Skip to main content

Development of the Central Nervous System

  • Living reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery
  • 330 Accesses

Abstract

The human fertilized egg divides iteratively generating blastomeres. From the stage 16 blastomeres, the peripheral cells form the trophectoderm, whereas the central cells regroup under the name of internal cell mass. The latter evolve to form two cavities separated by an embryonic disk composed of two layers (epiblast and primitive endoderm). From the epiblast, three layers are set up during the gastrulation process. Thus, the superficial ectoderm, the intermediate mesoderm, and the deep endoderm are produced. Neural induction takes place at the level of the ectoderm and allows the divergence of the neurectoderm and the surface ectoderm. This induction is a complex phenomenon involving molecular sequences still imperfectly described and known.

Neurulation leads to the formation of a neural tube. In amniotes, several modes of neurulation are described making difficult the comprehension of the complete process. Primary neurulation drives the conversion of the neural plate to the neural tube. It occurs in successive stages. First, the neural plate extends in the rostro-caudal direction and converges toward the midline. Then, cellular hinges are formed which lead to a deformation of the neural plate which gives rise to a groove then to the neural tube after fusion of the folds. Animal models show differences in their primary neurulation, which should lead to caution before extrapolating the experimental data to humans. Secondary neurulation is performed by cavitation of the medullary cord. This mode of neurulation forms the caudal part of the spinal cord. The mapping of morphogenetic movements taking place during this phase reveals similarities with those of primary neurulation. This continuity between the two neurulations is now established. It is important to note that the tissue of the caudal neural plate produces the secondary neural tube. Thus, a defect of internalization of this tissue will generate and open neural tube defect. Ventro-dorsal polarization of the spinal cord involves secreted molecules. Ventralization is essentially provided by sonic hedgehog. Dorsalization involves several systems: BMP and especially Wnt.

The hindbrain is segmented into metameric units called rhombomeres. This segmentation has been described since the nineteenth century, but the understanding of the mechanisms involved in its control has only recently emerged. A rhombomere is an anatomical metameric unit separated from others by constrictions. At the beginning of development, these rhombomeres behave like autonomous segments whose cells do not mix. Some genes define a positional identity of rhombomeres. Their mutation causes malformations, including in human beings. Genetic regulation controlling the positional identity of rhombomeres is a very fertile field of investigation. This problem is very complex and involves many molecular players.

The cerebellum derives from rhombomers 0 and 1 of the neural tube. The cerebellar primordia are initially paired. They undergo morphogenetic movements which lead to a rotation and a fusion on the midline. Two germinative layers are described. The ventricular layer is responsible for the formation of GABAergic neurons, while the rhombic lip generates glutamatergic neurons. The meninges play a major role in the control of cerebellar development.

The roof of the fourth ventricle has been scarcely studied in human beings. This leads to a confusing natural history we have at our disposal. Therefore, it is advisable to be very careful before proposing a physiopathology for the cystic lesions of the posterior fossa.

The rostral region of the neural tube is segmented like the rhombomeres. This notion is at the heart of the neuromeric model, which is a work in progress.

The development of the cerebral cortex has undergone profound changes in concepts. Several anatomical zones produce neurons of the future cortex. The migration of these cells is complex and not only radial. Inhibitory interneurons come mainly from the ventral telencephalon. The germinative zone of the dorsal telencephalon is highly complex in man with a ventricular, internal subventricular, and external ventricular layers.

Somites give rise to sclerotome which is the precursor of the vertebrae. Sclerotome resegments so each vertebra is deriving from a caudal hemi-sclerotome associated with the rostral hemi-sclerotome from the next adjacent somite. Each sclerotome gives rise to four compartments that differentiate into different parts of the vertebra. The molecular control of these different anatomical parts is different.

Embryogenesis of the base of the skull is not well known. This region, which is anatomically complex, differs according to the experimental models used. Moreover, even in mice, a model currently used by developmental biology as the closest to humans, the base of the skull is not similar to that of humans. Thus, human interpolations must remain cautious. Schematically, we distinguish a prechordal base whose origin is essentially the neural crest (excluding hypochiasmatic cartilages). This region depends on the prechordal plate and is affected by severe forms of holoprosencephaly. The second region is the chordal base that develops in contact with the notochord. Its origin is the mesoderm (whether cephalic or somitic). The occipital bone is an even more complex structure whose embryological origin is not perfectly known. Only experiments in birds have been made. All other mappings are not based on solid data, which requires readers to be very cautious before using the published results. A real job remains to be done in mammals.

The vault of the skull is derived from the cells of the neural crest and mesoderm. The bones that form it undergo a membranous ossification. They receive many influences from the surrounding tissues (neural tissue, dura mater, and surface ectoderm). The primordia of the bones of the vault are separated from each other by the sutures. These non-ossified regions are still poorly known, and their natural history deserves to be reviewed. Thanks to human genetics, many genes involved in craniosynostosis have been highlighted. Their role in the ossification and physiopathology of craniosynostosis is beginning to be unveiled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackerman SL, Kozak LP, Przyborski SA, Rund LA, Boyer BB, Knowles BB (1997) The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386:838–842

    Article  CAS  PubMed  Google Scholar 

  • Aida N, Yagishita A, Takada K, Katsumata Y (1994) Cerebellar MR in Fukuyama congenital muscular dystrophy: polymicrogyria with cystic lesions. Am J Neuroradiol 15:1755–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aida N, Tamagawa K, Takada K, Yagishita A, Kobayashi N, Chikumaru K, Iwamoto H (1996) Brain MR in Fukuyama congenital muscular dystrophy. Am J Neuroradiol 17:605–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akazawa C, Ishibashi M, Shimizu C, Nakanishi S, Kageyama R (1995) Mammalian helix-loop-helix factor structurally related to the product of Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J Biol Chem 270:8730–8738

    Article  CAS  PubMed  Google Scholar 

  • Aldinger KA, Mosca SJ, Tétreault M, University of Washington Center for Mendelian Genomics, Care4Rare Canada et al (2014) Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. Am J Hum Genet 95:227–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen C, Sievers J, Berry M, Jenner S (1981) Experimental studies on cerebellar foliation. II. A morphometric analysis of cerebellar fissuration defects and growth retardation after neonatal treatment of 6-OHDA in the rat. J Comp Neurol 203:771–783

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements. J Comp Neurol 231:1–26

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer S (1990) Vertical compartmentation and cellular transformations in the germinal matrices of the embryonic rat cerebral cortex. Exp Neurol 107:23–35

    Article  CAS  PubMed  Google Scholar 

  • Alvarez IS, Schoenwolf GC (1992) Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate. J Exp Zool 261:340–348

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Otero R, Sotelo C, Alvarado-Mallart RM (1993) Chick/quail chimeras with partial cerebellar grafts: an analysis of the origin and migration of cerebellar grafts. J Comp Neurol 333:597–615

    Article  CAS  PubMed  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron migration from basal forebrain to neocortex: dependence of Dlx genes. Science 278:474–476

    Article  CAS  PubMed  Google Scholar 

  • Angevine JB Jr, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768

    Article  PubMed  Google Scholar 

  • Aoto K, Shikata Y, Higashiyama D, Shiota K, Motoyama J (2008) Fetal ethanol exposure activates protein kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res A Clin Mol Teratol 82:224–231

    Article  CAS  PubMed  Google Scholar 

  • Aoto K, Shikata Y, Imai H, Matsumoto D, Tokunaga T, Shioda S, Yamada G, Motoyama J (2009) Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327:106–120

    Article  CAS  PubMed  Google Scholar 

  • Aoto K, Sandell LL, Butler Tjaden NE, Yuen KC, Watt KE, Black BL, Durnin M, Trainor PA (2015) Mef2c-F10N enhancer driven beta-galactosidase (LacZ) and Cre recombinase mice facilitate analyses of gene function and lineage fate in neural crest cells. Dev Biol 402:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold WH, Meisenbach V (2009) 3-D reconstruction of a human fetus with combined holoprosencephaly and cyclopia. Head Face Med 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold WH, Sperber GH, Machin GA (1988) Cranio-facial skeletal development in three human synophtalmic-holoprosencephalic foetuses. Anat Anz 180:45–53

    Article  Google Scholar 

  • Bahi-Buisson N, Poirier K, Boddaert N et al (2010) GPR56-related bilateral polymicrogyria: further evidence for an overlap with the cobblestone complex. Brain 133:3194–3209

    Article  PubMed  Google Scholar 

  • Bancroft M, Bellairs R (1975) Differentiation of the neural plate and neural tube in the young chick embryo. Anat Embryol 147:309–335

    Article  CAS  Google Scholar 

  • Barkovich AJ (1998) Neuroimaging manifestations and classification of congenital muscular dystrophies. Am J Neuroradiol 19:1389–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrow JR, Stadler HS, Capecchi MR (2000) Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127:933–944

    CAS  PubMed  Google Scholar 

  • Barrow JR, Howell WD, Rule M, Hayashi S, Thomas KR, Capecchi MR, McMahon AP (2007) Wnt3 signaling in the epiblast is required for proper orientation of the anteroposterior axis. Dev Biol 312:312–320

    Article  CAS  PubMed  Google Scholar 

  • Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ, Martinez S, Martin GR (2008) Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signalling during development. Development 136:889–898

    Article  CAS  Google Scholar 

  • Becker N, Seitanidou T, Murphy P, Mattéi M-G, Topilko P, Nieto MA, Wilkinson DG, Charnay P, Gilardi-Hebenstreit (1994) Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech Dev 47:3–17

    Article  CAS  PubMed  Google Scholar 

  • Beddington RSP (1981) An autoradiographic analysis of the potency of embryonic ectoderm in the 8th day postimplantation mouse embryo. J Embryol Exp Morph 64:87–104

    CAS  PubMed  Google Scholar 

  • Beddington RSP (1982) An autoradiographic analysis of tissue potency in different regions of the embryonic ectoderm during gastrulation in the mouse. J Embryol Exp Morph 69:265–285

    CAS  PubMed  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    CAS  PubMed  Google Scholar 

  • Behrendtsen O, Alexander CM, Werb Z (1995) Cooperative interactions between extracellular matrix, integrins and parathyroid hormone-related peptide regulate parietal endoderm differentiation in mouse embryos. Development 121:4137–4148

    CAS  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstring DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  CAS  PubMed  Google Scholar 

  • Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  CAS  PubMed  Google Scholar 

  • Bergemann AB, Cheng HJ, Brambilla R, Klein R, Flanagan JG (1995) ECF-2, a new member of the Eph ligand family is segmentally expressed in the hindbrain and newly formed somites. Mol Cell Biol 15:4921–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielle F, Griveau A, Narboux-Nême N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012

    Article  CAS  PubMed  Google Scholar 

  • Birgbauer E, Fraser SE (1994) Violation of cell lineage restriction compartments in the chick hindbrain. Development 120:1347–1356

    CAS  PubMed  Google Scholar 

  • Blake JA (1900) The roof and lateral recesses of the foruth ventricle, considered morphologically and embryologically. J Comp Neurol 10:79–108

    Article  Google Scholar 

  • Blassberg R, Macrae JI, Briscoe J, Jacob J (2016) Reduced cholesterol levels impair smoothened activation in Smith-Lemli-Opitz syndrome. Hum Mol Genet 25:693–705

    Article  CAS  PubMed  Google Scholar 

  • Borell V (2018) How cells fold the cerebral cortex. J Neurosci 38:776–784

    Article  Google Scholar 

  • Bosley TM, Alorainy IA, Salih MAM, Aldhalaan HM, Abu-Amero KK, Oystreck DT, Tischfield MA, Engle EC, Erickson RP (2008) The clinical spectrum of homozygous HOXA1 mutations. Am J Med Genet A 146A:1235–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boycott KM, Flavelle S, Bureau A, Glass HC, Fujiwara TM, Wirrell E, Davey K, Chidley AE, Scott JN, McLeod DR, Parboosingh JS (2005) Homozygous deletion of the very low density lipoprotein receptor gene causes autosomal recessive cerebellar hypoplasia with cerebral gyral simplification. Am J Hum Genet 77:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JLR (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnside B (1971) Microtubules and microfilaments in newt neurulation. Dev Biol 26:416–441

    Article  CAS  PubMed  Google Scholar 

  • Burnside MB, Jacobson AG (1968) Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa. Dev Biol 18:537–552

    Article  CAS  PubMed  Google Scholar 

  • Cambronero F, Puelles L (2000) Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol 427:522–545

    Article  CAS  PubMed  Google Scholar 

  • Cannistrá C, Barbet P, Parisi P, Iannetti G (2001) Cyclopia: a radiological and anatomical post mortem study. J Craniomaxillofac Surg 29:150–155

    Article  PubMed  Google Scholar 

  • Carpenter EM, Goddard JM, Chisaka O, Manley NR, Capecchi MR (1993) Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118:1063–1075

    CAS  PubMed  Google Scholar 

  • Catala M, Teillet M-A, Le Douarin NM (1995) Organization and development of the tail bud analysed with the quail-chick chimaera system. Mech Dev 51:51–65

    Article  CAS  PubMed  Google Scholar 

  • Catala M, Teillet M-A, De Robertis EM, Le Douarin NM (1996) A spinal cord fate map in the avian embryo: while regressing Hensen’s node lays down the notochord and floor plate thus joining the spinal cord lateral walls. Development 122:2599–2610

    CAS  PubMed  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Brain Res 256:293–302

    Article  PubMed  Google Scholar 

  • Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine 3. J Neurosci 29:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrasekhar A (2004) Turning heads: development of vertebrate branchiomotor neurons. Dev Dyn 229:143–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen A, McConnell SK (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82:631–641

    Article  Google Scholar 

  • Chen G, Ishan M, Yang J, Kishigami S, Fukuda T, Scott G, Ray MK, Sun C, Chen S, Komatsu Y, Mishina Y, Liu H-X (2017) Specific and spatial labelling of P0-Cre versus Wnt1-Cre in cranial neural crest in early mouse embryos. Genesis 55(6). https://doi.org/10.1002/dvg.23034

    Article  CAS  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93

    Article  CAS  PubMed  Google Scholar 

  • Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130:2633–2644

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedegehog gene function. Nature 383:407–413

    Article  CAS  PubMed  Google Scholar 

  • Chisaka O, Musci TS, Capecchi MR (1992) Developmental defects of the ear, cranial nerves and hindbrain resulting from targeted disruption of the mouse homeobox gene Hox-1.6. Nature 355:516–520

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107:10725–10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191:381–396

    Article  CAS  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Article  CAS  PubMed  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol 208:333–350

    Article  Google Scholar 

  • Colas J-F, Schoenwolf GC (2001) Towards a cellular and molecular understanding of neurulation. Dev Dyn 221:117–145

    Article  CAS  PubMed  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson E (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    CAS  PubMed  Google Scholar 

  • Cooke J, Moens CB (2002) Boundary formation in the hindbrain: Eph only it were simple. Trends Neurosci 25:260–267

    Article  CAS  PubMed  Google Scholar 

  • Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476

    Article  CAS  PubMed  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117:409–429

    CAS  PubMed  Google Scholar 

  • Criley BB (1969) Analysis of embryonic sources and mechanisms of development of posterior levels of chick neural tubes. J Morphol 128:465–501

    Article  CAS  PubMed  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451

    CAS  PubMed  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68

    Article  CAS  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, Curran T (1999) Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479

    Article  PubMed  Google Scholar 

  • Dady A, Havis E, Escriou V, Catala M, Duband J-L (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34:13208–13221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signalling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750

    Article  CAS  PubMed  Google Scholar 

  • De Bakker BS, Driessen S, Boukens BJD, van den Hoff MJB, Oostra RJ (2017) Single-site neural tube closure in human embryos revisited. Clin Anat 30:988–999

    Article  PubMed  Google Scholar 

  • De Beer GR (1937) The development of the vertebrate skull. Oxford University Press, Oxford

    Google Scholar 

  • De Carlos JA, López-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    Article  PubMed  PubMed Central  Google Scholar 

  • Degnan BM, Degnan SM, Giusti A, Morse DE (1995) A hox/hom homeobox gene in sponges. Gene 155:175–177

    Article  CAS  PubMed  Google Scholar 

  • Di Giovannantonio LG, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, Acampora D, Simeone A (2014) Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 141:377–388

    Article  PubMed  CAS  Google Scholar 

  • Dollé P, Lufkin T, Krumlauf R, Mark M, Duboule D, Chambon P (1993) Local alterations of Krox-20 and Hox gene expression in the hindbrain suggest lack of rhombomeres 4 and 5 in homozygote null Hoxa-1 (Hox-1.6) mutant embryos. Proc Natl Acad Sci U S A 90:7666–7670

    Article  PubMed  PubMed Central  Google Scholar 

  • Dottori M, Hartley L, Galea M, Paxinos G, Polizzotto M, Kilpatrick T, Bartlett PF, Murphy M, Köntgen F, Boyd AW (1988) EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A 95:13248–13253

    Article  Google Scholar 

  • Dravis C, Yokoyama N, Chumley MJ, Cowan CA, Silvany RE, Shay J, Baker LA, Henkemeyer M (2004) Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 271:272–290

    Article  CAS  PubMed  Google Scholar 

  • Dupé V, Lumsden A (2001) Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128:2199–2208

    PubMed  Google Scholar 

  • Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon JP (1993) Sonic hedgehog, a member of a family of putative signalling molecules, is implicated in the regulation of CNS polarity. Cell 79:1175–1186

    Google Scholar 

  • Eddison M, Toole L, Bell E, Wingate RJ (2004) Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol 2:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–91995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans DJR, Noden DM (2006) Spatial relations between avian craniofacial neural crest and paraxial mesoderm cells. Dev Dyn 235:1310–1325

