Skip to main content

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 152 Accesses

Abstract

Hydrocarbons are detected in species of all algal phyla, but their contents are generally below 2% of algal dry weight skewed toward odd-carbon number, typically at C15, C17, or C21. Botryococcus braunii, a green colonial species (300–500 μm), contains exceptionally high hydrocarbons. Among the three races of B. braunii, race A contains C25–C31 n-alkadienes/trienes up to 61% dry weight and race B contains C31–C37 botryococcenes (triterpenes) up to 86% of dry weight. Race L contains lycopadienes (tetraterpene) C40H78 up to 8% dry weight. Cultures with 0.3% CO2-enriched air could shorten mass doubling time by 3.6 times. Nitrogen deficiency favors lipid accumulation, but nitrogen required for growth should be above 0.2 mg L−1. The optimal temperature for B. braunii is 20–25 °C with a light intensity of 60–100 Wm−2. Slow growth is the major hurdle retarding the production of hydrocarbon at a large scale. The combined approach of molecular biology, genetic engineering and ecology is recommended to escalate the algal growth and hydrocarbon production to yield a commercially competitive alternative for renewable biofuels from algae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Antia NJ, Lee RF, Nevenzel JC, Cheng JY (1974) Wax ester production by the marine cryptomonad Chroomonas salina grown photoheterotrophically on glycerol. J Protozool 21:768–771

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee U (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Torbene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–78

    Article  CAS  Google Scholar 

  • Blumer M, Mullin MM, Guillard RRL (1970) A polyunsaturated hydrocarbon (3, 6, 9, 12, 15, 18-heneicosahexaene) in the marine food web. Mar Biol 6:226–235

    Article  CAS  Google Scholar 

  • Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol 8:183–189

    Article  CAS  Google Scholar 

  • Brown AC, Knights BA (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547

    Article  CAS  Google Scholar 

  • Cane RF (1969) Coorongite and the genesis of oil shale. Geochim Cosmochim Acta 33:569–577

    Article  Google Scholar 

  • Casadevall E, Largeau C, Metzger P, Chirac C, Berkaloff C, Coute A (1983) Hydrocarbon production by unicellular microalga Botryococcus braunii. Biosciences 2:129–138

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  PubMed  CAS  Google Scholar 

  • Cox RE, Burlingame AI, Wilson DM, Eglinton GJ (1973) Botryococcene- a tetramethylated acyclic triterpenoid of algal origin. Chem Commun

    Google Scholar 

  • Douglas AG, Eglinton G, Maxwell JR (1969) The hydrocarbons of coorongite. Geochim Cosmochim Acta 33:569–577

    Article  CAS  Google Scholar 

  • Drew KM, Ross R (1964) Some generic names in Bangiophycidae. Taxon 14:93–98

    Article  Google Scholar 

  • Fehler SWG, Light RJ (1970) Biosynthesis of hydrocarbons in Anabaena variabilis. Incorportion of [methyl- 14C]- and [methyl- 2H 3]-methionine. Biochemistry 9:418–428

    Article  PubMed  CAS  Google Scholar 

  • Gelpi E, Schneider H, Mann J, Oro J (1970) Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry 9:603–608

    Article  CAS  Google Scholar 

  • Gschwend PM, Macfarlane JK, Newman KA (1985) Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227:1033–1035

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:1467–1470

    Article  CAS  Google Scholar 

  • Komárek J, Marvan P (1992) Morphological differences in natural populations of the genus Botryococcus (Chlorophyceae). Arch Protistenkd 141:65–100

    Article  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamliencourt P (1980) Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1048

    Article  CAS  Google Scholar 

  • Lee RF, Loeblich AR (1971) Distribution of 21: 6 hydrocarbon and its relationship to 22: 6 fatty acid in algae. Phytochemistry 10:593–598

    Article  CAS  Google Scholar 

  • Li Y, Qin JG (2005) Comparison of growth and lipid content in three Botryococcus braunii strains. J Appl Physiol 17:551–556

    CAS  Google Scholar 

  • Lupi FM, Fernandes HML, Tomme MM, Sa Correia I, Novais JM (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii. Enzym Microb Technol 6:546–558

    Article  Google Scholar 

  • Maxwell JR, Douglas AG, Eglinton G, McCormick A (1968) The Botryococcenes-hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry 7:2157–2171

    Article  CAS  Google Scholar 

  • McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature 320:57–59

    Article  CAS  Google Scholar 

  • McMurry J (2000) Organic chemistry. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green-alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (1999) Chemicals of Botryococcus braunii. In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, London, pp 205–260

    Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  PubMed  CAS  Google Scholar 

  • Metzger P, Berkaloff C, Couté A, Casadevall E (1985) Alkadieneand botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E, Coute A (1988) Botryococcene distribution in strains of green alga Botryococcus braunii. Phytochemistry 27:1383–1988

    Article  CAS  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Villarrealrosales E, Casadevall E (1991) Methyl-branched fatty aldehydes and fatty-acids in Botryococcus braunii. Phytochemistry 30:185–191

    Article  CAS  Google Scholar 

  • Nevenzel JC (1989) Biogenic hydrocarbons of marine organisms. In: Ackman RG (ed) Marine biogenic lipids, fats, and oils. CRC Press, Boca Baton, pp 3–71

    Google Scholar 

  • Nishimoto S (1974) Chemotaxonomic study of n-alkanes in aquatic plants. J Sci Hiroshima Univ Ser A Phys Chem 38:159–168

    CAS  Google Scholar 

  • Okada S, Devarenne TP, Chappell J (2000) Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch Biochem Biophys 373:307–317

    Article  PubMed  CAS  Google Scholar 

  • Patterson GW (1967) The effect of culture conditions on the hydrocarbon content of Chlorella vulgaris. J Phycol 3:22–28

    Article  PubMed  CAS  Google Scholar 

  • Perry GJ, Gillan FT, Johns RB (1978) Lipid composition of a prochlorophyte. J Phycol 14:369–371

    Article  CAS  Google Scholar 

  • Qin JG (2005) Bio-hydrocarbons from algae: impacts of temperature, light and salinity on algae growth. Rural Industries Research and Development Corporation

    Google Scholar 

  • Qin JG, Li Y (2006) Optimization of the growth environment of Botryococcus braunii strain CHN 357. J Freshw Ecol 21:169–176

    Article  CAS  Google Scholar 

  • Rezanka T, Zahradnik J, Podojil M (1977) Hydrocarbons in green and blue-green algae. Folia Microbiol (Prague) 27:450–454

    Article  Google Scholar 

  • Senousy HH, Beakes GW, Hack E (2004) Phylogenetic placement of Botryococcus braunii (Trebouxiophyceae) and Botryococcus sudeticus isolate UTEX 2629 (Chlorophyceae). J Phycol 40:412–423

    Article  CAS  Google Scholar 

  • Smith GM (1950) The fresh-water algae of the United States. McGraw-Hill, New York

    Google Scholar 

  • Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwat Res 32:353–367

    Article  CAS  Google Scholar 

  • Wolf FR, Nanomura AM, Bassham JA (1985) Growth and branched hydrocarbon production in a strain of Botryococcus braunii. J Phycol 21:388–398

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian G. Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Qin, J.G. (2016). Hydrocarbons from Algae. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_209-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_209-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics