Skip to main content

Intraoperative Neurophysiology During Intracranial Surgery in Children

  • Living reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery
  • 253 Accesses

Abstract

Over the past 15 years, intraoperative neurophysiological monitoring (IONM) has established itself as an important clinical discipline. The main goals of IONM are first to prevent neurological deficits, second to predict neurological outcome, third to document the surgical step when an injury occurred. Both so-called mapping and monitoring techniques can be used.

While the principles of most IONM techniques are the same for adults and children, the developing nervous system has peculiar characteristics in terms of anatomical and physiological maturation of brain and spinal cord pathways. Accordingly, some adjustments are needed, especially in younger children.

This chapter will review the state-of-the-art of IONM techniques that can assist the pediatric neurosurgeon when dealing with lesions in eloquent areas of the brain and the brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Armand J, Olivier E, Edgley SA, Lemon RN (1996) The structure and function of the developing corticospinal tract: some key issues. In: Wing AM, Aggard P, Lanagan JR (eds) Hand and brain. Academic, San Diego, pp 125–145

    Chapter  Google Scholar 

  • Balogun JA, Khan OH, Taylor M, Dirks P, Der T, Carter Snead Iii O, Weiss S, Ochi A, Drake J, Rutka JT (2014) Pediatric awake craniotomy and intra-operative stimulation mapping. J Clin Neurosci 21:1891–4

    Google Scholar 

  • Banoub M, Tetzlaff JE, Schubert A (2003) Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99:716–737

    Article  PubMed  Google Scholar 

  • Bartholow R (1874) Experimental investigations into the functions of the human brain. Am J Med Sci 67:305–313

    Article  Google Scholar 

  • Berger MS (1996) The impact of technical adjuncts in the surgical management of cerebral hemispheric low grade gliomas of childhood. J Neuro-Oncol 28:129–155

    Article  CAS  Google Scholar 

  • Berger MS, Kincaid J, Ojemann GA, Lettich E (1989) Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors. Neurosurgery 25:786–792

    Article  CAS  PubMed  Google Scholar 

  • Berger C, Thiesse P, Lellouch-Tubiana A, Kalifa C, Pierre-Kahn A, Bouffet E (1998) Choroid plexus carcinomas in childhood: clinical features and prognostic factors. Neurosurgery 42:470–475

    Article  CAS  PubMed  Google Scholar 

  • Blessing W (1997) The lower brainstem and bodily homeostasis. Oxford University Press, New York

    Google Scholar 

  • Blume WT, Jones DC, Pathak P (2004) Properties of afterdischarges from cortical electrical stimulation in focal epilepsies. Clin Neurophysiol 115:982–989

    Article  PubMed  Google Scholar 

  • Caramia MD, Desiato MT, Cicinelli P, Iani C, Rossini PM (1993) Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation. Electroencephalogr Clin Neurophysiol 89:61–66

    Article  CAS  PubMed  Google Scholar 

  • Cedzich C, Taniguchi M, Schafer S, Schramm J (1996) Somatosensory evoked potential phase reversal and direct motor cortex stimulation during surgery in and around the central region. Neurosurgery 38:962–970

    Article  CAS  PubMed  Google Scholar 

  • Chitoku S, Otsubo H, Harada Y, Jay V, Rutka JT, Weiss SK, Abdoll M, Snead OC 3rd (2001) Extraoperative cortical stimulation of motor function in children. Pediatr Neurol 24:344–350

    Article  CAS  PubMed  Google Scholar 

  • Coppola A, Tramontano V, Basaldella F, Arcaro C, Squintani G, Sala F (2016) Intraoperative neurophysiological mapping and monitoring during brain tumor surgery in children: an update. Child Nerv Syst 32(10):1849–1859

    Article  Google Scholar 

  • De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565

    Article  PubMed  Google Scholar 

  • Deletis V, Sala F (2012) Intraoperative neurophysiology: a tool to prevent and/or document intraoperative injury to the nervous system. In: Quinones-Hinojosa A (ed) Schmidek & sweet operative neurosurgical techniques: indication, methods and results, 6th edn. Elsevier Saunders, Philadelphia, pp 30–45

    Chapter  Google Scholar 

  • Deletis V, Sala F, Morota N (2000) Intraoperative neurophysiological monitoring and mapping during brain stem surgery: a modern approach. Oper Tech Neurosurg 3:109–113

    Article  Google Scholar 

  • Duchowny M, Jayakar P (1993) Functional cortical mapping in children. In: Devinsky O, Beric A, Dogali M (eds) Electrical and magnetic stimulation of the brain and spinal cord. Raven Press, New York, pp 149–154

    Google Scholar 

  • Duffau H, Sichez JP (1998) Intraoperative direct electrical stimulation of the lamina quadrigemina in a case of deep tectal cavernoma. Acta Neurochir 140:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Duffau H, Capelle L, Sichez N (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214

    Article  PubMed  Google Scholar 

  • Duffner PK, Krischer JP, Sanford RA et al (1998) Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg 28:215–222

    Article  CAS  PubMed  Google Scholar 

  • Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, Kothbauer K (1995) The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 37:255–265

    Article  CAS  PubMed  Google Scholar 

  • Eyre JA, Miller S, Clowry GJ, Conway EA, Watts C (2000) Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 123:51–64

    Article  PubMed  Google Scholar 

  • Eyre JA, Taylor JP, Villagra F, Smith M, Miller S (2001) Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology 57:1543–1554

    Article  CAS  PubMed  Google Scholar 

  • Eyre JA, Miller S, Clowry GJ (2002) The development of the corticospinal tract in humans. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BKE (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 235–249

    Google Scholar 

  • Farmer JP, McNeely D, Freeman CR (1999) Brainstem gliomas. In: Albright AL, Pollack IF (eds) Principles and practice of pediatric neurosurgery. Thieme, New York, pp 640–654

    Google Scholar 

  • Fietzek UM, Heinen F, Berweck S, Maute S, Hufschmidt A, Schulte-Monting J, Lucking CH, Korinthenberg R (2000) Development of the corticospinal system and hand motor function: central conduction times and motor performance tests. Dev Med Child Neurol 42:220–227

    Article  CAS  PubMed  Google Scholar 

  • Gallentine WB, Mikati MA (2009) Intraoperative electrocorticography and cortical stimulation in children. J Clin Neurophysiol 26:95–108

    Article  PubMed  Google Scholar 

  • Grabb PA, Albright L, Sclabassi RJ, Pollack IF (1997) Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg 86:1–4

    Article  CAS  PubMed  Google Scholar 

  • Humphrey T (1960) The development of the pyramidal tracts in human fetuses correlated with cortical differentiation. In: Tower DB, Schade JB (eds) Structure and function of the cortex: proceedings of the second international meeting of neurobiologists. Elsevier, Amsterdam, pp 93–103

    Google Scholar 

  • Ishihara H, Bjeljac M, Straumann D, Kaku J, Roth P, Yonekawa Y (2006) The role of intraoperative monitoring of oculomotor and trochlear nuclei -safe entry zone to tegmental lesions. Minim Invasive Neurosurg 49:168–172

    Article  CAS  PubMed  Google Scholar 

  • Ito E, Ichikawa M, Itakura T, Ando H, Matsumoto Y, Oda K, Sato T, Watanabe T, Sakuma J, Saito K (2013) Motor evoked potential monitoring of the vagus nerve with transcranial electrical stimulation during skull base surgeries. J Neurosurg 118:195–201

    Article  PubMed  Google Scholar 

  • Jayakar P (1993) Physiological principles of electrical stimulation. Adv Neurol 63:17–27

    CAS  PubMed  Google Scholar 

  • Keles GE, Lundin DA, Lamborn KR et al (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100:369–375

    Article  PubMed  Google Scholar 

  • King RB, Schell GR (1987) Cortical localization and monitoring during cerebral operations. J Neurosurg 67:210–219

    Article  CAS  PubMed  Google Scholar 

  • Koh TH, Eyre JA (1988) Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child 63:1347–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kombos T, Suess O, Funk T, Kern BC, Brock M (2000) Intra-operative mapping of the motor cortex during surgery in and around the motor cortex. Acta Neurochir 142:263–268

    Article  CAS  PubMed  Google Scholar 

  • Kubis N, Catala M (2003) Development and maturation of the pyramidal tract. Neurochirurgie 49:145–153

    CAS  PubMed  Google Scholar 

  • Lang J Jr, Ohmachi N, Lang J Sr (1991) Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width. Acta Neurochir 113:84–90

    Article  PubMed  Google Scholar 

  • Legatt AD (2008) BAEPs in surgery. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Handbook of clinical neurophysiology. Elsevier, Amsterdam, pp 334–349

    Chapter  Google Scholar 

  • Masur H, Althoff S, Kurlemann G, Strater R, Oberwittler C (1995) Inhibitory period and late muscular responses after transcranial magnetic stimulation in healthy children. Brain and Development 17:149–152

    Article  CAS  PubMed  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285(5762):227

    Google Scholar 

  • Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, Ruskin K (1995) Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 37:922–930

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Homberg V (1992) Development of speed of repetitive movements in children is determined by structural changes in corticospinal efferents. Neurosci Lett 144:57–60

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Kass-Iliyya F, Reitz M (1997) Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol 42:705–711

    Article  CAS  PubMed  Google Scholar 

  • Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070

    Article  PubMed  Google Scholar 

  • Nezu A, Kimura S, Ohtsuki N, Tanaka M (1997) Transcranial magnetic stimulation in benign childhood epilepsy with centro–temporal spikes. Brain and Development 19:134–137

    Article  CAS  PubMed  Google Scholar 

  • Nezu A, Kimura S, Takeshita S (1999) Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol 110:1646–1649

    Article  CAS  PubMed  Google Scholar 

  • Ng WH, Mukhida K, Rutka JTR (2010) Image guidance and neuromonitoring in neurosurgery. Child’s Nerv Syst 26:491–502

    Google Scholar 

  • Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D et al (2011) Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg 114:738–746

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Muller F (1994) Human embryonic brain. An atlas of developmental stages. Wiley-Liss, New York

    Google Scholar 

  • Ojemann G (1991) Cortical organization of language. J Neurosci 11:2281–2287

    CAS  PubMed  Google Scholar 

  • Ojemann SG, Berger MS, Lettich E, Ojemann GA (2003) Localization of language function in children: results of electrical stimulation mapping. J Neurosurg 98:465–470

    Article  PubMed  Google Scholar 

  • Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patients under general anesthesia. Neurosurgery 39:335–343

    Article  CAS  PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  • Procaccio F, Gambin R, Gottin L, Bricolo A (2000) Complications of brain stem surgery: prevention and treatment. Oper Tech Neurosurg 3:155–157

    Article  Google Scholar 

  • Resnick TJ, Alvarez LA, Duchowny M (1988) Cortical stimulation thresholds in children being evaluated for resective surgery. Epilepsia 29:651–652

    Google Scholar 

  • Rhoton AL (2000) The posterior fossa veins. Neurosurgery 47:S69–S92

    Article  PubMed  Google Scholar 

  • Rivet DJ, O'Brien DF, Park TS, Ojemann JG (2004) Distance of the motor cortex from the coronal suture as a function of age. Pediatr Neurosurg 40:215–219

    Article  PubMed  Google Scholar 

  • Riviello JJ, Kull L, Troup C, Holmes GL (2001) Cortical stimulation in children: techniques and precautions. Tech Neurosurg 7:12–18

    Article  Google Scholar 

  • Romstock J, Strauss C, Fahlbusch R (2000) Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93:586–593

    Article  CAS  PubMed  Google Scholar 

  • Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1994) Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol 481:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala F, Lanteri P (2003) Brain surgery in motor areas: The invaluable assistance of intraoperative neurophysiological monitoring. J Neuros Sci 47(2):79–88

    Google Scholar 

  • Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    Article  PubMed  Google Scholar 

