ocean Eng 29:706–728

    Article  Google Scholar 

  • Maziz A, Plesse C, Soyer C, Chevrot C, Teyssié D, Cattan E, Vidal F (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24:4851–4859

    Article  Google Scholar 

  • Mcgovern S, Alici G, Truong V-T, Spinks G (2009) Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control. Smart Mater Struct 18:095009

    Article  Google Scholar 

  • Naka Y, Fuchiwaki M, Tanaka K (2010) A micropump driven by a polypyrrole-based conducting polymer soft actuator. Polym Int 59:352–356

    Article  Google Scholar 

  • Okuzaki H (ed) (2012) PEDOT: material properties and device applications. Science & Technology, Tokyo

    Google Scholar 

  • Okuzaki H, Funasaka K (2000) Electromechanical properties of a humido-sensitive conducting polymer film. Macromolecules 33:8307–8311

    Article  Google Scholar 

  • Okuzaki H, Kunugi T (1996) Adsorption-induced bending of polypyrrole films and its application to a chemomechanical rotor. J Polym Sci Part B Polym Phys 34:1747–1749

    Article  Google Scholar 

  • Okuzaki H, Kunugi T (1997) Adsorption-induced chemomechanical behavior of polypyrrole films. J Appl Polym Sci 64:383–388

    Article  Google Scholar 

  • Okuzaki H, Kunugi T (1998) Electrically induced contraction of polypyrrole film in ambient air. J Polym Sci Part B Polym Phys 36:1591–1594

    Article  Google Scholar 

  • Okuzaki H, Kuwabara T, Kunugi T (1997) A polypyrrole motor driven by sorption of water vapor. Polymer 38:5491–5492

    Article  Google Scholar 

  • Okuzaki H, Kuwabara T, Kunugi T (1998a) Theoretical study of sorption-induced bending of polypyrrole films. J Polym Sci Part B Polym Phys 36:2237–2246

    Article  Google Scholar 

  • Okuzaki H, Kuwabara T, Kondo T (1998b) Role and effect of dopant ion on sorption-induced motion of polypyrrole films. J Polym Sci Part B Polym Phys 36:2635–2642

    Article  Google Scholar 

  • Okuzaki H, Saido T, Hara Y, Yan H (2008) A biomorphic organic actuator fabricated by folding a conducting paper. J Phys Conf Ser 127:12001

    Article  Google Scholar 

  • Okuzaki H, Suzuki H, Ito T (2009) Electromechanical properties of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) films. J Phys Chem B 113:11378–11383

    Article  Google Scholar 

  • Okuzaki H, Hosaka K, Suzuki H, Ito T (2010) Effect of temperature on humido-sensitive conducting polymer actuators. Sens Actuators A 157:96–99

    Article  Google Scholar 

  • Okuzaki H, Hosaka K, Suzuki H, Ito T (2013a) Humido-sensitive conducting polymer films and applications to linear actuators. Rect Funct Polym 73:986–992

    Article  Google Scholar 

  • Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013b) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407

    Article  Google Scholar 

  • Pettersson F, Jager EWH, Inganäs O (2000) Surface micromachined polymer actuators as valves in PDMS microfluidic system. In: Dittmar A, Beebe D (eds) IEEE-EMBS special topic conference on microtechnologies in medicine and biology, Lyon, 12–14 Oct 2000, pp 334–335

    Google Scholar 

  • Plesse C, Vidal F, Teyssié D, Chevrot C (2010) Conducting polymer artificial muscle fibres: toward an open air linear actuation. Chem Commun 46:2910–2912

    Article  Google Scholar 

  • Prakash SB, Urdaneta M, Christophersen M, Smela E, Abshire P (2008) In situ electrochemical control of electroactive polymer films on a CMOS chip. Sens Actuators B 129:699–704

    Article  Google Scholar 

  • Ruhparwar A, Piontek P, Ungerer M et al (2014) Electrically contractile polymers augment right ventricular output in the heart. Artif Organs. doi:10.1111/aor.12300 (in press)

    Google Scholar 

  • Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A 94:8948–8953

    Article  Google Scholar 

  • Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24:237–252

    Article  Google Scholar 

  • Smela E (1999) A microfabricated movable electrochromic “pixel” based on polypyrrole. Adv Mater 11:1343–1345

    Article  Google Scholar 

  • Smela E, Inganäs O, Pei Q, Lundström I (1993) Electrochemical muscles: micromachining fingers and corkscrews. Adv Mater 5:630–632

    Article  Google Scholar 

  • Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738

    Article  Google Scholar 

  • Smela E, Kallenbach M, Holdenried J (1999) Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. J Microelectromech Syst 8:373–383

    Article  Google Scholar 

  • Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11:3287–3293

    Article  Google Scholar 

  • Urdaneta M, Liu Y, Christopherson M, Prakash S, Abshire P, Smela E (2005) Integrating conjugated polymer microactuators with CMOS sensing circuitry for studying living cells. In: Smart structures and materials; electroactive polymer actuators and devices (EAPAD), vol 5759, San Diego, pp 232–240

    Google Scholar 

  • Vidal F, Plesse C, Palaprat G, Kheddar A, Citerin J, Teyssié D, Chevrot C (2006) Conducting IPN actuators: from polymer chemistry to actuator with linear actuation. Synth Met 156:1299–1304

    Article  Google Scholar 

  • Wang X, Berggren M, Inganäs O (2008) Dynamic control of surface energy and topography of microstructured conducting polymer films. Langmuir 24:5942–5948

    Article  Google Scholar 

  • Wilson SA, Jourdain RPJ, Zhang Q et al (2007) New materials for micro-scale sensors and actuators an engineering review. Mater Sci Eng R Rep 56:1–129

    Article  Google Scholar 

  • Wong JY, Langer R, Ingber DE (1994) Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci U S A 91:3201–3204

    Article  Google Scholar 

  • Wu Y, Zhou D, Spinks GM, Innis PC, Megill WM, Wallace GG (2005) TITAN: a conducting polymer based microfluidic pump. Smart Mater Struct 14:1511

    Article  Google Scholar 

  • Xu H, Wang C, Wang C, Zoval J, Madou M (2006) Polymer actuator valves toward controlled drug delivery application. Biosens Bioelectron 21:2094–2099

    Article  Google Scholar 

  • Yamada K, Kume Y, Tabe H (1998) A solid-state electrochemical device using poly(pyrrole) as micro-actuator. Jpn J Appl Phys 37:5798–5799

    Article  Google Scholar 

  • Zheng W, Alici G, Clingan PR, Munro BJ, Spinks GM, Steele JR, Wallace GG (2013) Polypyrrole stretchable actuators. J Polym Sci Part B Polym Phys 51:57–63

    Article  Google Scholar 

  • Zhou JWL, Chan H-Y, To TKH, Lai KWC, Li WJ (2004) Polymer MEMS actuators for underwater micromanipulation. IEEE/ASME Trans Mechatron 9:334–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Okuzaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kaneto, K., Jager, E.W.H., Alici, G., Okuzaki, H. (2016). Conducting Polymers as EAPs: Applications. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_16

Download citation

Publish with us

Policies and ethics