Embryology, Classification, and Surgical Management of Bony Malformations of the Craniovertebral Junction

Living reference work entry

Abstract

The bony craniovertebral junction (CVJ) can be conceptually divided into two components with respect to the governance of intersegmental movements and functional space for the nervous system. The first component consists mainly of a central pivot made up of the dens and the C2 vertebral body, but the basiocciput, though anatomically part of the foramen magnum, is embryologically and functionally in vertical linearity with the dens and is thus part of the central pillar. The second component consists of two ringed structures surrounding the central pivot, albeit eccentrically. They are the foramen magnum ring, comprising the lateral portion of the basiocciput (clivus), the exocciput including the occipital condyles, and the opisthion; and the atlantal ring, with its anterior and posterior arches and lateral masses. These two superimposing rings transmit the lower brainstem and upper cervical spinal cord, while permitting limited rotatory and flexion-extension motions upon each other and round the dental pivot. Straddling these two rings and anchoring upon them are the stabilizing ligaments between the pivot and the rings: the alar and apical dental ligaments at the upside of the pivot, the transverse atlantal ligament (TAL) across the main dental shaft, and the arching mantle of the tectorial membrane and cruciate ligament, strapping the clivus to the whole of the dens-axis assembly.

References

  1. Aoyoma H, Asamoto K (1988) Determination of somite cells: independence of cell differentiation and morphogenesis. Development 104:15–28Google Scholar
  2. Bagnall KM (1992) The migration and distribution of somite cells after labelling with the carbocyanine dye, DiI: the relationship of this distribution to segmentation in the vertebrate body. Anat Embryol 185:317–324CrossRefPubMedGoogle Scholar
  3. Bagnall KM, Sander EJ (1989) The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo. Anat Embryol 180:505–513CrossRefPubMedGoogle Scholar
  4. Bellairs R (1980) The segmentation of somites in the chick embryo. Boll Zool 47:245–252CrossRefGoogle Scholar
  5. Burwood RJ (1970) The cranio-cervical junction. Anatomy, University of Bristol, BristolGoogle Scholar
  6. Cattell JS, Filtzer DL (1965) Pseudosubluxation and other normal variations in the cervical spine in children. J Bone Joint Surg Am 47A:1295–1309CrossRefGoogle Scholar
  7. Cave AJE (1938) The morphological constitution of the odontoid process. J Anat 72:621Google Scholar
  8. Chevrel JP (1965) Occipitalization of the atlas. Arch Orthop Trauma Surg 13:104–108Google Scholar
  9. Chigira M, Kaneko K, Mashio D, Watanabe H (1994) Congenital hypoplasia of the arch of the atlas with abnormal segmentation of the cervical spine. Arch Orthop Trauma Surg 113:110–112CrossRefPubMedGoogle Scholar
  10. Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32CrossRefPubMedGoogle Scholar
  11. Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotomes in avian embryos. An experimental and scanning electron microscope study. Experientia 34:514–516CrossRefGoogle Scholar
  12. Christ B, Jacob HJ, Siefert R (1988) Über die Entwicklung der Zervikookzipitalen Übergangsregion. In: Hohmann D, Kügelgen B, Liebig K (eds) Neuroorthopädie, vol 4. Springer, Berlin/Heidelberg, pp 13–22Google Scholar
  13. Condie B, Capecchi MR (1993) Mice homozygous for a targeted disruption of Hox d-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and axis. Development 119:579–595PubMedGoogle Scholar