  • Sala F, Manganotti P, Tramontano V, Bricolo A, Gerosa M (2007) Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin 37:399–406

    Article  CAS  PubMed  Google Scholar 

  • Sala F, Manganotti P, Grossauer S, Tramontano V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490

    Article  PubMed  Google Scholar 

  • Sala F, Squintani G, Tramontano V (2014) Intraoperative neurophysiological monitoring during brain stem surgery. In: Loftus CM, Biller J, Baron EM (eds) Intraoperative neuromonitoring. Mc Graw Hill, New York 285–297

    Google Scholar 

  • Sala F, Gallo P, Tramontano V, Gerosa M (2015a) Intraoperative neurophysiological monitoring in posterior fossa surgery. In: Ozek MM, Cinalli G, Maixner W, Saint-Rose C (eds) Posterior fossa tumors in children, 1st edn. Springer, Cham 239–262

    Google Scholar 

  • Sala F, Coppola A, Tramontano V, Babini M, Pinna G (2015b) Intraoperative neurophysiological monitoring for the resection of brain tumors in pediatric patients. J Neurosurg Sci 59(4):373–382

    CAS  PubMed  Google Scholar 

  • Sartorius CJ, Berger MS (1998) Rapid termination of intraoperative stimulation-evoked seizures with application of cold Ringer’s lactate to the cortex. Technical note. J Neurosurg 88:349–351

    Article  CAS  PubMed  Google Scholar 

  • Schevon CA, Carlson C, Zaroff CM, Weiner HJ, Doyle WK, Miles D et al (2007) Pediatric language mapping: sensitivity of neurostimulation and Wada testing in epilepsy surgery. Epilepsia 48:539–545

    Article  PubMed  Google Scholar 

  • Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K (2001) Intra-operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, VI) in skull base surgery. Acta Neurochir 143:251–261

    Article  CAS  PubMed  Google Scholar 

  • Sekiya T, Hatayama T, Shimamura N, Suzuki S (2000) Intraoperative electrophysiological monitoring of oculomotor nuclei and their intramedullary tracts during midbrain tumor surgery. Neurosurgery 47:1170–1176. discussion 1176–1177

    Article  CAS  PubMed  Google Scholar 

  • Soriano SG, Eldredge EA, Wang FK, Kull L, Madsen JR, Black PM et al (2000) The effect of propofol on intraoperative electrocorticography and cortical stimulation during awake craniotomies in children. Paediatr Anaesth 10:29–34

    Article  CAS  PubMed  Google Scholar 

  • Stapleton SR, Kiriakopoulos E, Mikulis D, Drake JM, Hoffmann HJ, Humphreys R, Hwang P, Otsubo H, Holowka S, Logan W, Rutka JT (1997) Combined utility of functional MRI, cortical mapping, and frameless stereotaxy in the resection of lesions in eloquent areas of brain in children. Pediatr Neurosurg 26:68–82

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Matsumoto M, Ohta M, Sasaki T, Kodama N (1997) Experimental study for identification of the facial colliculus using electromyography and antidromic-evoked potentials. Neuro- surgery 41:1130–1136

    CAS  Google Scholar 

  • Szelényi A, Joksimovic B, Seifert V (2007) Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol 24:39–43

    Article  PubMed  Google Scholar 

  • Szelenyi A, Senft C, Jardan M, Forster MT, Franz K, Seifert V, Vatter H (2011) Intraoperative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 122:1470–1475

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia; technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  • Wisoff JH, Boyett JM, Berger MS, Brant C, Li H, Yates AJ et al (1998) Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children’s cancer group trial no. CCG-945. J Neurosurg 89:52–59

    Article  CAS  PubMed  Google Scholar 

  • Wood CC, Spencer DD, Allison T, McCarthy G, Williamson PD, Goff WR (1988) Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68:99–111

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sala, F., Coppola, A., Hou, Y.J., Pang, D. (2017). Intraoperative Neurophysiology During Intracranial Surgery in Children. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_143-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_143-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics