Skip to main content

Conducting Polymers as EAPs: Microfabrication

  • Reference work entry
  • First Online:
Electromechanically Active Polymers

Abstract

In this chapter, first some basic principles of photolithography and general microfabrication are introduced. These methods have been adapted to fit the microfabrication of conducting polymer actuators, resulting in a toolbox of techniques to engineer microsystems comprising CP microactuators, which will be explained in more detail. CP layers can be patterned using both subtractive and additive techniques to form CP microactuators in a variety of configurations including bulk expansion, bilayer, and trilayer actuators. Methods to integrate CP microactuators into complex microsystems and interfaces to connect them to the outside world are also described. Finally, some specifications, performance, and a short introduction to various applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alici G, Devaud V, Renaud P, Spinks G (2009) Conducting polymer microactuators operating in air. J Micromech Microeng 19:025017

    Article  Google Scholar 

  • Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353

    Article  Google Scholar 

  • Baughman RH, Shacklette LW, Elsenbaumer RL, Plichta EJ, Becht C (1991) Micro electromechanical actuators based on conducting polymers. In: Lazarev PI (ed) Molecular electronics. Kluwer, Dordrecht, pp 267–289

    Chapter  Google Scholar 

  • Berdichevsky Y, Lo Y-H (2003) Polymer microvalve based on anisotropic expansion of polypyrrole. In: Proceedings - Materials Research Society Symposium. Boston, United States, 782: pp 101–107

    Google Scholar 

  • Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 48:91–97

    Article  Google Scholar 

  • Carlsson D, Jager E, Krogh M, Skoglund M (2007) Systems, device and object comprising electroactive polymer material, methods and uses relating to operation and provision thereof. Patent WO2009038501

    Google Scholar 

  • Castillo-Ortega M, Inoue M, Inoue M (1989) Chemical synthesis of highly conducting polypyrrole by the use of copper (II) perchlorate as an oxidant. Synth Met 28:65–70

    Article  Google Scholar 

  • Chang CY, Sze SM (1996) ULSI technology. McGraw-Hill, Singapore

    Google Scholar 

  • Chao T, March J (1988) A study of polypyrrole synthesized with oxidative transition metal ions. J Polym Sci Part A Polym Chem 26:743–753

    Article  Google Scholar 

  • Diaz A, Bargon J, Skotheim T (1986) Handbook of conducting polymers, vol 1. Marcel Dekker, New York, p 81

    Google Scholar 

  • Fabretto M, Zuber K, Hall C, Murphy P (2008) High conductivity PEDOT using humidity facilitated vacuum vapour phase polymerisation. Macromol Rapid Commun 29:1403–1409

    Article  Google Scholar 

  • Fabretto MV, Evans DR, Mueller M, Zuber K, Hojati-Talemi P, Short RD, Wallace GG, Murphy PJ (2012) Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem Mater 24:3998–4003

    Article  Google Scholar 

  • Faxälv T, Bolin M, Jager EWH, Lindahl TL, Berggren M (2014) Lab on a Chip 14:3043.

    Google Scholar 

  • Gaihre B, Alici G, Spinks GM, Cairney JM (2011a) Effect of electrolyte storage layer on performance of PPy-PVDF-PPy microactuators. Sens Actuators B 155:810–816

    Article  Google Scholar 

  • Gaihre B, Alici G, Spinks GM, Cairney JM (2011b) Synthesis and performance evaluation of thin film PPy-PVDF multilayer electroactive polymer actuators. Sens Actuators A 165:321–328

    Article  Google Scholar 

  • Gaihre B, Alici G, Spinks GM, Cairney JM (2012) Pushing the limits for microactuators based on electroactive polymers. J Microelectromech Syst 21:574–585

    Article  Google Scholar 

  • Glocker DA, Shah SI, Westwood WD (1995) Handbook of thin film process technology. Institute of Physics Publishing, Philadelphia

    Google Scholar 

  • Göttsche T (2007) Highly integrated oral drug delivery system with valve based on electro-active-polymer. In: IEEE MEMS 2007, Kobe, pp 461–464

    Google Scholar 

  • Heywang G, Jonas F (1992) Poly (alkylenedioxythiophene)s – new, very stable conducting polymers. Adv Mater 4:116–118

    Google Scholar 

  • Hide F, Diaz-Garcia MA, Schwartz BJ, Andersson MR, Pei Q, Heeger AJ (1996) Semiconducting polymers: a new class of solid-state laser materials. Science 273:1833–1836

    Article  Google Scholar 

  • Immerstrand C, Peterson KH, Magnusson K-E, Jager E, Krogh M, Skoglund M, Selbing A, Inganäs O (2002) Conjugated-polymer micro- and milliactuators for biological applications. MRS Bull 27:461–464

    Article  Google Scholar 

  • Jager EWH (2010) Chapter 8, Conjugated polymers as actuators for medical devices and microsystems. In: Leger J, Carter S, Berggren M (eds) Iontronics – ionic carriers in organic electronic materials and devices. CRC Press, Boca Raton, pp 141–162

    Chapter  Google Scholar 

  • Jager E, Krogh M (2003) Method for producing a micromachined layered device. Patent WO2004092050

    Google Scholar 

  • Jager EWH, Smela E, Inganäs O (1999) On-chip microelectrodes for electrochemistry with moveable PPy bilayer actuators as working electrodes. Sens Actuators B Chem 56:73–78

    Article  Google Scholar 

  • Jager EWH, Inganäs O, Lundström I (2000a) Microrobots for micrometer-size objects in aqueous media: potential tools for single cell manipulation. Science 288:2335–2338

    Article  Google Scholar 

  • Jager EWH, Smela E, Inganäs O (2000b) Microfabricating conjugated polymer actuators. Science 290:1540–1545

    Article  Google Scholar 

  • Jager EWH, Immerstrand C, Petersson KH, Magnusson K-E, Lundström I, Inganäs O (2002) The cell clinic: closable microvials for single cell studies. Biomed Microdevices 4:177–187

    Article  Google Scholar 

  • Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013a) Individually controlled conducting polymer tri-layer microactuators. In: Transducers 2013, Barcelona, 16–20 June 2013, pp 542–545

    Google Scholar 

  • Jager EWH, Masurkar N, Nworah NF, Gaihre B, Alici G, Spinks GM (2013b) Patterning and electrical interfacing of individually controllable conducting polymer microactuators. Sens Actuators B 183:283–289

    Google Scholar 

  • Kanazawa KK, Diaz A, Geiss RH, Gill WD, Kwak JF, Logan JA, Rabolt JF, Street GB (1979) ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’ polymer. J Chem Soc Chem Commun 19:854–855

    Google Scholar 

  • Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Chevrot C, Teyssié D (2011a) Dry etching process on a conducting interpenetrating polymer network actuator for a flapping fly micro robot. In: ASME 2011 international mechanical engineering congress and exposition, IMECE 2011, vol 2, Denver, pp 755–757

    Google Scholar 

  • Khaldi A, Plesse C, Soyer C, Cattan E, Vidal F, Legrand C, Teyssié D (2011b) Conducting interpenetrating polymer network sized to fabricate microactuators. Appl Phys Lett 98:164101

    Google Scholar 

  • Khaldi A, Plesse C, Soyer C, Chevrot C, Teyssié D, Vidal F, Cattan E (2012) Patterning process and actuation in open air of micro-beam actuator based on conducting IPNs. In: Proceedings of SPIE – The International Society for Optical Engineering, San Diego, USA, vol 8340

    Google Scholar 

  • Kim J, Kim E, Won Y, Lee H, Suh K (2003) The preparation and characteristics of conductive poly (3, 4-ethylenedioxythiophene) thin film by vapor-phase polymerization. Synth Met 139:485–489

    Article  Google Scholar 

  • Klempner D, Sperling LH, Utracki LA (1994) Interpenetrating polymer networks. An American Chemical Society Publication, Washington, DC

    Google Scholar 

  • Kobayashi M, Colaneri N, Boysel M, Wudl F, Heeger A (1985) The electronic and electrochemical properties of poly (isothianaphthene). J Chem Phys 82:5717–5723

    Article  Google Scholar 

  • Lu W, Fadeev AG, Qi B et al (2002) Use of ionic liquids for -conjugated polymer electrochemical devices. Science 297:983–987

    Article  Google Scholar 

  • Machida S, Miyata S, Techagumpuch A (1989) Chemical synthesis of highly electrically conductive polypyrrole. Synth Met 31:311–318

    Article  Google Scholar 

  • Madden JD, Cush RA, Kanigan TS, Hunter IW (2000) Fast contracting polypyrrole actuators. Synth Met 113:185–192

    Article  Google Scholar 

  • Madou M (1997) Fundamentals of microfabrication. CRC Press, Boca Raton

    Google Scholar 

  • Maziz A, Plesse C, Soyer C, Chevrot C, Teyssié D, Cattan E, Vidal F (2014) Demonstrating kHz frequency actuation for conducting polymer microactuators. Adv Funct Mater 24:4851–4859

    Article  Google Scholar 

  • Melling D, Wilson S, Jager EWH (2013) The effect of film thickness on polypyrrole actuation assessed using novel non-contact strain measurements. Smart Mater Struct 22:104021

    Article  Google Scholar 

  • Mohammadi A, Hasan M-A, Liedberg B, Lundström I, Salaneck W (1986) Chemical vapour deposition (cvd) of conducting polymers: polypyrrole. Synth Met 14:189–197

    Article  Google Scholar 

  • Pei Q, Inganäs O (1992) Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv Mater 4:277–278

    Article  Google Scholar 

  • Pettersson F, Jager EWH, Inganäs O (2000) Surface micromachined polymer actuators as valves in PDMS microfluidic system. In: Dittmar A, Beebe D (eds) IEEE-EMBS special topic conference on microtechnologies in medicine & biology, Lyon, 12–14 Oct 2000, pp 334–335

    Google Scholar 

  • Plesse C, Vidal F, Randriamahazaka H, Teyssié D, Chevrot C (2005) Synthesis and characterization of conducting interpenetrating polymer networks for new actuators. Polymer 46:7771–7778

    Article  Google Scholar 

  • Prakash SB, Urdaneta M, Christophersen M, Smela E, Abshire P (2008) In situ electrochemical control of electroactive polymer films on a CMOS chip. Sens Actuators B 129:699–704

    Article  Google Scholar 

  • Rapi S, Bocchi V, Gardini G (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24:217–221

    Article  Google Scholar 

  • Shoa T, Madden JD, Munce NR, Yang V (2010) Analytical modeling of a conducting polymer-driven catheter. Polym Int 59:343–351

    Article  Google Scholar 

  • Smela E (1999a) A microfabricated movable electrochromic “pixel” based on polypyrrole. Adv Mater 11:1343–1345

    Article  Google Scholar 

  • Smela E (1999b) Microfabrication of PPy microactuators and other conjugated polymer devices. J Micromech Microeng 9:1–18

    Article  Google Scholar 

  • Smela E, Gadegaard N (1999) Surprising volume change in PPy(DBS): an atomic force microscopy study. Adv Mater 11:953–957

    Article  Google Scholar 

  • Smela E, Inganäs O, Pei Q, Lundström I (1993) Electrochemical muscles: micromachining fingers and corkscrews. Adv Mater 5:630–632

    Article  Google Scholar 

  • Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738

    Article  Google Scholar 

  • Smela E, Kallenbach M, Holdenried J (1999) Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates. J Microelectromech Syst 8:373–383

    Article  Google Scholar 

  • Sperling LH (2004) Interpenetrating polymer networks. Wiley Online Library, Washington, DC

    Google Scholar 

  • Sugimoto R-I, Takeda S, Gu H, Yoshino K (1986) Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property. Chem Express 1:635–638

    Google Scholar 

  • Svennersten K, Berggren M, Richter-Dahlfors A, Jager EWH (2011) Mechanical stimulation of epithelial cells using polypyrrole microactuators. Lab Chip 11:3287–3293

    Article  Google Scholar 

  • Taccola S, Greco F, Mazzolai B, Mattoli V, Jager EWH (2013) Thin film free standing PEDOT:PSS/SU8 bilayer microactuators. J Micromech Microeng 23:117004

    Article  Google Scholar 

  • Taylor GN, Wolf TM (1980) Oxygen plasma removal of thin polymer films. Polym Eng Sci 20:1087

    Article  Google Scholar 

  • Tehrani P, Robinson ND, Kugler T, Remonen T, Hennerdal LO, Häll J, Malmström A, Leenders L, Berggren M (2005) Patterning polythiophene films using electrochemical over-oxidation. Smart Mater Struct 14:N21–N25

    Article  Google Scholar 

  • Temmer R, Maziz A, Plesse C, Aabloo A, Vidal F, Tamm T (2013) In search of better electroactive polymer actuator materials: PPy versus PEDOT versus PEDOT–PPy composites. Smart Mater Struct 22:104006

    Article  Google Scholar 

  • Vidal F, Popp JF, Plesse C, Chevrot C, Teyssie D (2003) Feasibility of conducting semi‐interpenetrating networks based on a poly (ethylene oxide) network and poly (3, 4‐ethylenedioxythiophene) in actuator design. J Appl Polym Sci 90:3569–3577

    Article  Google Scholar 

  • Vidal F, Plesse C, Teyssié D, Chevrot C (2004) Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth Met 142:287–291

    Article  Google Scholar 

  • Wang X, Berggren M, Inganäs O (2008) Dynamic control of surface energy and topography of microstructured conducting polymer films. Langmuir 24:5942–5948

    Article  Google Scholar 

  • Wilson SA, Jourdain RPJ, Zhang Q et al (2007) New materials for micro-scale sensors and actuators: an engineering review. Mater Sci Eng R Rep 56:1–129

    Article  Google Scholar 

  • Winther-Jensen B, West K (2004) Vapor-phase polymerization of 3, 4-ethylenedioxythiophene: a route to highly conducting polymer surface layers. Macromolecules 37:4538–4543

    Article  Google Scholar 

  • Winther-Jensen B, Breiby DW, West K (2005) Base inhibited oxidative polymerization of 3, 4-ethylenedioxythiophene with iron (III) tosylate. Synth Met 152:1–4

    Article  Google Scholar 

  • Wu Y, Alici G, Spinks GM, Wallace GG (2006) Fast trilayer polypyrrole bending actuators for high speed applications. Synth Met 156:1017–1022

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575

    Article  Google Scholar 

  • Yamada K, Kume Y, Tabe H (1998) A solid-state electrochemical device using poly(pyrrole) as micro-actuator. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 37:5798–5799

    Article  Google Scholar 

  • Zhou DZ, Spinks GM, Wallace GG, Tiyapiboonchaiya C, Macfarlane DR, Forsyth M, Sun JZ (2003) Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochim Acta 48:2355–2359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin W. H. Jager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Jager, E.W.H., Maziz, A., Khaldi, A. (2016). Conducting Polymers as EAPs: Microfabrication. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_13

Download citation

Publish with us

Policies and ethics