Skip to main content

Hypertensive Models and Their Relevance to Pediatric Hypertension

  • 101 Accesses

Abstract

Much of what we know about the physiology of blood pressure (BP) regulation and the pathogenesis and treatment of human hypertension has been derived from studies in other animal species. This chapter presents a variety of models of experimental hypertension with the intent of providing a background for the interested reader. Many models explore normal and abnormal physiology without genetic manipulation but rather with the use of surgery, infusion of medications, alterations in diet, and application of stressful conditions. In other models, inbreeding or genetic manipulation are used to produce increased (or decreased) BP. The many models available should be considered both for carrying out research and for evaluating published studies.

This is a preview of subscription content, log in via an institution.

References

  • Abassi ZA, Ellahham S, Winaver J, Hofman A (2001) The intrarenal endothelin system and hypertension. News Physiol Sci 16:52–56

    Google Scholar 

  • Barnes KL, Brosnihan KB, Gerrario CM (1977) Animal models, hypertension, and central nervous system mechanisms. Mayo Clin Proc 52(6):387–390

    CAS  PubMed  Google Scholar 

  • Baylis C, Mitruka B, Deng A (1992) Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90:278–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bechtold AG, Patel G, Hochhaus G, Scheuer DA (2009) Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress. Am J Physiol Regulatory 296(5):R1445–R1454

    Article  CAS  Google Scholar 

  • Bianchi G, Fox U, Imbasciati E (1974) The development of a new strain of spontaneously hypertensive rats. Life Sci 14:339–347

    Article  CAS  PubMed  Google Scholar 

  • Billet S, Bardin S, Verp S, Baudrie V, Michaud A, Conchon S, Muffat-Joly M, Escoubet B, Souil E, Hamard G, Bernstein KE, Gasc JM, Elghozi JL, Corvol P, Clauser E (2007) Gain-of-function mutant of angiotensin II receptor, type 1A, causes hypertension and cardiovascular fi brosis in mice. Clin Invest 117(7):1914–25

    Google Scholar 

  • Blantz RC, Gabbai FB (1989) Glomerular haemodynamics in pathophysiologic conditions. Am J Hypertens 2(11 Pt 2):208S–2012

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Sodhi K, Inoue K, Quilley J, Rezzani R, Rodella L, Vanella L, Germinario L, Stec DE, Abraham NG, Kappas A (2011) Lentiviral-human heme oxygenase targeting endothelium improved vascular function in angiotensin II animal model of hypertension. Hum Gene Ther 22(3):271–282

    Article  CAS  PubMed  Google Scholar 

  • Carroll RG, Lohmeier TE, Brown AJ (1987) Chronic angiotensin II infusion decreases renal norepinephrine overflow in the conscious dog. Hypertension 6:675–681

    Article  Google Scholar 

  • Chapman CB, Gibbons TB (1950) The diet and hypertension: a review. Medicine (Baltimore) 29:29–60

    Article  CAS  Google Scholar 

  • Chen D, Coffman TM (2012) The kidney and hypertension: lessons from mouse models. Can J Cardiol 28:305–310

    Article  CAS  PubMed  Google Scholar 

  • Cook JL, Re RN (2012) Lessons from in vitro studies and a related intracellular angiotensin II transgenic mouse model. Am J Physiol Regul Integr Comp Physiol 302(5):R482–R493

    Article  CAS  PubMed  Google Scholar 

  • Cowley Jr AW, Liang M, Roman RJ, Greene AS, Jacob HJ (2004) Consomic rat model systems for physiological genomics. Acta Physiol Scand 181(4):585–92

    Google Scholar 

  • Cvetkovic B, Sigmund CD (2000) Understanding hypertension through genetic manipulation in mice. Kidney Int 57:863–874

    Article  CAS  PubMed  Google Scholar 

  • Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–482

    Article  CAS  PubMed  Google Scholar 

  • Dahl LK, Knudsen KD, Heine MA, Leitl GJ (1968) Effects of chronic excess salt ingestion. Modification of experimental hypertension in the rat by variations in the diet. Circ Res 22:11–18

    Article  CAS  PubMed  Google Scholar 

  • Dornas WC, Silva ME (2011) Animal models for the study of arterial hypertension. J Biosci 36:731–737

    Article  PubMed  Google Scholar 

  • Ehrlich Y, Rosenthal T (1995) Effect of angiotensin-converting enzyme inhibitors on fructose induce hypertension and hyperinsulinaemia in rats. Clin Exp Pharmacol Physiol Suppl 22(1):S347–S349

    Article  Google Scholar 

  • Ellison KE, Ingelfinger JR, Pivor M, Dzau VJ (1989) Androgen regulation of rat renal angiotensinogen messenger RNA expression. J Clin Invest 83:1941–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felts JH (1977) Stephen Hales and the measurement of blood pressure. N C Med J 38(10):602–603

