Skip to main content

Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Biotechnology has been successfully applied at the industrial level in the medical, fine chemical, agricultural, and food sectors. Several applications of biotechnology in the oil and energy industry in the future can also be foreseen. The production of biofuels in large volumes is now a reality, although there are some concerns about the use of land, water, and crops to produce fuels. In the oil industry, biotechnology has found its place in bioremediation and microbial enhanced oil recovery (MEOR). There are other opportunities in the processing (biorefining) and upgrading (bio-upgrading) of problematic oil fractions and heavy crude oils. In the context of increasing energy demand, conventional oil depletion, climate change, and increased environmental regulations on atmospheric emissions, biotechnologies such as biodesulfurization, biodenitrogenation, and aromatic ring opening (biodearomatization) and upgrading of heavy oils (degradation of asphaltenes and removal of metals) recover interest. In this chapter we revise the status of current regulations regarding fuel properties that have repercussions on its environmental impact, such as sulfur and nitrogen content, cetane number, and aromatic content, mainly in the EU and USA. We describe the cumulative and highlight the recent scientific and technological advances of these biotechnologies; their advantages and limitations are also discussed. On this basis, the possibility of integration in oil production plants and future oil refineries and biorefineries for the production of oil, fuels, and chemicals is analyzed.

This is a preview of subscription content, log in via an institution.

References

  • Ahlbrandt TS (2006) Global petroleum reserves, resources and forecasts. In: Mabro R (ed) Oil in the 21st century. Issues, challenges and opportunities. Oxford University Press, Oxford

    Google Scholar 

  • Akhtar N, Ghauri MA, Akhtar K (2016) Dibenzothiophene desulfurization capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol 198:509–519

    Article  CAS  PubMed  Google Scholar 

  • Alazard-Toux N (2011) Heavy crude oils in the perspective of world oil demand. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, Paris

    Google Scholar 

  • Ali HR, Ismail DA, El-Gendy NS (2014) The biotreatment of oil-polluted seawater by biosurfactant producer halotolerant Pseudomonas aeruginosa Asph2. Energy Sources A 36:1429–1436

    Article  CAS  Google Scholar 

  • Alves L, Paixão SM (2014) Enhancement of dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using sugar beet molasses as alternative carbon source. Appl Biochem Biotechnol 172:3297–3305

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Marques S, Matos J, Tenreiro R, Gírio FM (2008) Dibenzothiophene desulfurization by Gordonia alkanivorans strain 1B using recycled paper sludge hydrolyzate. Chemosphere 70:967–973

    Article  CAS  PubMed  Google Scholar 

  • Alves L, Paixão SM, Pacheco R, Ferreira AF, Silva CM (2015) Biodesulphurization of fossil fuels: energy, emissions and cost analysis. RSC Adv 5:34047–34057

    Article  CAS  Google Scholar 

  • Ancheyta J (2016) Deactivation of heavy oil hydroprocessing catalysts: fundamentals and modeling. Wiley, Hoboken

    Book  Google Scholar 

  • Arensdorf JJ, Loomis AK, DiGrazia PM, Monticello DJ, Pienkos PT (2002) Chemostat approach for the directed evolution of biodesulfurization gain-of-function mutants. Appl Environ Microbiol 68:691–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Aislabie J (1992) Process for biotechnological upgrading of shale oil. US Patent No. 5,143,827

    Google Scholar 

  • Ayala M, Le Borgne S (2010) Microorganisms utilizing sulfur-containing hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Ayala M, Tinoco R, Hernandez V, Bremauntz P, Vazquez-Duhalt R (1998) Biocatalytic oxidation of fuel as an alternative to biodesulfurization. Fuel Process Technol 57:101–111

    Article  CAS  Google Scholar 

  • Ayala M, Robledo NR, Lopez-Munguia A, Vazquez-Duhalt R (2000) Substrate specificity and ionization potential in chloroperoxidase-catalyzed oxidation of diesel fuel. Environ Sci Technol 34:2804–2809

    Article  CAS  Google Scholar 

  • Ayala M, Verdin J, Vazquez-Duhalt R (2007) The prospects for peroxidase-based biorefining of petroleum fuels. Biocatal Biotrans 25:114–129

    Article  CAS  Google Scholar 

  • Bachmann RT, Johnson AC, Edyvean RGJ (2014) Biotechnology in the petroleum industry: an overview. Int Biodeterior Biodegrad 86:225–237

    Article  CAS  Google Scholar 

  • Bej SK, Dalai AK, Adjaye J (2001) Comparison of hydrogenation of basic and nonbasic nitrogen compounds present in oil sands derived heavy gas oil. Energy Fuel 15:377–383

    Article  CAS  Google Scholar 

  • Bertrand JC, Rambeloarisoa E, Rontani JF, Giusti G, Mattei G (1983) Microbial degradation of crude oil in sea water in continuous culture. Biotechnol Lett 5:567–572

    Article  Google Scholar 

  • BGR (2015) Energy study 2015. Reserves, resources and availability of energy resources. Federal Institute of Geoscience and Natural Resources, Hannover

    Google Scholar 

  • Bhatia S, Sharma DK (2006) Emerging role of biorefining of heavier crude oils and integration of biorefining with petroleum refineries in the future. Petrol Sci Technol 24:1125–1159

    Article  CAS  Google Scholar 

  • Bhatia S, Sharma DK (2010) Mining of genomic databases to identify novel biodesulfurizing microorganisms. J Ind Microbiol Biotechnol 37:425–429

    Article  CAS  PubMed  Google Scholar 

  • Biernat K, Grzelak PL (2015) Biorefinery systems as an element of sustainable development. In: Biernat K (ed) Biofuels – status and perspective. Croatia, InTech

    Chapter  Google Scholar 

  • Boltes K, Alonso del Aguila R, García-Calvo E (2013) Effect of mass transfer on biodesulfurization kinetics of alkylated forms of dibenzothiophene by Pseudomonas putida CECT5279. J Chem Technol Biotechnol 88:422–431

    Article  CAS  Google Scholar 

  • Bonde SE, Nunn D (2003b) Technical progress report for the biocatalytic desulfurization project. DOE Award Number: DE-FC26-02NT15340 Report Start Date: 9/19/2002 – Report End Date: 12/19/2002

    Google Scholar 

  • Bonde SE, Nunn D (2003a) Technical progress report for the biocatalytic desulfurization project. DOE Award Number: DE-FC26-02NT15340. Report Start Date: 03/20/2003 – Report End Date: 06/19/2003

    Google Scholar 

  • Boniek D, Figueiredo D, dos AFB S, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17:29

    Article  Google Scholar 

  • Bordoloi NK, Rai SK, Chaudhuri MK, Mukherjee AK (2014) Deep-desulfurization of dibenzothiophene and its derivatives present in diesel oil by a newly isolated bacterium Achromobacter sp. to reduce the environmental pollution from fossil fuel combustion. Fuel Process Technol 119:236–244

    Article  CAS  Google Scholar 

  • Bublitz F, Guenther T, Fritsche W (1994) Screening of fungi for the biological modification of hard coal and coal derivatives. Fuel Process Technol 40:347–354

    Article  CAS  Google Scholar 

  • Castorena G, Suárez C, Valdez I, Amador G, Fernández L, Le Borgne S (2002) Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol Lett 215:157–161

    Article  CAS  PubMed  Google Scholar 

  • Castorena G, Mugica V, Le Borgne S, Acuña ME, Bustos-Jaimes I, Aburto J (2006) Carbazole biodegradation in gas oil/water biphasic media by a new isolated bacterium Burkholderia sp. Strain IMP5GC. J Appl Microbiol 100:739–745

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Chapter  Google Scholar 

  • Chen H, Zhang WJ, Chen JM, Cai YB, Li W (2008) Desulfurization of various organic sulfur compounds and the mixture of DBT+4,6-DMDBT by Mycobacterium sp. ZD-19. Bioresour Technol 99:3630–3634

    Article  CAS  PubMed  Google Scholar 

  • Choi KH, Korai Y, Mochida I, Ryub JW, Min W (2004) Impact of removal extent of nitrogen species in gas oil on its HDS performance: an efficient approach to its ultra deep desulfurization. Appl Catal B-Environ 50:9–16

    Article  CAS  Google Scholar 

  • Chong P, Xuejing Y, Xianchen F, Xinlu H, Zhenmin C, Ronghui Z, Rong G (2015) Development of light cycle oil (LCO) hydrocracking technology over a commercial W-Ni based catalyst. China Pet Process Technol 17(4):30–36

    Google Scholar 

  • Choudhary TV, Parrott S, Johnson B (2008) Unraveling heavy oil desulfurization chemistry: targeting clean fuels. Environ Sci Technol 42:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PK, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19:354–359

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–115

    Article  CAS  PubMed  Google Scholar 

  • da Silva M, Esposito E, Moody JD, Canhos VP, Cerniglia CE (2004) Metabolism of aromatic hydrocarbons by the filamentous fungus Cyclothyrium sp. Chemosphere 57:943–952

    Article  PubMed  CAS  Google Scholar 

  • Davies JJ, Evans WC (1964) Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism. Biochem J 9:251–261

    Article  Google Scholar 

  • de Weert S, Lokman BC (2010) Heterologous expression of peroxidases. In: Torres E, Ayala M (eds) Biocatalysis based on Heme peroxidases. Springer, Berlin

    Google Scholar 

  • Demirbas A, Bafail A, Nizami A-S (2016) Heavy oil upgrading: unlocking the future fuel supply. Pet Sci Technol 34:303–308

    Article  CAS  Google Scholar 

  • Dulac J (2012) Global transport outlook to 2050. Targets and scenarios for a low-carbon transport sector. OECD/IEA, Paris

    Google Scholar 

  • Éigenson AS, Ivchenko EG (1977) Distribution of sulfur and nitrogen in fractions from crude oil and residues. Chem Technol Fuels Oils 13:542–544

    Article  Google Scholar 

  • El-Gendy NS, Speight JG (2016) Handbook of refinery desulfurization. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Ellis LBM, Roe D, Wackett LP (2006) The University of Minnesota biocatalysis biodegradation database: the first decade. Nucl Acids Res 34:D517–D521

    Article  CAS  PubMed  Google Scholar 

  • EPA (2003) The effect of cetane number increase due to additives on NOx emissions from heavy-duty highway engines. Final technical report.https://www3.epa.gov/otaq/models/analysis/r03002.pdf. Last accessed: 1 Oct 2016

  • EPA (2007) Control of hazardous air pollutants from mobile sources, final rule. Fed Regist 72:8428–8570

    Google Scholar 

  • EPA (2008) Control of hazardous air pollutants from mobile sources: early credit technology requirement revision. Fed Regist 73:61358–61363

    Google Scholar 

  • EPA (2014) Control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards; final rule. Fed Regist 79:23413–23886 www.gpo.gov/fdsys/pkg/FR-2014-04-28/pdf/2014-06954.pdf

    Google Scholar 

  • ExxonMobil (2016) Global transportation demand by fuel. In The outlook for energy, a view to 2040, outlook for energy charts. http://corporate.exxonmobil.com/en/energy/energy-outlook/charts-2016/global-transportation-demand-by-fuel?parentId=d7323290-c766-440a-8e68-094d67a30841

  • Fadhil AMA, Al-Jailawi MH, Mahdi MS (2014) Isolation and characterization of a new thermophilic, carbazole degrading bacterium (Anoxybacillus rupiensis) Strain Ir3 (JQ912241). Int J Adv Res 2:795–805

    Google Scholar 

  • Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzym Microb Technol 15:429–437

    Article  CAS  Google Scholar 

  • Foght JM (2004) Whole-cell bioprocessing of aromatic compounds in crude oil and fuels. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis: petroleum biotechnology: developments and perspectives, vol 151. Elsevier, Amsterdam, pp 145–175

    Chapter  Google Scholar 

  • Folsom BR, Schieche DR, DiGrazia PM, Werner J, Palmer S (1999) Microbial desulfurization of alkylated dibenzothiophenes from a hydrodesulfurized middle distillate by Rhodococcus erythropolis I-19. Appl Environ Microbiol 65:4967–4972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gai Z, Yu B, Li L, Wang Y, Ma C, Feng J, Deng Z, Xu P (2007) Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl Environ Microbiol 73:2832–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol Bioeng 85:790–798

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH (1996) Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat Biotechnol 14:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Groenzin H, Mullins OC (2000) Molecular size and structures of asphaltenes from various sources. Energy Fuel 14:677–684

    Article  CAS  Google Scholar 

  • Grossman MJ, Lee MK, Prince RC, Garrett KK, George GN, Pickering IJ (1999) Microbial desulfurization of a crude oil middle-distillate fraction: analysis of the extent of sulfur removal and the effect of removal on remaining sulfur. Appl Environ Microbiol 65:181–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman MJ, Lee MK, Prince RC, Minak-Bernero V, George GN, Pickering IJ (2001) Deep desulfurization of extensively hydrodesulfurized middle distillate oil by Rhodococcus sp. strain ECRD-1. Appl Environ Microbiol 67:1949–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guobin S, Huaiying Z, Weiquan C, Jianmin X, Huizhou L (2005) Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys J 89:L58–L60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-López EL, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1019–1027

    Article  CAS  Google Scholar 

  • Hernandez-Lopez EL, Ayala M, Vazquez-Duhalt R (2015) Microbial and enzymatic biotransformations of asphaltenes. Pet Sci Technol 33:1017–1029

    Article  CAS  Google Scholar 

  • Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genomic Data 5:235–237

    Article  Google Scholar 

  • Hernández-López EL, Perezgasga L, Huerta-Saquero A, Mouriño-Pérez R, Vazquez-Duhalt R (2016) Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fisheri. Environ Sci Pollut Res 23:10773–10784

    Article  CAS  Google Scholar 

  • Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K (2001) Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci Biotechnol Biochem 65:239–246

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1997) Fungal attack on coal: I. Modification of hard coal by fungi. Fuel Proc Technol 52:43–53

    Article  CAS  Google Scholar 

  • International Energy Agency (2015) Key world energy statistics. OECD/IEA, Paris

    Google Scholar 

  • International Energy Agency (2016) Energy and air pollution. World Energy Outlook Special Report. OECD/IEA

    Google Scholar 

  • Ismail W, El-Sayed WS, Abdul Raheem AS, Mohamed ME, El Nayal AM (2016) Biocatalytic desulfurization capabilities of a mixed culture during non-destructive utilization of recalcitrant organosulfur compounds. Front Microbiol 7:266

    PubMed  PubMed Central  Google Scholar 

  • Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Biores Technol 165:250–256

    Article  CAS  Google Scholar 

  • Jahromi H, Fazaelipoor MH, Ayatollahi S, Niazi A (2014) Asphaltenes biodegradation under shaking and static conditions. Fuel 117:230–225

    Article  CAS  Google Scholar 

  • Kabe T, Akamatsu K, Ishihara A, Otsuki S, Godo M, Zhang Q, Qian W (1997) Deep hydrodesulfurization of light gas oil. 1. Kinetics and mechanisms of dibenzothiophene hydrodesulfurization. Ind Eng Chem Res 36:5146–5152

    Article  CAS  Google Scholar 

  • Kayser KJ, Kilbane JJ II (2004) Method for metabolizing carbazole in petroleum US Patent No. 6,943,006

    Google Scholar 

  • Kilbane JJ (1992) Mutant microorganisms useful for cleavage of organic C-S bonds.US Patent No. 5,104,801

    Google Scholar 

  • Kilbane JJ (2006) Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 17:305–314

    Article  CAS  PubMed  Google Scholar 

  • Kilbane JJ II (2016) Future applications of biotechnology to the energy industry. Front Microbiol 7:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilbane JJ II, Stark B (2016) Biodesulfurization: a model system for microbial physiology research. World J Microbiol Biotechnol 32:137

    Article  PubMed  CAS  Google Scholar 

  • Kilbane JJ II, Ranganathan R, Cleveland L (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9M. Appl Environ Microbiol 66:688–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilbane JJ II, Ribeiro, CMS, Linhares MONM (2001) Pseudomonas ayucida useful for cleavage of organic C-N bonds. US Patent No. 6,221,651

    Google Scholar 

  • Kilbane JJ II, Ribeiro, CMS, Linhares MONM (2003) Bacterial cleavage of only organic C-N bonds of carbonaceous materials to reduce nitrogen content. US Patent No. 6,541,240

    Google Scholar 

  • Kim JS, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho La Brea tar pits. Appl Environ Microbiol 73:4579–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M (1997) Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl Environ Microbiol 63:3164–3169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotlar HK, Brakstad OG, Markussen S, Winnberg A (2004) Use of petroleum biotechnology throughout the value chain of an oil company: an integrated approach. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in surface science and catalysis: petroleum biotechnology: developments and perspectives, vol 151. Elsevier, Amsterdam, pp 1–27

    Chapter  Google Scholar 

  • Lacotte DJ, Mille G, Acquaviva M, Bertrand JC (1996) Arabian light 150 asphaltene biotransformation with n-alkanes as co-substrate. Chemosphere 32:1755–1761

    Article  CAS  Google Scholar 

  • Laredo GC, Leyva S, Alvarez R, Mares MT, Castillo JJ, Cano JL (2002) Nitrogen compounds characterization in atmospheric gasoil and light cycle oil from a blend of Mexican crudes. Fuel 81:1341–1350

    Article  CAS  Google Scholar 

  • Laredo GC, Altamirano E, De los Reyes JA (2003) Inhibitions effects of nitrogen compounds on the hydrodesulfurization of dibenzothiophene: part 2. Appl Catal A-Gen 243:207–214

    Article  CAS  Google Scholar 

  • Laredo G, Montesinos A, De los Reyes JA (2004) Inhibition effects observed between dibenzothiophene and carbazole during the hydrotreating process. Appl Catal A-Gen 265:171–183

    Article  CAS  Google Scholar 

  • Larentis AL, Sampaio HCC, Carneiro CC, Martins OB, Alves TML (2011) Evaluation of growth, carbazole biodegradation and anthranilic acid production by Pseudomonas stutzeri. Braz J Chem Eng 28:37–44

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus – masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  PubMed  Google Scholar 

  • Lavania M, Cheema S, Sarma PM, Mandal AK, Lal B (2012) Biodegradation of asphalt by Garciaella petrolearia TERIG02 for viscosity reduction of heavy oil. Biodegradation 23:15–24

    Article  CAS  PubMed  Google Scholar 

  • Leliveld RG, Eijsbouts SE (2008) How a 70-year-old catalytic refinery process is still ever dependent on innovation. Catal Today 130:183–190.

    Google Scholar 

  • Le Borgne S, Quintero R (2003) Biotechnological processes for the refining of petroleum. Fuel Process Technol 81:155–169

    Article  CAS  Google Scholar 

  • Li L, Xu P, Blankerspoor HD (2004) Degradation of carbazole in the presence of non-aqueous phase liquids by Pseudomonas sp. Biotechnol Lett 26:581–584

    Article  CAS  PubMed  Google Scholar 

  • Li W, Xing J, Xiong X, Huang J, Liu H (2006) Feasibility study on the integration of adsorption/bioregeneration of π-complexation adsorbent for desulfurization. Ind Eng Chem Res 45:2845–2849

    Article  CAS  Google Scholar 

  • Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL (2007) Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon. Biosci Biotechnol Biochem 71:849–854

    Article  CAS  PubMed  Google Scholar 

  • Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, Liu RL, Ma T (2008a) Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis. Appl Environ Microbiol 74:971–976

    Article  CAS  PubMed  Google Scholar 

  • Li W, Xing J, Li Y, Xiong X, Li X, Liu H (2008b) Desulfurization and bio-regeneration of adsorbents with magnetic P. delafieldii R-8 cells. Catal Commun 9:376–380

    Article  CAS  Google Scholar 

  • Li YG, Xing JM, Xiong XC, Li WL, Gao HS, Liu HZ (2008c) Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J Ind Microbiol Biotechnol 35:145–150

    Article  PubMed  CAS  Google Scholar 

  • Li W, Tang H, Liu Q, Xing J, Li Q, Wang D, Yang M, Li X, Liu H (2009) Deep desulfurization of diesel by integrating adsorption and microbial method. Biochem Eng J 44:297–301