    Article  PubMed  Google Scholar 

  • Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Diestler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699

    Article  CAS  PubMed  Google Scholar 

  • Fink AJ, Englund C, Daza RAM, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishell G, Mason CA, Hatten ME (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362:636–638

    Article  CAS  PubMed  Google Scholar 

  • Florisson JM, Verkerk AJ, Huigh D, Hoogeboom AJ, Swagemakers S, Kremer A, Heijsman D, Lequin MH, Mathijssen IM, van der Spek PJ (2013) Boston type craniosynostosis: report of a second mutation in MSX2. Am J Med Genet A 161A:2626–2633

    PubMed  Google Scholar 

  • Fraser S, Keynes R, Lumsden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344:431–435

    Article  CAS  PubMed  Google Scholar 

  • Frohman MA, Martin GR, Cordes SP, Halamek LP, Barsh GS (1993) Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 117:925–936

    Google Scholar 

  • Fujita S, Shimada M, Nakamura T (1966) H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol 128:191–208

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Dehart DB, Sulik KK, Hogan BLM (2002) Distinct requirement for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left-right asymmetry in the mouse. Development 129:4685–4696

    CAS  PubMed  Google Scholar 

  • Gaertner RA (1949) Development of the posterior trunk and tail of the chick embryo. J Exp Zool 111:157–174

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Flenniken A, Compton DC, Jenkins N, Copeland NG, Gilbert DJ, Davis S, Wilkinson DG, Yancopoulos GD (1996) Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinase, expressed in embryonic floor plate, roof plate and hindbrain segments. Oncogene 13:1343–1352

    CAS  PubMed  Google Scholar 

  • Gale E, Zile M, Maden M (1999) Hindbrain respecification in the retinoid-deficient quail. Mech Dev 89:43–54

    Article  CAS  PubMed  Google Scholar 

  • Gallagher E, Howell BW, Soriano P, Cooper JA, Hawkes R (1998) Cerebellar abnormalities in the disabled (mdab1-1) mouse. J Comp Neurol 402:238–251

    Article  CAS  PubMed  Google Scholar 

  • Galvin BD, Hart KC, Meyer AN, Webster MK, Donoghue DJ (1996) Constitutive receptor activation by Crouzon syndrome mutations in fibroblast growth factor receptor (FGFR)2 and FGFR2/Neu chimeras. Proc Natl Acad Sci U S A 93:7894–7899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Moreno F, López-Mascaraque L, De Carlos JA (2007) Origins and migratory routes of murine Cajal-Retzius cells. J Comp Neurol 500:419–432

    Article  PubMed  CAS  Google Scholar 

  • Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693–3702

    CAS  PubMed  Google Scholar 

  • Geoffroy Saint Hilaire I (1841) Article Tératologie. In: Leroux P, Reynaud J (eds) Encyclopédie Nouvelle, vol 8. Charles Gosselin, Paris, p 599

    Google Scholar 

  • Gertz CC, Kriegstein AR (2015) Neuronal migration dynamics in the developing ferret cortex. J Neurosci 35:14307–14315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F, Poquet C, Charnay P (2003) Novel activity of MafB underlie its dual role in hindbrain segmentation and regional specification. Dev Biol 253:150–162

    Article  CAS  PubMed  Google Scholar 

  • Goddard JM, Rossel M, Manley NR, Capecchi MR (1996) Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122:3217–3228

    CAS  PubMed  Google Scholar 

  • Goffinet AM (1983) The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol 168:73–86

    Article  CAS  Google Scholar 

  • Golden JA, Chernoff GF (1993) Intermittent pattern of neural tube closure in two strains of mice. Teratology 47:73–80

    Article  CAS  PubMed  Google Scholar 

  • Goodnough LH, DiNuoscio GJ, Ferguson JW, Williams T, Lang RA, Atit RP (2014) Distinct requirements for cranial ectoderm and mesenchyme-derived Wnts in specification and differentiation of osteoblast and dermal progenitors. PLoS Genet 10(2):e1004152. https://doi.org/10.1371/journal.pgen.1004152.eCollection2014

    Article  PubMed  PubMed Central  Google Scholar 

  • Gould A, Itasaki N, Krumlauf R (1998) Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoic pathway. Neuron 21:39–51

    Article  CAS  PubMed  Google Scholar 

  • Gräper L (1929) Die Primitiventwicklung des Hühnchens nach stereokinematographischen, kontrolliert durch vitale Farbmarkierung und verglichen mit der Entwicklung anderer Wirbeltiere. Wilhelm Roux Arch Entwickl Mech Org 116:382–429

    Article  PubMed  Google Scholar 

  • Grapin-Botton A, Bonnin M-A, Ariza-Mac Naughton L, Krumlauf R, Le Douarin NM (1995) Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications. Development 121:2707–2721

    CAS  PubMed  Google Scholar 

  • Grapin-Botton A, Bonnin M-A, Le Douarin NM (1997) Hox gene induction in the neural tube depends on three parameters: competence, signal supply and paralogue group. Development 124:849–859

    CAS  PubMed  Google Scholar 

  • Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, He W, MacLaughlin DT, van den Eijnden-van-Raaij J, Donahue PK, Li E (1999) The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 126:2551–2561

    CAS  PubMed  Google Scholar 

  • Guthrie S, Lumsden A (1991) Formation and regeneration of rhombomere boundaries in the developing chick hindbrain. Development 112:221–229

    CAS  PubMed  Google Scholar 

  • Guthrie S, Butcher M, Lumsden A (1991) Patterns of cell division and interkinetic nuclear migration in the chick embryo hindbrain. J Neurobiol 22:742–754

    Article  CAS  PubMed  Google Scholar 

  • Guthrie S, Prince V, Lumsden A (1993) Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118:527–538

    CAS  PubMed  Google Scholar 

  • Halacheva V, Fuchs M, Dönitz J, Reupke J, Püschel B, Viebahn C (2011) Planer cell movements and oriented cell division during early primitive streak formation in the mammalian embryo. Dev Dyn 240:1905–1916

    Article  PubMed  Google Scholar 

  • Hallonet MER, Le Dourain NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimeras. Eur J Neurosci 5:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Hallonet MER, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    CAS  PubMed  Google Scholar 

  • Haltia M, Leivo I, Somer H et al (1997) Muscle-eye-brain disease: a neuropathological study. Ann Neurol 41:173–180

    Article  CAS  PubMed  Google Scholar 

  • Hamburgh M (1963) Analysis of the postnatal developmental effects of “Reeler”, a neurological mutation in mice. A study in developmental genetics. Dev Biol 8:165–185

    Article  CAS  PubMed  Google Scholar 

  • Han J, Ishii M, Bringas P Jr, Maas RL, Maxson RE Jr, Chai Y (2007) Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. Mech Dev 124:729–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  CAS  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Flandin P, Yoshikawa K, Rubenstein JL, Alvarez-Buylla A, Kriegstein AR (2013) Non-epithelial stem cells and cortical interneuron production in the human ganglionic eminence. Nat Neurosci 16:1576–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Götz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  • Helmbacher F, Pujades C, Desmarquet C, Frain M, Rijli FM, Chambon P, Charnay P (1998) Hoxa1 and Krox-20 synergize to control the development of rhombomere 3. Development 125:4739–4748

    CAS  PubMed  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:278–281

    Google Scholar 

  • Hemmati-Brivanlou A, Melton D (1997) Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88:13–17

    Article  CAS  PubMed  Google Scholar 

  • Henion TR, Qu S, Smith FL (2003) Expression of dystroglycan, fukutin and POMGnT1 during mouse cerebellar development. Brain Res Mol Brain Res 112:177–181

    Article  CAS  PubMed  Google Scholar 

  • Heyman I, Kent A, Lumsden A (1993) Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo brain. Dev Dyn 198:241–253

    Article  CAS  PubMed  Google Scholar 

  • Heyman I, Faissner A, Lumsden A (1995) Cell and matrix specialisation of rhombomere boundaries. Dev Dyn 204:301–315

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Sánchez M, Martínez-De-La-Torre M, Alvarado-Mallart R-M, Puelles L (2005) A distinct preisthmic histogenetic domain is defined by overlap of Otx2 and Pax2 gene expression in the avian caudal midbrain. J Comp Neurol 483:17–29

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Takahara T, Sasaki N, Hirose K, Yoshiki A, Ohashi T, Kusakabe M, Murakami Y, Muramatsu M, Watanabe S, Nakao K, Katsuki M, Hayashizaki Y (1995) The reeler gene encodes a protein with an EGF-like motif expressed by pioneer neurons. Nat Genet 10:77–83

    Article  CAS  PubMed  Google Scholar 

  • Holve S, Friedman B, Hoyme HE, Tarby TJ, Johnstone SJ, Erickson RP, Clericuzio CL, Cunniff C (2003) Athabascan brainstem dysgenesis syndrome. Am J Med Genet 120A:169–173

    Article  PubMed  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    Article  CAS  PubMed  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M, Watanabe M, Bito H, Terashima T, Wright CV, Kawaguchi Y, Nakao K, Nabeshima Y (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  CAS  PubMed  Google Scholar 