  14. Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429PubMedGoogle Scholar
  15. Crockard H, Stevens M (1995) Craniovertebral junction anomalies in inherited disorder: part of the syndrome or caused by the disorder? Eur J Pediatr 154:504–512CrossRefPubMedGoogle Scholar
  16. Dalgleish AE (1985) A study of the development of thoracic vertebrae in the mouse assisted by autoradiography. Acta Anat 122:91–98CrossRefPubMedGoogle Scholar
  17. David KM, Crockard A (2005) Congenital malformations of the base of the skull, atlas and dens. In: Benzel EC (ed) The cervical spine, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 415–426Google Scholar
  18. David KM, Thorogood P, Stevens JM, Crockard HA (1997) The one bone spine: a failure of notochord/sclerotome signaling? Clin Dysmorphol 6:303–314CrossRefPubMedGoogle Scholar
  19. David KM, Thorogood PV, Stevens JM, Crockard A (1999) The dysmorphic cervical spine in Klippel-Feil syndrome: interpretations from developmental biology. Neurosurg Focus 6(6):Article 1CrossRefGoogle Scholar
  20. Davis GK, Patel NH (1999) The origin and evolution of segmentation. Trends Cell Biol 9:M68–M72CrossRefPubMedGoogle Scholar
  21. Davis GK, Jaramillo CA, Patel NH (2001) Pax group III genes and the evolution of insect pair-rule patterning. Development 128:3445–3458PubMedGoogle Scholar
  22. Devi BI, Shenoy SN, Panigrahi MK, Chandramouli BA, Das BS, Jayakumar PN (1997) Anomaly of arch of atlas – a rare cause of symptomatic canal stenosis in children. Pediatr Neurosurg 26:214–218CrossRefPubMedGoogle Scholar
  23. Dietrich S, Gruss P (1995) Undulated phenotypes suggest a role of Pax-1 for the development of vertebral and extravertebral structures. Dev Biol 167:529–548CrossRefPubMedGoogle Scholar
  24. Dietrich S, Kessel M (1997) The vertebral column. In: Thorogood P (ed) Embryos, genes and birth defects. Wiley, Chichester, pp 281–302Google Scholar
  25. Dietrich S, Schubert FR, Gruss P (1993) Altered Pax gene expression in notochord mutants of the mouse: the notochord is required for the dorsoventral patterning of the somite. Mech Dev 44:189–207CrossRefPubMedGoogle Scholar
  26. Dubrulle J, McGrew MJ, Pourquié O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232CrossRefPubMedGoogle Scholar
  27. Forsberg H, Crozet F, Brown NA (1998) Waves of mouse lunatic fringe expression, in four-hour cycles at two-hour intervals, precede somite boundary formation. Curr Biol 8:1027–1030CrossRefPubMedGoogle Scholar
  28. Geipel P (1955) Zur Kenntnis der Spaltbildungen des Atlas und Epistropheus, Teil IV. Zbl Path 94:19Google Scholar
  29. George AW (1919) A method for more accurate study of injuries to the atlas and axis. N Engl J Med Surg 181:395–398Google Scholar
  30. Gholve PA, Hosalker HS, Ricchetti ET, Pollock AN, Dormans JP, Drummond DS (2007) Occipitalization of the atlas in children, morphologic classification, associations, and clinical relevance. J Bone Joint Surg Am 89:571–578PubMedGoogle Scholar
  31. Giacomini C (1886) Sull’ esistenza dell’ “osodontoideum: nell” uomo. G Accad Med Torino 49:24–28Google Scholar
  32. Grabb PA, Mapstone TB, Oakes WJ (1999) Ventral brainstem compression in pediatric and young adult patients with Chiari I malformations. Neurosurgery 44:520–528CrossRefPubMedGoogle Scholar
  33. Haack H, Kessel M (1994) Homeobox genes and skeletal patterning. In: Hall BK (ed) Bone, vol 9. CRC Press, Boca Raton, pp 119–144Google Scholar
  34. Hawkins RJ, Fielding JW, Thompson WJ (1976) Os odontoideum: congenital or acquired? J Bone Joint Surg Am 38:413–414CrossRefGoogle Scholar
  35. Hensinger RN (1986) Osseous anomalies of the craniovertebral junction. Spine 11:323–333CrossRefPubMedGoogle Scholar
  36. Hensinger RN, Fielding JW, Hawkins RJ (1978) Congenital anomalies of the odontoid process. Orthop Clin N Am 9:901–912Google Scholar
  37. Huang R, Zhi Q, Ordahl CP, Christ B (1997) The fate of the first avian somite. Anat Embryol (Berl) 195:435–449CrossRefGoogle Scholar
  38. Jacob M, Christ B, Jacob HJ (1975) Über die regionale Determination des paraxialen Mesoderms junger Hühnerembryonen. Verh Anat Ges (Ger) 69:263–269Google Scholar
  39. Jenkins JFA (1969) The evolution and development of the dens of the mammalian axis. Anat Rec 164:173–184CrossRefPubMedGoogle Scholar
  40. Jones FS, Georges C, Guss P, Edelman GM (1991a) Activation of the cytotactin promoter by the homeobox-containing gene Evx-1. Proc Natl Acad Sci U S A 89:2091CrossRefGoogle Scholar
  41. Jones FS, Prediger EA, Dennis BA, DeRobertis EM, Edelman GM (1991b) Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox 2.5 and 2.4. Proc Natl Acad Sci U S A 89:2091CrossRefGoogle Scholar
  42. Kessel M (1992) Respecification of vertebral identities by retinoic acid. Development 115:487–501PubMedGoogle Scholar
  43. Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:1–20CrossRefGoogle Scholar
  44. Keynes RJ, Stern CD (1988) Mechanisms of vertebrate segmentation. Development 103:413–429PubMedGoogle Scholar
  45. Kieny M, Mauger A, Sengel P (1972) Early regionalization of the somitic mesoderm as studied by the development of the axial skeleton of the chick embryo. Dev Biol 28:42–161CrossRefGoogle Scholar
  46. Kirlew KA, Hathout GM, Reiter SD, Gold RH (1993) Os odontoideum in identical twins: perspective on etiology. Skelet Radiol 22:525–527CrossRefGoogle Scholar
  47. Koseki H, Wallin J, Wilting J et al (1993) A role for Pax-1 as mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119:649–660PubMedGoogle Scholar
  48. Kotil D, Kalayci M (2005) Ventral cervicomedullary junction compression secondary to condylus occipitalis (median occipital condyle), a rare entity. J Spinal Disord Tech 18(4):382–385CrossRefPubMedGoogle Scholar
  49. Le Double AF (1903/1912) Traité des variations des os du crane de l’homme et de leur signification au point de vue de l’Anthropologie zoologique. Vigot Frères, ParisGoogle Scholar
  50. Logan WW, Stuard ID (1973) Absence of posterior arch of the atlas. Am J Roentgenol 118:431–434CrossRefGoogle Scholar
  51. Lufkin T, Mark M, Hart CP, Dollé P, LeMeur M, Chambon P (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359:835–841CrossRefPubMedGoogle Scholar
  52. Macalister A (1893) Notes on the development and variations of the atlas. J Anat Physiol 27:519–542PubMedPubMedCentralGoogle Scholar
  53. Markuske H (1978) Untersuchungen zur Static und Dynamik der kindlichen Halswirbelsäule: Der Aussagewert seitlicher Röntgenaufnahmen. In: Die Wirbelsäule in Forschung und Praxis, vol 50. Hippokrates, StuttgartGoogle Scholar
  54. McGrew MJ, Dale JK, Fraboulet S, Pourquié O (1998) The lunatic fringe gene is a target of the molecular clock linked to somite segmentation in avian embryos. Curr Biol 8:979–982CrossRefPubMedGoogle Scholar
  55. McRae DL (1953) Bony abnormalities in the region of the foramen magnum; correlation of the anatomic and neurologic findings. Acta Radiol 40:335–354CrossRefPubMedGoogle Scholar
  56. McRae DL (1960) The significance of abnormalities of the cervical spine. Am J Roentgenol 84:3–25Google Scholar
  57. McRae DL, Barnum AS (1953) Occipitalization of the atlas. Am J Roentgenol Radium Therapy, Nucl Med 70:23–46Google Scholar
  58. Menezes AH (1996) Congenital and acquired abnormalities of the craniovertebral junction. In: Youmans JR (ed) Neurological surgery, 4th edn. WB Saunders, Philadelphia, pp 1035–1089Google Scholar
  59. Menezes AH (1998) Embryology, development, and classification of disorders of the craniovertebral junction. In: Dickman CA, Sonntag VKH, Spetzler RF (eds) Surgery of the craniovertebral junction. Thieme, New York, pp 3–12Google Scholar
  60. Menezes AH, Fenoy KA (2009) Remnants of occipital vertebrae: proatlas segmentation abnormalities. Neurosurgery 64:945–953CrossRefPubMedGoogle Scholar
  61. Menezes AH, Ryken TC (1992) Craniovertebral abnormalities in Down’s syndrome. Neurosurgery 18:24–33Google Scholar
  62. Morgan MK, Onofrio BM, Bender CE (1989) Familial os odontoideum. Case report. J Neurosurg 70:636–639CrossRefPubMedGoogle Scholar
  63. Müller F, O’Rahilly R (1980) The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat 159:33–58CrossRefPubMedGoogle Scholar
  64. Müller F, O’Rahilly R (1994) Occipitocervical segmentation in staged human embryos. J Anat 185:251–258PubMedPubMedCentralGoogle Scholar
  65. Müller F, O’Rahilly R (2003) Segmentation in staged human embryos: the occipitocervical region revisited. J Anat 203:251–258CrossRefGoogle Scholar
  66. Musil L, Goodenough D (1990) Gap junctional intercellular communication and the regulation of connexin expression and function. Curr Opin Cell Biol 2:875CrossRefPubMedGoogle Scholar
  67. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86:40–47CrossRefPubMedGoogle Scholar
  68. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquié O (1997) Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648CrossRefPubMedGoogle Scholar
  69. Pendergrass EP, Schaeffer JP, Hodes PJ (1956) The head and neck in Roentgen diagnosis, 2nd edn. Charles C. Thomas, Springfield, pp 1529–1530Google Scholar
  70. Pollack I, Pang D, Albright LA, Krieger D (1992a) Outcome following hind brain decompression of symptomatic Chiari malformations in children previously shunted with myelomeningoceles. J Neurosurg 77:881–888CrossRefPubMedGoogle Scholar
  71. Pollack I, Pang D, Kocoshis S, Putnam P (1992b) Neurogenic dysphagia resulting from Chiari malformations. Neurosurgery 30:709–719PubMedGoogle Scholar
  72. Pourquié O (2003a) Vertebrate somitogenesis: a novel paradigm for animal segmentation? Int J Dev Biol 47:597–603PubMedGoogle Scholar
  73. Pourquié O (2003b) The segmentation clock: converting embryonic time into spatial pattern. Science 301:328–330CrossRefPubMedGoogle Scholar
  74. Prescher A (1990) The differential diagnosis of isolated ossicles in the region of the dens axis. Gegenbaurs Morphol Jahrb 136:139–154PubMedGoogle Scholar
  75. Prescher A (1997) The craniocervical junction in man, the osseous variations, their significance and differential diagnosis. Ann Anat 179:1–19CrossRefPubMedGoogle Scholar
  76. Prescher A, Brors D, Adam G (1996) Anatomic and radiologic appearance of several variants of the craniocervical junction. Skull Base Surg 6:83–94CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rao P (2002) Median (third) occipital condyle. Clin Anat 15:148–151CrossRefPubMedGoogle Scholar
  78. Reiter A (1944) Die Frühentwicklung der menschlichen Wirbelsäule. II. Mitteilung: Die Entwicklung der Occipitalsegmente und der Halswirbelsäule. Z Anat Entwicklungsgesch 113:66–104CrossRefGoogle Scholar
  79. Remak R (1855) Untersuchungen über die Entwicklung der Wirbeltiere. G. Reimer, BerlinGoogle Scholar
  80. Sawada A, Shinya M, Jiang YJ, Kawakami A, Kuroiwa A, Takeda H (2001) Fgf/MAPK signaling is a crucial positional cue in somite boundary formation. Development 128:4873–4880PubMedGoogle Scholar
  81. Schulze P, Buurman R (1980) Absence of the posterior arch of the atlas. Am J Roentgenol 134:178–180CrossRefGoogle Scholar
  82. Sensenig EC (1957) The development of the occipital and cervical segments and their associated structures in human embryos. Contrib Embryol 36:152–161Google Scholar
  83. Smith CA, Tuan RS (1994) Human PAX gene expression and development of the vertebral column. Clin Orthop Relat Res 302:241–250Google Scholar
  84. Stapleton P, Weith A, Urbanek P, Kozmik Z, Busslinger M (1993) Chromosomal localization of seven PAX genes and cloning of a novel family member, PAX-9. Nat Genet 3:292CrossRefPubMedGoogle Scholar
  85. Starck D (1979) Das Skelettsystem. In: Starck D (ed) Vergleichende Anatomie der Wirbeltiere, vol 2. Springer, Berlin/Heidelberg/New York, pp 44–95Google Scholar
  86. Stern CD, Keynes RJ (1987) Interactions between somite cells; the formation and maintenance of segment boundaries in the chick embryo. Development 99:261–272PubMedGoogle Scholar
  87. Stover LJ, Bergan U, Nilsen G, Sjaastad O (1993) Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology 35:113–118CrossRefGoogle Scholar
  88. Tramontano-Guerritore G (1927) Die atlanto-occipital union. Anat Anz 64:173–184Google Scholar
  89. Tubbs RS, Iskandar BJ, Bartolucci AA, Oakes WJ (2004) A critical analysis of the Chiari 1.5 malformation. J Neurosurg 101:179–183CrossRefPubMedGoogle Scholar
  90. Vega A, Quintana F, Berciano J (1990) Basichondrocranium anomalies in adult Chiari type I malformation: a morphometric study. J Neurol Sci 99:137–145CrossRefPubMedGoogle Scholar
  91. von Ebner E (1888) Urwirbel und Neugliederung der Wirbelsäule. Sitzungsber Akad Wiss Wein III 97:194–206Google Scholar
  92. von Ludinghausen M, Schindler G, Kageyama I, Pomaroli A (2002) The third occipital condyle, a constituent part of a median occipito-atlanto-odontoid joint: a case report. Surg Radiol Anat 24:71–76CrossRefGoogle Scholar
  93. von Torklus D, Gehle W (1969) Neue Perspektiven der Entwicklungsstörungen der oberen Halswirlbelsäule. Z Orthop 105:178Google Scholar
  94. von Torklus D, Gehle W (1972) Anomalies and malformations. In: von Torklus D, Gehle W (eds) The upper cervical spine. Thieme, Stuttgart, pp 14–53Google Scholar
  95. von Torklus D, Gehle W (1975) Die Obere Halswirbelsäule, 2nd edn. Thieme, StuttgartGoogle Scholar
  96. Wadia NH (1967) Myelopathy complicating congenital atlantoaxial dislocation (a study of 28 cases). Brain 90:449–472CrossRefPubMedGoogle Scholar
  97. Wallin J, Mizutani Y, Imai K et al (1993) A new Pax gene, Pax-9, maps to mouse chromosome 12. Mamm Genome 4:354–358CrossRefPubMedGoogle Scholar
  98. Wallin J, Wilting J, Koseki H, Fritsch R, Christ B, Balling R (1994) The role of Pax-1 in axial skeleton development. Development 120:1109–1121PubMedGoogle Scholar
  99. Wilting J, Ebensperger C, Müller TS, Koseki H, Wallin J, Christ B (1995) Pax-1 in the development of the cervico-occipital transitional zone. Anat Embryol 192:221–227CrossRefPubMedGoogle Scholar
  100. Wollin DG (1963) The os odontoideum: separate odontoid process. J Bone Joint Surg Am 45:1459–1484CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Paediatric NeurosurgeryUniversity of CaliforniaDavisUSA
  2. 2.Department of Paediatric NeurosurgeryKaiser Permanente Medical CentreOaklandUSA
  3. 3.Department of Paediatric NeurosurgeryGreat Ormond Street Hospital for Children, NHS TrustLondonUK

Section editors and affiliations

  • Dachling Pang
    • 1
  1. 1.Davis; and Kaiser Permanente Hospitals of Northern CaliforniaUniversity of CaliforniaOaklandUSA

Personalised recommendations