    Article  CAS  Google Scholar 

  • Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8:522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maass D, Todescato D, Moritz DE, Oliveira D, de Souza AAU, Souza SMAG (2015) Desulfurization and denitrogenation of heavy gas oil by Rhodococcus erythropolis ATCC 4277. Bioprocess Biosyst Eng 38:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Ohshiro T, Nishina Y, Izumi Y (2001) Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl Environ Microbiol 67:1179–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogollon L, Rodriguez R, Larrota W, Ortiz C, Torres R (1998) Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl Biochem Biotechnol 70–72:765–777

    Article  PubMed  Google Scholar 

  • Mohebali G, Ball AS (2016) Biodesulfurization of diesel fuels – past, present and future perspectives. Int Biodeterior Biodegrad 110:163–180

    Article  CAS  Google Scholar 

  • Monot F, Abbad-Andaloussi S, Warzywoda M (2002) Biological culture containing Rhodococcus erythropolis and/or Rhodococcus rhodnii and process for desulfurization of petroleum fraction. U.S. Patent No. 6,337,204

    Google Scholar 

  • Monticello DJ (2000) Biodesulfurization and the upgrading of petroleum distillates. Curr Opin Biotechnol 11:540–546

    Article  CAS  PubMed  Google Scholar 

  • Monticello DJ, Finnerty WR (1985) Microbial desulfurization of fossil fuels. Annu Rev Microbiol 39:371–389

    Article  CAS  PubMed  Google Scholar 

  • Morales M, Le Borgne S (2010) Microorganisms utilizing nitrogen-containing hydrocarbons. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Morales M, Le Borgne S (2014) Protocols for the isolation and preliminary characterization of bacteria for biodesulfurization and biodenitrogenation of petroleum-derived fuels. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer, Berlin

    Google Scholar 

  • Mushrush GW, Beal EJ, Hardy DR, Hughes JM (1999) Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources. Fuel Process Technol 61:197–210

    Article  CAS  Google Scholar 

  • Ning D, Wang H, Ding C, Lu H (2010) Novel evidence of cytochrome P450-catalyzed oxidation of phenanthrene in Phanerochaete chrysosporium under ligninolytic conditions. Biodegradation 21:889–901

    Article  CAS  PubMed  Google Scholar 

  • Ohshiro T, Ohkita R, Takikawa T, Manabe M, Lee WC, Tanokura M, Izumi Y (2007) Improvement of 2′-hydroxybiphenyl-2-sulfinate desulfinase, an enzyme involved in the dibenzothiophene desulfurization pathway, from Rhodococcus erythropolis KA2-5-1 by site-directed mutagenesis. Biosci Biotechnol Biochem 71:2815–2821

    Article  CAS  PubMed  Google Scholar 

  • Organization of the Petroleum Exporting Countries (2015) 2015 World Oil Outlook. OPEC

    Google Scholar 

  • ORNL (2000) An emissions mission: solving the sulfur problem. Oak Ridge Natl Lab Rev 33:6–8

    Google Scholar 

  • Pan J, Wu F, Wang J, Xu L, Khayyat NH, Stark BC, Kilbane JJ II (2013) Enhancement of desulfurization activity by enzymes of the Rhodococcus dsz operon through coexpression of a high sulfur peptide and directed evolution. Fuel 112:385–390

    Article  CAS  Google Scholar 

  • Pendrys JP (1989) Biodegradation of asphalt cement-20 by aerobic bacteria. Appl Environ Microbiol 55:1357–1362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phale PS, Basu A, Majhi PD, Deversyshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11:252–279

    Article  CAS  PubMed  Google Scholar 

  • Pineda-Flores G, Boll-Argüello G, Lira-Galeana C, Mesta-Howard AM (2004) A microbial consortium isolated from a crude oil sample that uses asphaltenes as a carbon and energy source. Biodegradation 15:145–151

    Article  CAS  PubMed  Google Scholar 

  • Quignard A (2011) Upgrading. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, Paris

    Google Scholar 

  • Reichmuth DS, Hittle JL, Blanch HW, Keasling JD (2000) Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol Bioeng 67:72–79

    Article  CAS  PubMed  Google Scholar 

  • Reichmuth DS, Blanch HW, Keasling JD (2004) Dibenzothiophene biodesulfurization pathway improvement using diagnostic GFP fusions. Biotechnol Bioeng 88:94–99

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JG (1998) Metals and heteroatoms in heavy crude oils. In: Speight JG (ed) Petroleum chemistry and refining. Taylor & Francis, London

    Google Scholar 

  • Rhee SK, Chang JH, Chang YK, Chang HN (1998) Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl Environ Microbiol 64:2327–2331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rontani JF, Bosser-Joulak F, Rambeloarisoa E, Bertrand JC, Giusti G, Faure R (1985) Analytical study of Asyhart crude oil biodegradation. Chemosphere 14:1413–1422

    Article  CAS  Google Scholar 

  • Rossini S (2003) The impact of catalytic materials on fuel reformulation. Catal Today 77:467–484

    Article  CAS  Google Scholar 

  • Saniere A (2011) Definitions and specificities. In: Huc A-Y (ed) Heavy crude oils: from geology to upgrading. IFP Energies nouvelles, Paris

    Google Scholar 

  • Santos SCC, Alviano DS, Alviano CS, Pádula M, Leitao AC, Martins OB, Ribeiro CMS, Sassaki MYM, Matta CPS, Bevilaqua J, Sebastian GV, Seldin L (2006) Characterization of Gordonia sp strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362

    Article  CAS  PubMed  Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Sakanishi K, Mochida I (2000) Identification and reactivity of nitrogen molecular species in gas oils. Energy Fuel 14:539–544

    Article  CAS  Google Scholar 

  • Singh A, Singh B, Ward O (2012) Potential applications of bioprocess technology in petroleum industry. Biodegradation 23:865–880

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  PubMed  Google Scholar 

  • Sood N, Lal B (2008) Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70:1445–1451

    Article  CAS  PubMed  Google Scholar 

  • Sousa SF, Sousa JF, Barbosa AC, Ferreira CE, Neves RP, Ribeiro AJ, Fernandes PA, Ramos MJ (2016) Improving the biodesulfurization of crude oil and derivatives: a QM/MM investigation of the catalytic mechanism of NADH-FMN oxidoreductase (DszD). J Phys Chem A 120:5300–5306

    Article  CAS  PubMed  Google Scholar 

  • Speight JG (2011) The refinery of the future. Elsevier, Oxford

    Book  Google Scholar 

  • Speight JG (2014) The chemistry and technology of petroleum. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68

    Article  CAS  Google Scholar 

  • Sugaya K, Nakayama O, Hinata N, Kamekura K, Ito A, Yamagiwa K, Ohkawa A (2001) Biodegradation of quinoline in crude oil. J Chem Technol Biotechnol 76:603–611

    Article  CAS  Google Scholar 

  • Swaty TE (2005) Global refining industry trends: the present and future. Hydrocarb Process 84:35–46

    Google Scholar 

  • Syed K, Doddapaneni H, Subramanian V, Lam YW, Yadav JS (2010) Genome-to-function characterization of novel fungal P450 monooxygenases oxidizing polycyclic aromatic hydrocarbons (PAHs). Biochem Biophys Res Commun 399:492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed K, Porollo A, Lam YW, Grimmett PE, Yadava JS (2013) CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes. Appl Environ Microbiol 79:2692–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymanska A, Lewandowski M, Sayag C, Djéga-Mariadassou G (2003) Kinetic study of the hydrodenitrogenation of carbazole over bulk molybdenum carbide. J Catal 218:24–31

    Article  CAS  Google Scholar 

  • Tanaka Y, Yoshikawa O, Maruhashi K, Kurane R (2002) The cbs mutant strain of Rhodococcus erythropolis KA2-5-1 expresses high levels of Dsz enzymes in the presence of sulfate. Arch Microbiol 178:351–357

    Article  CAS  PubMed  Google Scholar 

  • Tang K, Hong X (2014) Application of bacterium HY9 strain for diesel oil denitrogenation. Petrol. Sci Technol 32:2466–2472

    CAS  Google Scholar 

  • Tao F, Yu B, Xu P, Ma CQ (2006) Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol 72:4604–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193:6422–6423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavassoli T, Mousavi SM, Shojaosadati SA, Salehizadeh H (2012) Asphaltene biodegradation using microorganisms isolated from oil samples. Fuel 93:142–148

    Article  CAS  Google Scholar 

  • The International Council on Clean Transportation (2016) A technical summary of Euro 6/VI vehicle emission standards. http://www.theicct.org/sites/default/files/publications/ICCT_Euro6-VI_briefing_jun2016.pdf