    CAS  PubMed  Google Scholar 

  • Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley Connell A, Sowers JR (2009) Differential regulation of angiotensin-(1–12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am J Physiol Heart Circ 296:H1184–H1192

    Article  CAS  Google Scholar 

  • Flister MJ, Prisco SZ, Sarkis AB, O’Meara CC, Hoffman M, Wendt-Andrae J, Moreno C, Lazar J, Jacob HJ (2012) Identifi cation of hypertension susceptibility loci on rat chromosome 12. Hypertension 60:942–948

    Article  CAS  PubMed  Google Scholar 

  • Fortepiani LA, Yanes L, Zhang H, Racusen LC, Reckelhoff JF (2003a) Role of androgens in mediating renal injury in aging SHR. Hypertension 42:952–955

    Article  CAS  PubMed  Google Scholar 

  • Fortepiani LA, Zhang H, Racusen L, Roberts LJ 2nd, Reckelhoff JF (2003b) Characterization of an animal model of postmenopausal hypertension in spontaneously hypertensive rats. Hypertension 41:640–645

    Article  CAS  PubMed  Google Scholar 

  • Fuji J, Kurihara H, Yamaguchi H, Terasawa F, Murata K, Matsushita S et al (1967) A persistent hypertension due to unilateral renal artery constriction in the rabbit. Jpn Circ J 31:1197–1200

    Article  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59:347–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene RW, Sapirstein LA (1952) Total body sodium, potassium and nitrogen in rats made hypertensive by subtotal nephrectomy. Am J Phys 169:343–349

    CAS  Google Scholar 

  • Guild S-J, McBryde FD, Malpas SC, Barrett CJ (2012) High dietary salt and angiotensin II chronically increase renal sympathetic nerve activity: a direct telemetric study. Hypertension 59:614–620

    Article  CAS  PubMed  Google Scholar 

  • Haddy FJ (2006) Role of dietary salt in hypertension. Life Sci 79:1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Hales S (1733) Statical essays: containing haemastatics or, an account of some hydraulic and hydrostatical experiments made in the blood and blood-vessels of animals. Expts VII and XXII. W J Innys and T Woodward, London, p 33, 161–163

    Google Scholar 

  • Hayslett JP (1979) Functional adaptation to reduction in renal mass. Physiol Rev 59:137–164

    CAS  PubMed  Google Scholar 

  • Heller J, Hellerova S, Dobesova Z, Kunês J, Zicha J (1993) The Prague hypertensive rat: a new model of genetic hypertension. Clin Exp Hypertens 15:807–818

    Article  CAS  PubMed  Google Scholar 

  • Henry JP, Liu Y-Y, Nadra WE, Qian CG, Mormede P, Lemaire V, Ely D, Hendley ED (1993) Psychosocial stress can induce chronic hypertension in normotensive strains of rats. Hypertension 21(5):714–723

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg NK (2006) The influence of dietary sodium on blood pressure. J Am Coll Nutr 25(Suppl 3):240S–246S

    Article  CAS  PubMed  Google Scholar 

  • Hwang IS, Ho H, Hoffman BB, Reaven GM (1987) Fructose-induced insulin resistance and hypertension in rats. Hypertension 10(5):512–516

    Article  CAS  PubMed  Google Scholar 

  • Inscho WE, Imig JD, Cook AK, Pollock DM (2005) ET (A) and ET (B) receptors differentially modulate afferent and efferent arteriolar responses to endothelin. Br J Pharmacol 146:1019–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DE, Kang DH, Gersch MS, Benner S, Sanchez-Lozada LG (2007) Potential role sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 85:899–906

    Google Scholar 

  • Katholi RE, Naftolin AJ, Oparil S (1980) Importance of renal sympathetic tone in the development of DOCA-salt hypertension in the rat. Hypertension 2:266–273

    Article  CAS  PubMed  Google Scholar 

  • Kessler SP, Hashimoto S, Senanayake PS, Gaughan C, Sen GC, Schnermann J (2005) Nephron function in transgenic mice with selective vascular or tubular expression of Angiotensin-converting enzyme. J Am Soc Nephrol 16(12):3535–3542

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Mullins JJ, Bunnemann B, Metzger R, Hilgenfeldt U, Zimmermann F, Jacob H, Fuxe K, Ganten D, Kaling M (1992) High blood pressure in transgenic mice carrying the rat angiotensinogen gene. EMBO J 11:821–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger EM (1967) Effect of sinoaortic denervation on cardiac output. Am J Phys 213:139–142

    CAS  Google Scholar 

  • Kuijpers MHM, Gruys E (1984) Spontaneous hypertension and hypertensive renal disease in the fawn-hooded rat. Br J Exp Pathol 65:181–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leenen FHH, de Jong W (1971) A solid silver clip for induction of predictable levels of renal hypertension in the rat. J Appl Physiol 31:142–144

    CAS  PubMed  Google Scholar 

  • Lerman LO, Schwartz RS, Grande JP, Sheedy PF, Romero JC (1999) Noninvasive evaluation of a novel swine model of renal artery stenosis. J Am Soc Nephrol 10:1455–1465

    CAS  PubMed  Google Scholar 

  • Lerman LO, Chade AR, Sica V, Napoli C (2005) Animal models of hypertension: an overview. J Lab Clin Med 146:160–183

    Article  CAS  PubMed  Google Scholar 

  • Markel AL (1992) Development of a new strain of rats with inherited stress-induced arterial hypertension. In: Sassard J (ed) Genetic hypertension, vol 218. Colloque INSERM, Paris, pp 405–407

    Google Scholar 

  • Markel AL (1995) Experimental model of inherited arterial hypertension conditioned by stress (in Russian). Izvestia Acad Nauk SSSR Seria Biol 3:466–469

    Google Scholar 

  • McCubbin JW, DeMoura RS, Page IH, Olmsted F (1965) Arterial hypertension elicited by subpressor amounts of angiotensin. Science 149:1394–1395

    Article  CAS  PubMed  Google Scholar 

  • Mohring J, Mohring B, Petri M, Haack D (1977) Vasopressor role of ADH in the pathogenesis of malignant DOC hypertension. Am J Physiol Renal Physiol 232:F260–F269

    CAS  Google Scholar 

  • Moon JY (2013) Recent update of renin-angiotensin-aldosterone system in the pathogenesis of hypertension. Electrolyte Blood Press 11(2):41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullins JJ, Peters J, Ganten DF (1990) Fulminant hypertension in renin in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544

    Article  CAS  PubMed  Google Scholar 

  • Münzel T, Daiber A, Steven S, Tran LP, Ullmann E, Kossmann S, Schmidt FP, Oelze M, Xia N, Li H, Pinto A, Wild P, Pies K, Schmidt ER, Rapp S, Kröller-Schön S (2017) Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice. Eur Heart J. doi:10.1093/eurheartj/ehx081

    Google Scholar 

  • Nadeau JH, Singer JB, Matin A, Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains. Nat Genet 24:221–5

    Google Scholar 

  • Northcott CA, Glenn JP, Shade RE et al (2012) A custom rat and baboon hypertension gene array to compare experimental models. Exp Biol Med (Maywood) 237(1):99–110

    Article  CAS  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Yamamoto K, Morita N, Ohta Y, Chikugo T, Higashizawa T, Suzuki T (1986) Establishment and use of the M strain of stroke-prone spontaneously hypertensive rat. J Hypertens 4:S21–S23

    CAS  Google Scholar 

  • Page IH (1939) The production of persistent arterial hypertension by cellophane perinephritis. JAMA 113:2046–2048

    CAS  Google Scholar 

  • Panek RL, Ryan MJ, Weishaar RE, Taylor DG Jr (1991) Development of a high renin model of hypertension in the cynomolgus monkey. Clin Exp Hypertens A 13:1395–1414

    CAS  PubMed  Google Scholar 

  • Pickering GW, Prinzmetal M (1937) Experimental hypertension of renal origin in the rabbit. Clin Sci 3:357–368

    Google Scholar 

  • Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88

    Article  CAS  PubMed  Google Scholar 

  • Pradervand S, Wang Q, Burnier M, Beermann F, Horisberger JD, Hummler E, Rossier BC (1999) A mouse model for Liddle’s syndrome. J Am Soc Nephrol 10:2527–2533

    CAS  PubMed  Google Scholar 

  • Rapp JH (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80:135–172

    CAS  PubMed  Google Scholar 

  • Reckelhoff JF, Granger JP (1999) Role of androgens in mediating hypertension and renal injury. Clin Exp Pharmacol Physiol 26:127–131

    Article  CAS  PubMed  Google Scholar 

  • Ribiero MO, Antunes E, De-Nucci G, Lovisolo SM, Zaatz R (1992) Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension. Hypertension 20:298–303

    Article  Google Scholar 

  • Roberts CK, Vaziri NC, Wang XQ, Barnard RJ (2000) Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension 36:432–439

    Article  Google Scholar 

  • Roberts CK, Vaziri NC, Sindhu RK, Barnard RJ (2003) A high fat refined carbohydrate diet affects renal NO synthase protein expression and salt sensitivity. J Appl Physiol 94:941–946

    Article  CAS  PubMed  Google Scholar 

  • Romero JC, Fiksen-Olsen MJ, Schryver S (1981) Pathophysiology of hypertension: the use of experimental models to understand the clinical features of the hypertensive disease. In: Spittel JA Jr (ed) Clinical medicine, vol 7. Harper & Row, Philadelphia, pp 1–51

    Google Scholar 

  • Sarikonda KV, Watson RE, Opara OC, DiPette DJ (2009) Experimental animal models of hypertension. J Amer Soc Hypertension 3(3):158–165

    Article  Google Scholar 

  • Sellye H (1942) Production of nephrosclerosis by overdosage with deoxycorticosterone acetate. Can Med Assoc J 47:515–519

    Google Scholar 

  • Shreenivas S, Oparil S (2007) The role of endothelin-1 in human hypertension. Clin Hemorheol Microcirc 37:157–178

    CAS  PubMed  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, et al. (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Sci 304:445–8

    Google Scholar 

  • Sigmund CD (1993) Expression of the human renin gene in transgenic mice throughout ontogeny. Pediatr Nephrol 7:639–645

    Article  CAS  PubMed  Google Scholar 

  • Smirk FH, Hall WH (1958) Inherited hypertension in rats. Nature 182:727–728

    Article  CAS  PubMed  Google Scholar 

  • Sriramula S, Cardinale JP, Lazartiques E, Francis J (2011) ACE2 overexpression the paraventricular nucleus attenuates angiotensin II-induced hypertension. Cardiovasc Res 92(3):401–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson MW, Merrill DC, Yang G, Robillard JE, Sigmund CD (1995) Transgenic animals in the study of blood pressure regulation and hypertension. Am J Physiol 269(5Pt 1):E793–E803

    CAS  PubMed  Google Scholar 

  • Tigerstedt R, Bergman PG (1898) Niere und kreislaufn.d. (The kidneys and the circulation). Scand Arch Physiol 8:223–270 [Translated by Ruskin A (1956) In: Classics in arterial hypertension. Springfield, Charles C Thomas, p 273]

    Google Scholar 

  • Török J (2008) Participation of nitric oxide in different models of experimental hypertension. Physiol Res 57:813–825

    PubMed  Google Scholar 

  • Tuong N, Daugherty M, Riddell J (2016) Acute Page kidney immediately following blunt trauma to a solitary pediatric kidney. Can Urol Assoc J 10(5–6):E192–E196

    Article  PubMed  PubMed Central  Google Scholar 

  • Vincent M, Bornet H, Berthezene F, Dupont J, Sassard J (1978) Thyroid function and blood pressure in two new strains of spontaneously hypertensive and normotensive rats. Clin Sci Mol Med 54:391–395

    CAS  PubMed  Google Scholar 

  • Wiesel P, Mazzolai L, Nussberger J, Pedrazzini T (1997) Two-kidney, one clip and one-kidney, one clip hypertension in mice. Hypertension 29:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Yagil C, Hubner N, Kreutz R, Ganten D, Yagil Y (2003) Congenic strains confi rm the presence of saltsensitivity QTLs on chromosome 1 in the Sabra rat model of hypertension. Physiol Genomics 12:85–95

    Google Scholar 

  • Yang G, Sigmund CD (1998) Regulatory elements required for human angiotensinogen expression in HepG2 cells are dispensable in transgenic mice. Hypertension 31:734–740

    Article  CAS  PubMed  Google Scholar 

  • Zamir N, Gutman Y, Ben-Ishay D (1978) Hypertension and brain catecholamine distribution in the Hebrew University Sabra, H and N rats. Clin Sci Mol Med 55(suppl 4):105s–107s

    CAS  Google Scholar 

  • Zhu Q, Hu J, Han WQ, Zhang F, Li PL, Wang Z, Li N (2014) Silencing of HIF prolyl-hydroxylase 2 gene in the renal medulla attenuates salt-sensitive hypertension in Dahl S rats. Am J Hypertens 27(1):107–113

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ingelfinger, J.R. (2017). Hypertensive Models and Their Relevance to Pediatric Hypertension. In: Flynn, J., Ingelfinger, J., Redwine, K. (eds) Pediatric Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-31420-4_55-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31420-4_55-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31420-4

  • Online ISBN: 978-3-319-31420-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hypertensive Models and Their Relevance to Pediatric Hypertension
    Published:
    28 June 2022

    DOI: https://doi.org/10.1007/978-3-319-31420-4_55-2

  2. Original

    Hypertensive Models and Their Relevance to Pediatric Hypertension
    Published:
    19 April 2017

    DOI: https://doi.org/10.1007/978-3-319-31420-4_55-1