  • Hu JS, Vogt D, Sandberg M, Rubenstein JL (2017) Cortical interneuron development: a tale of time and space. Development 144:3867–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang R, Zhi Q, Ordahl CP, Christ B (1997) The fate of the first avian somite. Anat Embryol 195:435–449

    Article  CAS  Google Scholar 

  • Huang R, Zhi Q, Patel K, Wilting J, Christ B (2000) Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos. Anat Embryol 202:375–383

    Article  CAS  Google Scholar 

  • Hughes AF, Freeman RB (1974) Comparative remarks on the development of the tail cord among higher vertebrates. J Embryol Exp Morphol 32:355–363

    CAS  PubMed  Google Scholar 

  • Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389:966–970

    Article  CAS  PubMed  Google Scholar 

  • Iseki S, Wilkie AOM, Heath JK, Ishimaru T, Eto K, Morriss-Kay GM (1997) Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2. Development 124:3375–3384

    CAS  PubMed  Google Scholar 

  • Iseki S, Wilkie AOM, Morriss-Kay GM (1999) Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 126:5611–5620

    CAS  PubMed  Google Scholar 

  • Itasaki N, Sharpe J, Morrison A, Krumlauf R (1996) Reprogramming Hox expression in the vertebrate hindbrain: influence of paraxial mesoderm and rhombomere transposition. Neuron 16:487–500

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Yeo JY, Chytil A, Han J, Bringas P Jr, Nakajima A, Shuler CF, Moses HL, Chai Y (2003) Conditional inactivation of Tgfr2 in cranial neural crest causes cleft palate and calvarial defects. Development 130:5269–5280

    Article  CAS  PubMed  Google Scholar 

  • Izpisúa-Belmonte JC, De Robertis EM, Storey KG, Stern CD (1993) The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm. Cell 74:645–659

    Article  PubMed  Google Scholar 

  • Jabs EW, Müller U, Li X, Ma L, Luo W, Haworth IS, Klisak I, Parkes R, Warman ML, Muliken JB, Snead ML, Maxson R (1993) A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75:443–450

    Article  CAS  PubMed  Google Scholar 

  • Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9:1242–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson AG (1980) Computer modeling of morphogenesis. Am Zool 20:669–677

    Article  Google Scholar 

  • Jacobson AG, Gordon R (1976) Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulations. J Exp Zool 197:191–246

    Article  CAS  PubMed  Google Scholar 

  • Jacobson AG, Tam PPL (1982) Cephalic neurulation in the mouse embryo analysed by SEM and morphometry. Anat Rec 203:375–396

    Article  CAS  PubMed  Google Scholar 

  • Janssen A, Hosen MJ, Jeannin P, Coucke PJ, De Paepe A, Vanakker OM (2013) Second family with the Boston-type craniosynostosis syndrome: novel mutation and expansion of the clinical spectrum. Am J Med Genet A 161A:2352–2357

    Article  PubMed  Google Scholar 

  • Jiang R, Grabel LB (1995) Function and differential regulation of the alpha 6 integrin isoforms during parietal endoderm differentiation. Exp Cell Res 217:195–214

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM (2002) Tissue origins and interactions in the mammalian skull vault. Dev Biol 241:106–116

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Guri E, Udina F, Colas J-F, Sharpe J, Padrón-Barthe L, Torres M, Pujades C (2010) Clonal analysis in mice underlines the importance of rhombomeric boundaries in cell movement restriction during hindbrain segmentation. PLoS One 5(4):e10112. https://doi.org/10.1371/journal.pone.0010112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juriloff DM, Harris MJ, Tom C, MacDonald KB (1991) Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 44:225–233

    Article  CAS  PubMed  Google Scholar 

  • Keller RE (1980) The cellular basis of epiboly: an SEM study of deep-cell rearrangement during gastrulation in Xenopus laevis. J Embryol Exp Morphol 60:201–234

    CAS  PubMed  Google Scholar 

  • Kiecker C, Bates T, Bell E (2016) Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 73:923–947

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Rice DPJ, Kettunen PJ, Thesleff I (1998) FGF-, BMP- and Shh-mediated signaling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241–1251

    CAS  PubMed  Google Scholar 

  • Kinder SJ, Tsang TE, Wakamiya M, Sasaki H, Behringer RR, Nagy A, Tam PP (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634

    CAS  PubMed  Google Scholar 

  • Kjaer I, Fischer-Hansen B (1995) The adenohypophysis and the cranial base in early human development. J Craniofac Genet Dev Biol 15:157–161

    CAS  PubMed  Google Scholar 

  • Kjaer I, Keeling JW, Fischer Hansen B, Becktor KB (2002) Midline skeletodental morphology in holoprosencephaly. Cleft Palate Craniofac J 39:357–363

    Article  PubMed  Google Scholar 

  • Koirala S, Jin Z, Piao X, Corfas G (2009) GPR56-regulated granule cell adhesion is essential for rostral cerebellar development. J Neurosci 29:7439–7449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  CAS  PubMed  Google Scholar 

  • Kroenke CD, Bayly PV (2018) How forces fold the cerebral cortex. J Neurosci 38:767–775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lajeunie E, Catala M, Renier D (1999) Craniosynostosis: from a clinical description to an understanding of bone formation of the skull. Childs Nerv Syst 15:676–680

    Article  CAS  PubMed  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911

    CAS  PubMed  Google Scholar 

  • Layer PG, Alber R (1990) Patterning of chick brain vesicles as revealed by peanut agglutinin and cholinestrases. Development 109:613–624

    CAS  PubMed  Google Scholar 

  • Le Dréau G, Martí E (2013) The multiple activities of BMPs during spinal cord development. Cell Mol Life Sci 70:4293–4305

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Thirunavukkarasu K, Zhou L, Pstore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G (1997a) Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet 16:307–310

    Article  CAS  PubMed  Google Scholar 

  • Lee SMK, Danielian PS, Fritzsch B, McMahon AP (1997b) Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain. Development 124:959–969

    CAS  PubMed  Google Scholar 

  • Lemire RJ (1969) Variations in development of the caudal neural tube in human embryos (Horizons XIV–XXI). Teratology 2:361–369

    Article  CAS  PubMed  Google Scholar 

  • Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649

    Article  CAS  PubMed  Google Scholar 

  • Lettice LA, Purdie LA, Carlson GJ, Kilanowski F, Dorin J, Hill RE (1999) The mouse bagpipe gene controls development of axial skeleton, skull, and spleen. Proc Natl Acad Sci U S A 96:9650–9700

    Article  Google Scholar 

  • Lindsay S, Sarma S, Martínez-de-la-Torre M, Kerwin J, Scott M, Ferran JL, Baldock R, Puelles L (2005) Anatomical and gene expression mapping of the ventral pallium in a three-dimension model of developing human brain. Neuroscience 136:625–632

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22:361–365

    Article  CAS  PubMed  Google Scholar 

  • Louvi A, Alexandre P, Métin C, Wurst W, Wassef M (2003) The isthmic neuroepithelium is essential for cerebellar midline fusion. Dev Dent 130:5319–5330

    CAS  Google Scholar 

  • Lufkin T, Dierich A, Le Meur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119

    Article  CAS  PubMed  Google Scholar 

  • Lumsden A (1990) The cellular basis of segmentation in the developing hindbrain. Trends Neurosci 13:329–335

    Article  CAS  PubMed  Google Scholar 

  • Lumsden A, Keynes R (1989) Segmental patterns of neuronal development in the chick hindbrain. Nature 337:424–428

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Jeong S-J, Jin Z, Strokes N, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon G, Raymond G, Mogami K, Gadisseux J-F, Della Gisutina E (1993) Disorder of cerebellar foliation in Walker’s lissencephaly and Neu-laxova syndrome. J Neuropathol Exp Neurol 52:633–639

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Golden S, Mawson R (1996) The molecular basis of Boston-type craniosynostosis: the Pro 148-His mutation in the N-terminal arm of the MSX2 homeodomain stabilizes DNA binding without altering nucleotide sequence preference. Hum Mol Genet 5:1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 95:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma T, Wang C, Wang L, Zhou X, Tian M, Zhang Q, Zhang Y, Li J, Liu Z, Cai Y, Liu F, You Y, Chen C, Campbell K, Song H, Ma L, Rubenstein JL, Yang Z (2013) Subcortical origins of human and monkey neocortical interneurons. Nat Neurosci 16:1588–1597

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombi-lip neural progenitor. Neuron 48:17–24

    Article  CAS  PubMed  Google Scholar 

  • Maden M, Gale E, Kostetskii I, Zile M (1996) Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 6:417–426

    Article  CAS  PubMed  Google Scholar 

  • Makki N, Capecchi MR (2010) Hoxa1 lineage-tracing indicates a direct role for Hoxa1 in development of the inner ear, the heart and the third rhombomere. Dev Biol 341:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  • Mangold U, Sievers J, Berry M (1984) 6-hydrocydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopic study. J Comp Neurol 227:267–284

    Article  CAS  PubMed  Google Scholar 

  • Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C (1977) Anatomical, physiological and biochemical studies of the cerebellum from Reeler mouse mutant. Philos Trans R Soc Lond Ser B Biol Sci 281:1–28

    Article  CAS  Google Scholar 

  • Marigo V, Davey RA, Zuo Y, Cunningham JM, Tabin CJ (1996) Biochemical evidence that patched is the Hedgehog receptor. Nature 384:176–179

    Article  CAS  PubMed  Google Scholar 

  • Marín F, Charnay P (2000) Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 127:4925–4935

    PubMed  Google Scholar 

  • Marín F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738

    Article  PubMed  Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I the primordial neocortical organisation. Z Anat Entwickl Gesch 134:117–145

    Article  CAS  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    Article  CAS  Google Scholar 

  • Mark M, Lufkin T, Vonesch J-L, Ruberte E, Olivo J-C, Dollé P, Gorry P, Lumsden A, Chambon P (1993) Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119:319–338

    CAS  PubMed  Google Scholar 

  • Marshall H, Studer M, Pöpperl H, Aparicio S, Kuroiwa A, Brenner S, Krumlauf R (1994) A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 370:567–571

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Alvarado-Mallart R-S (1989) Rostral cerebellum originates from the caudal portion of the so-called “mesencephalic” vesicle: a study using quail/chick chimeras. Eur J Neurosci 1:549–560

    Article  PubMed  Google Scholar 

  • Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6:971–981

    Article  CAS  PubMed  Google Scholar 

  • Martínez S, Marín F, Nieto MA, Puelles L (1995) Induction of ectopic engrailed expression and fate change in avian rhombomeres: intersegmental boundaries as barriers. Mech Dev 51:289–303

    Article  PubMed  Google Scholar 

  • Martínez-Cerdeño V, Cunningham CL, Camacho J, Antczak JL, Prakash AN, Cziep ME, Walker AI, Noctor SC (2012) Comparative analysis of the suvnetricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents. PLoS One 7(1):e30178. https://doi.org/10.1371/journal.pone.0030178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-GreenM(1988) Origin of the dorsal surface of the neural tube by progressive delamination of epidermal ectoderm and neuroepithelium: implications for neurulation and neural tube defects. Development 103:687–706

    Google Scholar 

  • McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM (2008) Development and tissue origins of the mammalian cranial base. Dev Biol 322:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKay IJ, Muchamore I, Krumlauf R, Maden M, Lumsden A, Lewis J (1994) The kreisler mouse : a hindbrain segmentation mutant that lacks two rhombomeres. Developement 120:2199–221

    Google Scholar 

  • Merrill AE, Bochukova EG, Brugger SM, Ishii M, Pilz DT, Wall SA, Lyons KM, Wilkie AO, Maxson RE Jr (2006) Cell mixing at a neural crest - mesoderm boundary and deficient ephrin - Eph signaling in the pathogenesis of craniosynostosis. Hum Mol Genet 15:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Meyer G (2010) Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat 217:334–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer G, Gónzalez-Gómez M (2018) The heterogeneity of human Cajal-Retzius neurons. Semin Cell Dev Biol 76:101–111

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer G, Perez-Garcia CG, Abraham H, Caput D (2002) Expression of p73 and Reelin in the developing human cortex. J Neurosci 22:4973–4986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micalizzi A, Poretti A, Romani M et al (2016) Clinical, neuroradiological and molecular characterization of cerebellar dysplasia with cysts (Poretti-Boltshauser syndrome). Eur J Hum Genet 24:1262–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovic L, Scott MP, Rohatgi R (2009) Lateral transport of smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187:365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller KA, Twigg SR, McGowan SJ, Philpps JM, Fenwick AL, Johnson D, Wall SA, Noons P, Rees KE, Tidley EA, Craft J, Taylor J, Taylor JC, Goos JA, Swagemakers SM, Mathijssen IM, van der Spek PJ, Lord H, Lester T, Abid N, Cilliers D, Hurst JA, Morton JE, Sweeney E, Weber A, Wilson LC, Wilkie AO (2017) Diagnostic value of exome and whole exome genome sequencing in craniosynostosis. J Med Genet 54:260–268

    Article  CAS  PubMed  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3795

    CAS  PubMed  Google Scholar 

  • Mishina Y, Suzuki A, Ueno N, Behringer RR (1995) Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes Dev 9:3027–3037

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Nakajima K, Mikoshiba K, Ogawa M (1997) Regulation of Purkinje cell alignment by reelin as revealed with CR-50 antibody. J Neurosci 17:3599–3609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata T, Kawaguhi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progentitor cells. Development 131:3133–3145

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G (2019) Elucidating the developmental trajectories of GABAergic cortical interneuron subtypes. Neurosci Res 138:26–32

    Article  CAS  PubMed  Google Scholar 

  • Montanaro F, Lindenbaum M, Carbonetto S (1999) Alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability. J Cell Biol 145:1325–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller F, O’Rahilly R (1980) The human chondrocranium at the end of the embryonic period, proper, with particular reference to the nervous system. Am J Anat 159:33–58

    Article  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1994) Occipitocervical segmentation in staged human embryos. J Anat 185:251–258

    PubMed  PubMed Central  Google Scholar 

  • Müller F, O’Rahilly R (2003) Segmentation in staged human embryos: the occipitocervical region revisited. J Anat 203:297–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Mundlos S, Otto F, Mundlos C, Muliken JB, Ayslworth AS, Albright S, Lindout D, Cole WG, Henn W, Knoll JHM, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89:773–779

    Article  CAS  PubMed  Google Scholar 

  • Murdoch B, DelConte C, García-Castro MI (2012) Pax7 lineage contributions to the mammalian neural crest. PLoS One 7(7):e41089. https://doi.org/10.1371/journal.pone.0041089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy P, Hill RE (1991) Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6 during segmentation of the hindbrain. Development 111:61–74

    CAS  PubMed  Google Scholar 

  • Murphy P, Davidson DR, Hill RE (1989) Segment specific expression of a homeobox-containing gene in the mouse. Nature 341:156–159

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah B, Brunstrom JE, Grutzendler J, Wong ROL, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4:143–150

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Combrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108:17–29

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu T, Uwabe C, Shiota K (2000) Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol 201:455–466

    Article  CAS  Google Scholar 

  • Nery S, Fishell G, Corbin JG (2002) The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations. Nat Neurosci 5:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Ostendorf AP, Satz JS et al (2013) Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol Commun 1:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicolet G (1970) Analyse autoradiographique de la localisation des différentes ébauches présomptives dans la ligne primitive de l’embryon de Poulet. J Embryol Exp Morphol 23:79–108

    Google Scholar 

  • Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P (2000) Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85

    CAS  PubMed  Google Scholar 

  • Nieuwkoop PD (1969a) The formation of the mesoderm in urodelean amphibian. I. The induction by the endoderm. Wilhelm Roux Arch Entw Mech Org 162:341–371

    Article  CAS  Google Scholar 

  • Nieuwkoop PD (1969b) The formation of the mesoderm in urodelean amphibian. II. The origin of the dorso-ventral polarity of the mesoderm. Wilhelm Roux Arch Entw Mech Org 163:298–315

    Article  CAS  Google Scholar 

  • Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Scholnicoff NJ, Juliano SL (1997) Histogenesis of ferret somatosensory cortex. J Comp Neurol 387:179–193

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weisman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  • Noctor SC, Martínez-Cerdeño V, Kriegstein AR (2008) Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol 508:28–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Noden DM (1975) An analysis of the migratory behaviour of avian cephalic neural crest cells. Dev Biol 42:106–130

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1984) The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am J Anat 169:237–257

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (1989) Bidirectional closure of the rostral neuropore in the human embryo. Am J Anat 184:259–268

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (2002) The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65:162–170

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migratory pathways in the developing cerebral cortex. Science 258:299–302

    Article  PubMed  Google Scholar 

  • Ohuchi H, Yoshioka H, Tanaka A, Kawakami Y, Nohno T, Noji S (1994) Involvement of androgen-induced growth factor (FGF-8) gene in mouse embryogenesis and morphogenesis. Biochem Biophys Res Commun 204:882–888

    Article  CAS  PubMed  Google Scholar 

  • Ooi VEC, Sanders EJ, Bellairs R (1986) The contribution of the primitive streak to the somites in the avian embryo. J Embryol Exp Morphol 92:193–206

    CAS  PubMed  Google Scholar 

  • Oosterveen T, Niederreither K, Dollé P, Chambon P, Meijlink F, Deschamps J (2003) Retinoids regulate the anterior expression boundaries of 5’ Hoxb genes in posterior hindbrain. EMBO J 22:262–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr HA (1887) Contribution to the embryology of the lizard. J Morphol 1:311–372

    Article  Google Scholar 

  • Otto F, Thornell AP, Crompton T, Denzel A, Gimour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ (1997) Cbf1a, a candidate gene for cleiodcranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  CAS  PubMed  Google Scholar 

  • Parameswaran M, Tam PPL (1995) Regionalisation of cell fate and morphogenetic movement of the mesoderm during mouse gastrulation. Dev Genet 17:16–28

    Article  CAS  PubMed  Google Scholar 

  • Park JG, Tischfield MA, Nugent AA, Cheng L, Di Gioia SA, Chan W-M, Maconachie G, Bosley TM, Summers CG, Hunter DG, Robson CD, Gottlob I, Engle EC (2016) Loss of MAFB function in humans and mice causes Duane syndrome, aberrant extraocular muscle innervation, and inner-ear defects. Am J Hum Genet 98:1220–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker HJ, Bronner ME, Krumlauf R (2016) The vertebrate Hox gene regulatory network for hindbrain segmentation: evolution and diversification. Bioessays 38:526–538

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martínez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104:5193–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasteels J (1937) Etudes sur la gastrulation des vertébrés méroblastiques. III. Oiseaux. IV. Conclusions générales. Arch Biol 48:381–488

    Google Scholar 

  • Patel NH, Prince VE (2000) Beyond the Hox complex. Genome Biol 1(5):1027.1–1027.4. Reviews

    Article  Google Scholar 

  • Peeters MC, Viebahn C, Hekking JW, van Straaten HW (1998) Neurulation in the rabbit embryo. Anat Embryol 197:167–175

    Article  CAS  Google Scholar 

  • Pera EM, Kessel M (1997) Patterning of the chick forebrain anlage by the prechordal plate. Development 124:4153–4162

    CAS  PubMed  Google Scholar 

  • Peterson KJ, Davidson EH (2000) Regulatory evolution and the origin of the bilaterians. Proc Natl Acad Sci U S A 97:4430–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao X, Hill RS, Bodell A et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036

    Article  CAS  PubMed  Google Scholar 

  • Pinho S, Simonsson PR, Trevers KE, Stower MJ, Sherlock WT, Khan M, Streit A, Sheng G, Stern CD (2011) Distinct steps of neural induction revealed by Asterix, Obelix and TrkC genes induced by different signals from the organizer. PLoS One 6(4):e19157. https://doi.org/10.1371/journal.pone.0019157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placzek M, Tessier-Lavigne M, Yamada T, Jessell T, Dodd J (1990) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250:955–958

    Article  Google Scholar 

  • Poretti A, Häusler M, von Moers A et al (2014) Ataxia, intellectual disability, and ocular apraxia with cerebellar cysts: a new disease? Cerebellum 13:79–88

    Article  CAS  PubMed  Google Scholar 

  • Price J, Turlow L (1988) Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development 104:473–482

    CAS  PubMed  Google Scholar 

  • Prince VE, Holley SA, Bailly-Cuif L, Prabhajaran B, Oates AC, Ho RK, Vogt TF (2001) Zebrafish lunatic fringe demarcates segmental boundaries. Mech Dev 105:175–180

    Article  CAS  PubMed  Google Scholar 

  • Psychoyos D, Stern CD (1996) Fates and migratory routes of primitive streak cells in the chick embryo. Development 122:1523–1534

    CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JL (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16:472–479

    Article  CAS  PubMed  Google Scholar 

  • Puelles L, Rubenstein JLR (2015) A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front Neuroanat 9:27. https://doi.org/10.3389/fnana.2015.00027. eCollection 2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puelles L, Harrison M, Paxinos G, Watson C (2013) A developmental ontology for the mammalian brain based on the prosomeric model. Trends Neurosci 36:570–578

    Article  CAS  PubMed  Google Scholar 

  • Quattrocchi CC, Zanni G, Napolitano A et al (2013) Conventional magnetic resonance imaging and diffusion tensor imaging studies in children with novel GPR56 mutations: further delineation of a cobblestone-like phenotype. Neurogenetics 14:77–83

    Article  PubMed  Google Scholar 

  • Rakic P (1971a) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopy study in Macacus Rhesus. J Comp Neurol 141:283–312

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1971b) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33:471–476

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  CAS  PubMed  Google Scholar 

  • Rakic P (2000) Radial unit hypothesis of neocortical expansion. Novartis Found Symp 228:30–42

    CAS  PubMed  Google Scholar 

  • Rice DS, Sheldon M, D’Arcangelo G, Nakajima K, Goldowitz D, Curran T (1998) Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125:3719–3729

    CAS  PubMed  Google Scholar 

  • Rice DPC, Åberg T, Chan Y-S, Tang Z, Kettunen PJ, Pakarinen L, Maxson RE Jr, Thesleff I (2000) Integration of FGF and TWIST in calvarial bone and suture development. Development 127:1845–1855

    CAS  PubMed  Google Scholar 

  • Rickmann M, Wolff JR (1981) Differentiation of “preplate” neurons in the pallium of the rat. Bibl Anat 19:142–146

    Google Scholar 

  • Rivera-Pérez JA, Hadjantonakis A-K (2015) The dynamics of morphogenesis in the early mouse embryo. Cold Sping Harb Perspect Biol 7:a015867

    Article  CAS  Google Scholar 

  • Robertson CP, Braun MM, Roelink H (2004) Sonic hedgehog patterning in the chick neural plate is antagonized by a Wnt3-like signal. Dev Dyn 229:510–519

    Article  CAS  PubMed  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korsh V, Norlin S, Ruiz I, Altaba A, Tanabe Y, Placzek M, Edlund T, Jessell TM, Dodd J (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedegehog expressed by the notochord. Cell 76:761–775

    Article  CAS  PubMed  Google Scholar 

  • Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signalling at the primary cilium. Science 317:372–376

    Article  CAS  PubMed  Google Scholar 

  • Rosenquist GC (1966) A radioautographic study of labelled grafts in the chick blastoderm. Development from primitive-streak stages to stage 12. Carn Contrib Embryol 38:21–110

    Google Scholar 

  • Roybal PG, Wu NL, Sun J, Ting M-C, Schaefer C, Maxson RE (2010) Inactivation of Msx1 and Msx2 in neural crest reveals an unexpected role in suppressing heterotopic bone formation in the head. Dev Biol 343:28–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudy B, Fishell G, Lee SH, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71:45–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadl VS, Sing A, Mar L, Jin F, Cordes SP (2003) Analysis of hindbrain patterning defects caused by the kreislerenu mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 227:134–142

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Yamamura K-I, Suzuki N (2012) Reduced bone morphogenetic protein receptor type 1A signaling in neural-crest-derived cells cause facial dysmorphism. Dis Model Mech 5:948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2004) Development of the posterior neural tube in human embryos. Anat Embryol 209:107–117

    Google Scholar 

  • Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K (2007) Aberrant differentiation of the axially condensed tail bud mesenchyme in human embryos with lumbosacral myeloschisis. Anat Rec 290:251–258

    Article  Google Scholar 

  • Sakai Y (1989) Neurulation in the mouse: manner and timing of neural tube closure. Anat Rec 223:251–258

    Google Scholar 

  • Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Araki I, Nakamura H (2001) Inductive signal and tissue responsiveness defining the tectum and the cerebellum. Development 128:2461–2469

    CAS  PubMed  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  CAS  PubMed  Google Scholar 

  • Satokata I, Ma L, Oshima H, Bei M, Woo I, Nishizawa K, Maeda T, Takano Y, Uchiyama M, Heaney S, Peters H, Tang Z, Maxson R, Maas R (2000) Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation. Nat Genet 24:391–395

    Article  CAS  PubMed  Google Scholar 

  • Sauer FC (1935) The cellular structure of the neural tube. J Comp Neurol 63:13–23

    Article  Google Scholar 

  • Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9:1055–1071

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1977) Tail (end) bud contributions to the posterior region of the chick embryo. J Exp Zool 201:227–246

    Article  Google Scholar 

  • Schoenwolf GC (1979) Histological and ultrastructural observations of tail bud formation in the chick embryo. Anat Rec 193:131–148

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1985) Shaping and bending of the avian neuroepithelium: morphometric analyses. Dev Biol 109:127–139

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC (1991) Cell movements driving neurulation in avian embryos. Development 113(Suppl2):157–168

    Google Scholar 

  • Schoenwolf GC, Delongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158:43–63

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Franks MV (1984) Quantitative analyses of changes in cell shape during bending of the avian neural plate. Dev Biol 105:257–272

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Nichols DH (1984) Histological and ultrastructural studies on the origin of caudal neural crest cells in mouse embryos. J Comp Neurol 222:496–505

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 104:243–270

    Google Scholar 

  • Schoenwolf GC, Chandler NB, Smith JL (1985) Analysis of the origins and early fates of neural crest cells in caudal regions of avian embryos. Dev Biol 110:467–479

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Garcia-Martinez V, Dias MS (1992) Mesoderm movement and fate during avian gastrulation and neurulation. Dev Dyn 193:235–248