  • Thouand G, Bauda P, Oudot J, Kirsh G, Sutton C, Vidalie JF (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106–115

    Article  CAS  PubMed  Google Scholar 

  • Ufarté L, Laville E, Duquesne S, Potocki-Veronese G (2015) Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol Adv 33:1845–1854

    Article  PubMed  CAS  Google Scholar 

  • Uribe-Alvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. Microb Biotechnol 4:663–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • US Department of Transportation, Federal Highway Administration (2009) Web site: http://www.fhwa.dot.gov/environment/freightaq/appendixa.htm

  • Wammer KH, Peters CA (2005) Polycyclic aromatic hydrocarbon biodegradation rates: a structure-based study. Environ Sci Technol 39:2571–2578

    Article  CAS  PubMed  Google Scholar 

  • Wammer KH, Peters CA (2006) A molecular modeling analysis of polyaromatic hydrocarbon biodegradation by naphthalene dioxygenase. Environ Toxicol Chem 25:912–920

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen Y, Zhou Q, Huang S, Ning K, Xu J, Kalin RM, Rolfe S, Huang WE (2012) A culture-independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. PloS One 7:e47530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler JD, Kao KC (2014) Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–411

    Article  CAS  PubMed  Google Scholar 

  • Wyndham RC, Costerton JW (1981) In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the Athabasca oil sands deposit. Appl Environ Microbiol 41:791–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong X, Xing J, Li X, Bai X, Li W, Li Y, Liu H (2007) Enhancement of biodesulfurization in two-liquid systems by heterogeneous expression of Vitreoscilla hemoglobin. Appl Environ Microbiol 73:2394–2397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanto DHY, Tachibana S (2013) Biodegradation of petroleum hydrocarbons by a newly isolated Pestalotiopsis sp NG007. Int Biodet Biodegrad 85:438–450

    Google Scholar 

  • Yanto DHY, Tachibana S (2014) Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil. J Hazard Mater 278:454–463

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Meyer T, Folsom B (1998) Oil/water/biocatalyst three-phase separation process. US Patent No 5,772,901

    Google Scholar 

  • Yu B, Ma C, Zhou W, Zhu S, Wang Y, Qu J, Li F, Xu P (2006a) Simultaneous biodetoxification of S, N, and O pollutants by engineering of a carbazole-degrading gene cassette in a recombinant biocatalyst. Appl Environ Microbiol 72:7373–7376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Xu P, Shi Q, Ma C (2006b) Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain. Appl Environ Microbiol 72:54–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Tao F, Li F, Hou J, Tang H, Ma C, Xu P (2015) Complete genome sequence of Mycobacterium goodii X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. J Biotechnol 212:56–57

    Article  CAS  PubMed  Google Scholar 

  • Zakaria BS, Nassar HN, NSh EL-G, El-Temtamy SA, Sherif SM (2016) Denitrogenation of carbazole by a novel strain Bacillus clausii BS1 isolated from Egyptian Coke. Energy Sources A Recover Util Environ Eff 38:1840–1851

    Article  CAS  Google Scholar 

  • Zakaria BS, Nassar HS, Saed D, EL-Gendy NS (2015) Enhancement of carbazole denitrogenation rate using magnetically decorated Bacillus clausii BS1. Petrol Sci Technol 33:802–811

    Article  CAS  Google Scholar 

  • Zeuthen P, Knudsen KG, Whitehurst DD (2001) Organic nitrogen compounds in gasoil blends, their hydrotreated products and the importance to hydrotreatment. Catal Today 65:307–314

    Article  CAS  Google Scholar 

  • Zhang SH, Chen H, Li W (2013) Kinetic analysis of biodesulfurization of model oil containing multiple alkyl dibenzothiophenes. Appl Microbiol Biotechnol 97:2193–2200

    Article  CAS  PubMed  Google Scholar 

  • ZoBell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Le Borgne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Ayala, M., Vazquez-Duhalt, R., Morales, M., Le Borgne, S. (2016). Application of Microorganisms to the Processing and Upgrading of Crude Oil and Fractions. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_205-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_205-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics