Skip to main content

IPMCs as EAPs: How to Start Experimenting with Them

  • Reference work entry
  • First Online:

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

This chapter describes how to start experiments with ionic polymer–metal composite (IPMC) actuators. In the first part, a fabrication of IPMC actuator element is summarized. In the next part, how to setup a measurement system of IPMC actuator and test the actuator performance is described. In the last part, a control method of IPMC actuator is discussed. From the information in this chapter, experiments with IPMC actuators can be started.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akle BJ, Bennett MD, Leo DJ (2006) High-strain ionomeric-ionic liquid electroactive actuators. Sens Actuators A126:173–181

    Article  Google Scholar 

  • Anton M, Aabloo A, Punning A, Kruusmaa M (2008) A mechanical model of a non-uniform ionomeric polymer metal composite actuator. Smart Mater Struct 17(2):25001–25004

    Article  Google Scholar 

  • Asaka K, Oguro K (2009) Active microcatheter and biomedical soft devices based on IPMC actuators. In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, Chichester, pp 121–136

    Chapter  Google Scholar 

  • Asaka K, Fujiwara N, Oguro K et al (2001) State of water and ionic conductivity of solid polymer electrolyte membranes in relation to polymer actuators. J Electroanal Chem 505:24–32

    Article  Google Scholar 

  • Brunetto P, Fortuna L, Giannone P et al (2010) Static and dynamic characterization of the temperature and humidity influence on IPMC actuators. IEEE Trans Instr Meas 59(4):893–908

    Article  Google Scholar 

  • Fleming MJ, Kim KJ, Leang KK (2012) Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes. Smart Mater Struct 21, 085002

    Article  Google Scholar 

  • Hubbard JJ, Fleming M, Palmre V et al (2014) Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng 39(3):540–551

    Article  Google Scholar 

  • Jo C, Pugal D, Oh I-K et al (2013) Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog Polym Sci 38:1037–1066

    Article  Google Scholar 

  • Kikuchi K, Tsuchitani S (2009) Nafion®-based polymer actuators with ionic liquids as solvent incorporated at room temperature. J Appl Phys 106, 053519

    Article  Google Scholar 

  • Kim KJ, Pugal D, Leang KK (2011) A twistable ionic polymer–metal composite artificial muscle for marine applications. Mar Technol Soc J 45:83–98

    Article  Google Scholar 

  • Kruusamäe K, Mukai K, Sugino T, Asaka K (2014) Mechanical behaviour of bending bucky-gel actuators and its representation. Smart Mater Struct 23(2), 025031

    Article  Google Scholar 

  • Leang KK, Shan Y, Song S, Kim KJ (2012) Integrated sensing for IPMC actuators using strain gages for underwater applications. IEEE/ASME Trans Mechatronics 17:345–355

    Article  Google Scholar 

  • Moeinkhah H, Jung J-Y, Jeon J-H et al (2013) How does clamping pressure influence actuation performance of soft ionic polymer–metal composites? Smart Mater Struct 22(2), 025014

    Article  Google Scholar 

  • Must I, Vunder V, Kaasik F et al (2014) Ionic liquid-based actuators working in air: the effect of ambient humidity. Sens Actuators B Chem 202:114–122

    Article  Google Scholar 

  • Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer–metal composites. J Appl Phys 92:2899–2915

    Article  Google Scholar 

  • Onishi K, Sewa S, Asaka K et al (2001a) The effects of counter ions on characterization and performance of a solid polymer electrolyte actuator. Electrochim Acta 46:1233–1241

    Google Scholar 

  • Onishi K, Sewa S, Asaka K et al (2001b) Morphology of electrodes and bending response of the polymer electrolyte actuator. Electrochim Acta 46:737–743

    Google Scholar 

  • Palmre V, Brandell D, Maeorg U et al (2009) Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater Struct 18, 095028

    Article  Google Scholar 

  • Palmre V, Hubbard JJ, Fleming M et al (2013) An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater Struct 22, 014003

    Article  Google Scholar 

  • Punning A, Johanson U, Anton M et al (2009) A distributed model of ionomeric polymer metal composite. J Intell Mater Syst Struct 20(14):1711–1724

    Article  Google Scholar 

  • Vunder V, Punning A, Aabloo A (2012) Mechanical interpretation of back-relaxation of ionic electroactive polymer actuators. Smart Mater Struct 21(11):115023

    Article  Google Scholar 

  • Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38:1349–1356

    Article  Google Scholar 

  • Yeo RS, Yeager HL (1985) Structural and transport properties of perfluorinated ion-exchange membranes. Modern Aspect of Electrochem 16:437–505

    Google Scholar 

  • Zhu Z, Asaka K, Chang L et al (2013a) Multiphysics of ionic polymer–metal composite actuator. J Appl Phys 114, 084902

    Article  Google Scholar 

  • Zhu Z, Asaka K, Chang L et al (2013b) Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 114:184902

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinji Asaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Asaka, K., Kruusamäe, K., Kim, K., Palmre, V., Leang, K.K. (2016). IPMCs as EAPs: How to Start Experimenting with Them. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31530-0_10

Download citation

Publish with us

Policies and ethics