    Article  CAS  PubMed  Google Scholar 

  • Schowing J (1961) Influence inductrice de l’encéphale et de la chorde sur la morphogénèse du squelette crânien chez l’embryon de poulet. J Embryol Exp Morphol 9:326–334

    CAS  PubMed  Google Scholar 

  • Schowing J (1968a) Influence inductrice de l’encéphale embryonnaire sur le développement du crâne chez le poulet. I. Influence de l’excision des territoires nerveux antérieurs sur le développement crânien. J Embryol Exp Morphol 19:9–22

    CAS  PubMed  Google Scholar 

  • Schowing J (1968b) Influence inductrice de l’encéphale embryonnaire sur le développement du crâne chez le poulet. II. Influence de l’excision de la chorde et des territoires encéphaliques moyen et postérieur sur le développement crânien. J Embryol Exp Morphol 19:23–32

    CAS  PubMed  Google Scholar 

  • Schowing J (1968c) Mise en évidence du rôle inducteur de l’encéphale dans l’ostéogenèse du crâne embryonnaire du poulet. J Embryol Exp Morphol 19:88–93

    Google Scholar 

  • Schumacher S (1927) Über die sogenannte Vervielfachung des Medullarrohres (bzw. Des Canalis centralis) bei Embryonen. Z Mikrosk Anat Forsch 10:83–109

    Google Scholar 

  • Sellick GS, Barker KT, Stolte-Dijkstra I, Fleischmann C, Coleman RJ, Garrett C, Gloyn AL, Edghill EL, Hattersley AT, Wellauer PK, Goodwin G, Houlston RS (2004) Mutations in PTF1A cause pancreatic and cerebellar agenesis. Nat Genet 36:1301–1305

    Article  CAS  PubMed  Google Scholar 

  • Sensenig EC (1957) The development of the occipital and cervical segments and their associated structures in human embryos. Contrib Embryol Carnegie Inst 36:141–151

    Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE (1992) Vital dye analysis of cranial neural crest migration in the mouse embryo. Development 116:297–307

    CAS  PubMed  Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum: insights from genetic fate mapping. Neuron 45:27–40

    CAS  PubMed  Google Scholar 

  • Shedden PM, Wiley MJ (1987) Early stages of development in the caudal neural tube of the Golden Syrian Hamster (Mesocricetus auratus). Anat Rec 219:180–185

    Article  CAS  PubMed  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K, Miyoshiba K, Howell BW, Cooper JA, Goldowitz D, Curran T (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    Article  CAS  PubMed  Google Scholar 

  • Shimamura K, Rubenstein JL (1997) Inductive interactions during early regionalisation of the mouse forebrain. Development 124:2709–2718

    CAS  PubMed  Google Scholar 

  • Shirakabe K, Terasawa K, Miyama K, Shibuya H, Nishida E (2001) Regulation of the activity of the transcription factor Runx2 by two homeobox proteins, Msx2 and Dlx5. Genes Cells 6:851–856

    Article  CAS  PubMed  Google Scholar 

  • Shum AS, Copp AJ (1996) Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse. Anat Embryol 194:65–73

    Article  CAS  Google Scholar 

  • Sievers J, Klemm HP, Jenner S, Baumgarten HG, Berry M (1980) Neuronal and extraneuronal effects of intracistrenally administered 6-hydroxydopamine on the developing rat brain. J Neurochem 34:765–771

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Mangold U, Berry M, Allen C, Schlossberger HG (1981) Experimental studies on cerebellar foliation. I. A quantitative morphological analysis of cerebellar fissuration defects after neonatal treatment with 6-OHDA in the rat. J Comp Neurol 203:751–769

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Mangold U, Berry M (1983a) 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. Genesis and topography. Cell Tissue Res 230:771–783

    Article  Google Scholar 

  • Sievers H, Sievers J, Baumgarten H-G, König N, Schlossberger HG (1983b) Distribution of tritium label in the neonate rat brain following intracisternal or subcutaneous administration of [3H]6-OHDA. An autoradiographic study. Brain Res 275:23–45

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, Mangold U, Berry M (1985) 6-OHDA-induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. III. Morphology and synaptic organization of ectopic cerebellar neurons: a scanning and transmission electron microscopic study. J Comp Neurol 232:319–330

    Article  CAS  PubMed  Google Scholar 

  • Sievers J, von Knebel Doeberitz C, Pehlemann F-W, Berry M (1986) Meningeal cells influence cerebellar development over a critical period. Anat Embryol 175:91–100

    Article  CAS  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S, Berry M (1994) A time course study of the alterations in the development of the hamster cerebellar cortex after destruction of the overlying meningeal cells with 6-hydroxydopamine on the day of birth. J Neurocytol 23:117–134

    Article  CAS  PubMed  Google Scholar 

  • Sirbu IO, Gresh L, Barra J, Duester G (2005) Shifting boundaries of retinoic acid activity control hindbrain segmental gene expression. Development 132:2611–2622

    Article  CAS  PubMed  Google Scholar 

  • Smart IH (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse cortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JL, Schoenwolf GC (1989) Notochordal induction of cell wedging in the chick neural plate and its role in neural tube formation. J Exp Zool 250:49–62

    Article  CAS  PubMed  Google Scholar 

  • Spemann H (1938) Embryonic development and induction. Yale Univeristy Press, New Haven, 401p

    Book  Google Scholar 

  • Spratt NT Jr, Haas H (1960) Morphogenetic movements in the lower surface of the unincubated and early chick blastoderm. J Exp Zool 144:139–157

    Article  Google Scholar 

  • Spratt NT Jr (1955) Analysis of the organizer center in the early chick embryo. I. Localization of the prospective notochord and somite cells. J Exp Zool 128:121–164

    Article  Google Scholar 

  • Streit A, Berliner AJ, Papanayotou C, Sirulnik A, Stern CD (2000) Initiation of neural induction by FGF signalling before gastrulation. Nature 406:74–78

    Article  CAS  PubMed  Google Scholar 

  • Studer M, Lumsden A, Ariza-McNaughton L, Bradley A, Krumlauf R (1996) Altered segmental identity and abnormal migration of motor neurons in mice lacking Hox b-1. Nature 384:630–634

    Article  CAS  PubMed  Google Scholar 

  • Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli F, Chambon P, Krumlauf R (1998) Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 125:1025–1036

    CAS  PubMed  Google Scholar 

  • Sudarov A, Joyner AL (2007) Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Dev 2:36

    Article  CAS  Google Scholar 

  • Sun Z, Lee E, Herring SW (2007) Cell proliferation and osteogenic differentiation of growing pig cranial sutures. J Anat 211:280–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G (1999) Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 216:282–296

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Nakamura H (1990) Cerebellar micropolygyria in Fukuyama congenital muscular dystrophy: observations in fetal and pediatric cases. Brain Development 12:774–778

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Nakamura H, Tanaka J (1984) Cortical dysplasia in congenital muscular dystrophy with central nervous system involvement (Fukuyama type). J Neuropathol Exp Neurol 43:395–407

    Article  CAS  PubMed  Google Scholar 

  • Tam PPL, Williams EA, Chan WY (1993) Gastrulation in the mouse embryo: ultrastructural and molecular aspects of germ layer morphogenesis. Microsc Res Tech 26:301–328

    Article  CAS  PubMed  Google Scholar 

  • Tam PPL, Khoo P-L, Lewis SL, Bildsoe H, Wong N, Tsang TE, Gad JM, Robb L (2007) Sequential allocation and global pattern of movement of the definitive endoderm in the mouse embryo during gastrulation. Development 134:251–260

    Article  CAS  PubMed  Google Scholar 

  • Tamanaki N, Fujimori KE, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    Article  Google Scholar 

  • Tan S-S, Breen S (1993) Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature 362:638–640

    Article  CAS  PubMed  Google Scholar 

  • Tan SS, Kalloniatis M, Sturm K, Tam PP, Reese BE, Faulkner-Jones B (1998) Separate progenitors for radial and tangential cell dispersion during development of the cerebral neocortex. Neuron 21:295–304

    Article  CAS  PubMed  Google Scholar 

  • Theil T, Frain M, Gilardi-Hebenstreit P, Flenniken A, Charnay P, Wilkinson DG (1998) Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox20. Development 125:443–452

    CAS  PubMed  Google Scholar 

  • Tischfield MA, Bosley TM, Salih MAM, Alorainy IA, Sener EC, Nester MJ, Oystreck DT, Chan W-M, Andrews C, Erickson RP, Engle EC (2005) Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet 10:1035–1037

    Article  CAS  Google Scholar 

  • Tomás-Roca L, Corral-San-Miguel R, Aroca P, Puelles L, Marín F (2016) Crypto-rhombomeres of the mouse medulla oblongata, defined by molecular and morphological features. Brain Struct Funct 221:815–838

    Article  PubMed  Google Scholar 

  • Tortori-Donati P, Fondelli MP, Rossi A, Raybaud CA, Cama A, Capra V (1999) Segmental spinal dysgenesis: neuroradiologic findings with clinical and embryologic correlation. Am J Neuroradiol 20:445–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson LA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  CAS  PubMed  Google Scholar 

  • Twigg SR, Kan R, Babbs C, Bochukova EG, Robertson SP, Wall SA, Morriss-Kay GM, Wilkie AO (2004) Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc Natl Acad Sci USA 101:8652–8657

    Article  CAS  Google Scholar 

  • Tyler MS (1983) Development of the frontal bone and cranial mesenchyme in the embryonic chick: experimental study of tissue interactions. Anat Rec 206:61–70

    Article  CAS  PubMed  Google Scholar 

  • Vaage S (1969) The segmentation of the primitive neural tube in chick embryos (Gallus domesticus). A morphological, histochemical and autoradiographical investigation. Springer-Verlag, Berlin

    Google Scholar 

  • Vakaet L (1962) Some new data concerning the formation of the definitive endoblast in the chick embryo. J Embryol Exp Morphol 10:38–57

    CAS  PubMed  Google Scholar 

  • Valanne L, Pihko H, Katevuo K, Karttunen P, Somer H, Santavuori P (1994) MRI of the brain in muscle-eye-brain (MEB) disease. Neuroradiology 36:473–476

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A, Pedersen RA (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4(6):e6082. https://doi.org/10.1371/journal.pone.0006082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong SL, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG (1993) Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 47:723–743

    Article  PubMed  Google Scholar 

  • van der Knaap MS, Smit LM, Barth PG et al (1997) Magnetic resonance imaging in classification of congenital muscular dystrophies with brain abnormalities. Ann Neurol 42:50–59

    Article  PubMed  Google Scholar 

  • van Straaten HWM, Hekking JWM (1991) Development of floor plate, neurons and axonal outgrowth pattern in the early spinal cord of the notochord-deficient chick embryo. Anat Embryol 184:55–63

    Article  Google Scholar 

  • van Straaten HWM, Thors F, Wiertz-Hoessels L, Hekking DJ (1985) Effect of a notochordal implant on the early morphogenesis of the neural tube and neuroblasts: histometrical and histological results. Dev Biol 110:247–254

    Article  PubMed  Google Scholar 

  • van Straaten HWM, Janssen HC, Peeters MC, Copp AJ (1996) Neural tube closure in the chick embryo is multiphasic. Dev Dyn 207:309–318

    Article  PubMed  Google Scholar 

  • Vandervore L, Stouffs K, Tanyalçin I et al (2017) Bi-allelic variants in COL3A1 encoding the ligand to GPR56 are associated with cobblestone-like cortical malformation, white matter changes and cerebellar cysts. J Med Genet 54:432–440

    Article  CAS  PubMed  Google Scholar 

  • van Straaten HWM, Peeters MC, Hekking JW, van der Lende T (2000) Neurulation in the pig embryo. Anat Embryol 202:75–84

    Article  Google Scholar 

  • Vernay B, Koch M, Vaccarino F, Briscoe J, Simeone A, Kageyama R, Ang SL (2005) Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci 25:4856–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viebahn C, Storz C, Mitchell SA, Blum M (2002) Low proliferative and high mobility activity in the area of Brachyury expressing mesoderm progenitor cells in the gastrulating rabbit embryo. Development 129:2355–2365

    CAS  PubMed  Google Scholar 

  • Voiculescu O, Bertocchini F, Wolpert L, Keller RE, Stern CD (2007) The amniote primitive streak is defined by epithelial cell intercalation before gastrulation. Nature 449:1049–1052

    Article  CAS  PubMed  Google Scholar 

  • von Knebel-Doeberitz C, Sievers J, Sadler M, Pehlemann FW, Berry M, Halliwell P (1986) Destruction of meningeal cells over the newborn hamster cerebellum with 6-hydroxydopamine prevents foliation and lamination in the rostral cerebellum. Neuroscience 17:409–426

    Article  Google Scholar 

  • Waddington CH (1932) Experiments on the development of the chick and the duck embryo cultivated in vitro. Proc Trans R Soc Lond (B) 211:179–230

    Article  Google Scholar 

  • Walsh C, Cepko CL (1988) Clonally related cortical cells show several migration patterns. Science 241:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Walsh C, Cepko CL (1993) Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362:632–635

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Ward L, Evans SE, Stern CD (2017) A resegmentation-shift model for vertebral patterning. J Anat 230:290–296

    Article  PubMed  Google Scholar 

  • Waterman RE (1976) Topographical changes along the neural fold associated with neurulation in the hamster and mouse. Am J Anat 146:151–171

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Shimogori T, Puelles L (2017) Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 525:2782–2799

    Article  CAS  PubMed  Google Scholar 

  • Webb BD, Shaaban S, Gaspar H, Cunha LF, Schubert CR, Hao K, Robson CD, Chan W-M, Andrews C, MacKinnon S, Oystreck DT, Hunter DG, Iacovelli AJ, Ye X, Camminady A, Engle EC, Jabs EW (2012) HOXB1 founder mutation in humans recapitulates the phenotype of Hoxb1 −/− mice. Am J Hum Genet 91:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weed LH (1917) The development of the cerebro-spinal spaces in pig and in man. Contr Embryol Carnegie Inst 5:5–116

    Google Scholar 

  • Wei J, Shimazu J, Makinistoglu MP, Maurizi A, Kajimura D, Zong H, Takarada T, Lezaki T, Pessin JE, Hinoi E, Karsenty G (2015) Glucose uptake and Runx2 synergize to orchestrate osteoblast differentiation and bone formation. Cell 161:1576–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein M, Yang X, Li C, Xu X, Gotay J, Deng C-X (1998) Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc Natl Acad Sci U S A 95:9378–9383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wetzel R (1929) Untersuchungen am Hühnchen. Die Entwicklung des Keims während der ersten beiden Bruttage. Wilhelm Roux Arch Entwickl Mech Org 119:188–321

    Article  PubMed  Google Scholar 

  • White RJ, Schilling TF (2008) How degrading: Cysp26s in hindbrain development. Dev Dyn 237:2775–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkie AO, Tang Z, Elanko N, Walsh S, Twigg SR, Hurst JA, Wal SA, Chrzanowska KH, Maxson RE Jr (2000) Functional haploinsufficiency of the human homeobox gene MSX2 causes defects in skull ossification. Nat Genet 24:387–390

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson D, Bhatt S, Chavrier P, Bravo R, Charnay P (1989) Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337:461–464

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Burdsal C, Periasamy A, Lewandowski M, Sutherland A (2012) Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 16:2849–2864

    Google Scholar 

  • Wilson JT (1937) On the nature and mode of origin of the foramen of Magendie. J Anat 71:423–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2016

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Mellitzer G, Robinson V, Wilkinson DG (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399:267–271

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Placzek M, Tanaka H, Dodd J, Jessell TM (1991) Control of cell pattern in the developing nervous system: proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A Cell 64:635–647

    CAS  Google Scholar 

  • Yamada M, Seto Y, Taya S, Owa T, Inoue YU, Inoue T, Kawaguchi Y, Nabeshima Y, Hoshino M (2014) Specification of spatial identities of cerebellar neuron progenitors by Ptf1a and Atoh1 for proper production of GABAergic and glutamatergic neurons. J Neurosci 34:4786–4800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yamanaka Y, Tamplin OJ, Beckers A, Grossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13:884–896

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li C, Xu X, Deng C (1998) The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 95:3667–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ybot-Gonzales P, Cogram P, Gerrelli D, Copp AJ (2002) Sonic hedgehog and the molecular regulation of mouse neural tube closure. Development 129:2507–2517

    Google Scholar 

  • Yoshida T, Vivatbutsiri P, Morriss-Kay G, Saga Y, Iseki S (2008) Cell lineage in mammalian craniofacial mesenchyme. Mech Dev 125:797–808

    Article  CAS  PubMed  Google Scholar 

  • Yoshiki A, Kusakabe M (1998) Cerebellar histogenesis as seen in identified cells of nomal-reeler mouse chimeras. Int J Dev Biol 42:695–700

    CAS  PubMed  Google Scholar 

  • Yuasa S, Kitoh J, Oda S-I, Kawamura K (1993) Obstructed migration of Purkinje cells in the developing cerebellum of the reeler mutant mouse. Anat Embryol 188:317–329

    Article  CAS  Google Scholar 

  • Zhang F, Nagy Kovács E, Featherstone MS (2000) Murine Hoxd4 expression in the CNS requires multiple elements including a retinoic acid response element. Mech Dev 96:79–89

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li J, Tan Z, Wang C, Liu T, Chen L, Yong J, Jiang W, Sun X, Du L, Ding M, Deng H (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells. Blood 111:1933–1941

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Niu B, Yu D, Cheng X, Liu B, Deng J (2010) Radial glial cells and the lamination of the cerebellar cortex. Brain Struct Funct 215:115–122

    Article  PubMed  Google Scholar 

  • Zou YR, Kottman AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Catala .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Catala, M. (2019). Development of the Central Nervous System. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics