Skip to main content

Endothelial Cell-Cell Junctions in Tumor Angiogenesis

  • Living reference work entry
  • First Online:
Tumor Angiogenesis

Abstract

Angiogenesis is a complex and tightly regulated multistep process whose deregulations induce an aberrant growth of blood vessels, strongly associated with cardiovascular pathologies and also with tumor progression in most of the solid cancers. Tumor vessels are essentially smaller, disorganized, and leaky. In this scenario, the endothelial cells that mat the inner side of the vascular wall are excessively activated and exhibit higher proliferation rate and enhanced migratory phenotype. The loss of endothelial barrier integrity is one of the most striking phenotype of the tumor vasculature and contributes to exacerbate angiogenesis, tissular damage, stromal abnormalities, perivascular inflammation, and poor drug delivery.

Physiologically, the endothelial barrier controls the bidirectional passage and the flux of fluids, molecules, and cells from the blood stream to the irrigated tissues. In the tumor microenvironment, this barrier is strongly permeable, allowing thereby unrestricted, anarchic movements across the endothelium. Molecularly, the dismantlement of the endothelial cell-cell junctions, notably those formed by the cell-cell adhesion molecule VE-cadherin, supports vascular leakage in the tumor microenvironment.

There is now growing evidence that restoring the function of endothelial cell-cell junctions could help normalizing the tumor vasculature and further support the use of anti-permeability agents as potent means to interfere with tumor-driven angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alcaide P, Newton G, Auerbach S et al (2008) p120-Catenin regulates leukocyte transmigration through an effect on VE-cadherin phosphorylation. Blood 112:2770–2779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcaide P, Martinelli R, Newton G et al (2012) p120-Catenin prevents neutrophil transmigration independently of RhoA inhibition by impairing Src dependent VE-cadherin phosphorylation. Am J Physiol Cell Physiol 303:C385–C395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anastasiadis PZ (2007) p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 1773:34–46

    Article  PubMed  CAS  Google Scholar 

  • Andre-Gregoire G, Gavard J (2017) Spitting out the demons: extracellular vesicles in glioblastoma. Cell Adhes Migr 11:164–172

    Article  CAS  Google Scholar 

  • Arcangeli ML, Frontera V, Bardin F et al (2012) The junctional adhesion molecule-B regulates JAM-C-dependent melanoma cell metastasis. FEBS Lett 586:4046–4051

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli ML, Frontera V, Aurrand-Lions M (2013) Function of junctional adhesion molecules (JAMs) in leukocyte migration and homeostasis. Arch Immunol Ther Exp 61:15–23

    Article  CAS  Google Scholar 

  • Argaw AT, Asp L, Zhang J et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  PubMed  CAS  Google Scholar 

  • Aurrand-Lions M, Johnson-Leger C, Wong C et al (2001) Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood 98:3699–3707

    Article  PubMed  CAS  Google Scholar 

  • Azzi S, Hebda JK, Gavard J (2013) Vascular permeability and drug delivery in cancers. Front Oncol 3:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer HC, Krizbai IA, Bauer H et al (2014) “You Shall Not Pass”-tight junctions of the blood brain barrier. Front Neurosci 8:392

    Article  PubMed  PubMed Central  Google Scholar 

  • Baumeister U, Funke R, Ebnet K et al (2005) Association of Csk to VE-cadherin and inhibition of cell proliferation. EMBO J 24:1686–1695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazzoni G, Tonetti P, Manzi L et al (2005) Expression of junctional adhesion molecule-A prevents spontaneous and random motility. J Cell Sci 118:623–632

    Article  PubMed  CAS  Google Scholar 

  • Bentley K, Mariggi G, Gerhardt H et al (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5:e1000549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bentley K, Franco CA, Philippides A et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16:309–321

    Article  PubMed  CAS  Google Scholar 

  • Betsholtz C, Lindblom P, Gerhardt H (2005) Role of pericytes in vascular morphogenesis. EXS 94:115–125

    Google Scholar 

  • Bibert S, Jaquinod M, Concord E et al (2002) Synergy between extracellular modules of vascular endothelial cadherin promotes homotypic hexameric interactions. J Biol Chem 277:12790–12801

    Article  PubMed  CAS  Google Scholar 

  • Blanco R, Gerhardt H (2013) VEGF and Notch in tip and stalk cell selection. Cold Spring Harb Perspect Med 3:a006569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradfield PF, Scheiermann C, Nourshargh S et al (2007) JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood 110:2545–2555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bulnes S, Argandona EG, Bengoetxea H et al (2010) The role of eNOS in vascular permeability in ENU-induced gliomas. Acta Neurochir Suppl 106:277–282

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Jiang WG, Mansel RE (1999) Inhibition of the expression of VE-cadherin/catenin complex by gamma linolenic acid in human vascular endothelial cells, and its impact on angiogenesis. Biochem Biophys Res Commun 258:113–118

    Article  PubMed  CAS  Google Scholar 

  • Cao G, Fehrenbach ML, Williams JT et al (2009) Angiogenesis in platelet endothelial cell adhesion molecule-1-null mice. Am J Pathol 175:903–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Lampugnani MG, Moons L et al (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157

    Article  PubMed  CAS  Google Scholar 

  • Cattelino A, Liebner S, Gallini R et al (2003) The conditional inactivation of the beta-catenin gene in endothelial cells causes a defective vascular pattern and increased vascular fragility. J Cell Biol 162:1111–1122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cera MR, Del Prete A, Vecchi A et al (2004) Increased DC trafficking to lymph nodes and contact hypersensitivity in junctional adhesion molecule-A-deficient mice. J Clin Invest 114:729–738

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen XL, Nam JO, Jean C et al (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22:146–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480

    Article  PubMed  CAS  Google Scholar 

  • Conway D, Schwartz MA (2012) Lessons from the endothelial junctional mechanosensory complex. F1000 Biol Rep 4:1

    PubMed  PubMed Central  Google Scholar 

  • Conway DE, Schwartz MA (2013) Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci 126(Pt 22):5101–5109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conway DE, Breckenridge MT, Hinde E et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooke VG, Naik MU, Naik UP (2006) Fibroblast growth factor-2 failed to induce angiogenesis in junctional adhesion molecule-A-deficient mice. Arterioscler Thromb Vasc Biol 26:2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Zanetta L, Orsenigo F et al (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100:905–911

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Nyqvist D, Orsenigo F et al (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18:938–949

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cunningham SA, Rodriguez JM, Arrate MP et al (2002) JAM2 interacts with alpha4beta1. Facilitation by JAM3. J Biol Chem 277:27589–27592

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221

    Article  PubMed  CAS  Google Scholar 

  • Dejana E, Hirschi KK, Simons M (2017) The molecular basis of endothelial cell plasticity. Nat Commun 8:14361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker RJ, Boon RA, Rondaij MG et al (2006) KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood 107:4354–4363

    Article  PubMed  CAS  Google Scholar 

  • Drees F, Pokutta S, Yamada S et al (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    Article  PubMed  CAS  Google Scholar 

  • Ebnet K (2013) JAM-A and aPKC: a close pair during cell-cell contact maturation and tight junction formation in epithelial cells. Tissue Barriers 1:e22993

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebnet K, Schulz CU, Zu M, Brickwedde MK et al (2000) Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 275:27979–27988

    PubMed  CAS  Google Scholar 

  • Ebnet K, Suzuki A, Horikoshi Y et al (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20:3738–3748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebnet K, Aurrand-Lions M, Kuhn A et al (2003) The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 116:3879–3891

    Article  PubMed  CAS  Google Scholar 

  • Elias BC, Suzuki T, Seth A et al (2009) Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284:1559–1569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eliceiri BP, Paul R, Schwartzberg PL et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Zhang C, Lum D et al (2017) A class of extracellular vesicles from breast cancer cells activates VEGF receptors and tumour angiogenesis. Nat Commun 8:14450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  • Ferreira Tojais N, Peghaire C, Franzl N et al (2014) Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovasc Res 103:291–303

    Article  PubMed  CAS  Google Scholar 

  • Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156:361–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folkins C, Shaked Y, Man S et al (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Gohongi T, Kadambi A et al (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98:2604–2609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Furuse M, Hirase T, Itoh M et al (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  PubMed  CAS  Google Scholar 

  • Gandhi NS, Coombe DR, Mancera RL (2008) Platelet endothelial cell adhesion molecule 1 (PECAM-1) and its interactions with glycosaminoglycans: 1. Molecular modeling studies. Biochemistry 47:4851–4862

    Article  PubMed  CAS  Google Scholar 

  • Garnacho C, Shuvaev V, Thomas A et al (2008) RhoA activation and actin reorganization involved in endothelial CAM-mediated endocytosis of anti-PECAM carriers: critical role for tyrosine 686 in the cytoplasmic tail of PECAM-1. Blood 111:3024–3033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavard J (2009) Breaking the VE-cadherin bonds. FEBS Lett 583:1–6

    Article  PubMed  CAS  Google Scholar 

  • Gavard J (2013) Endothelial permeability and VE-cadherin: a wacky comradeship. Cell Adhes Migr 7:455–461

    Article  Google Scholar 

  • Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Gavard J, Gutkind JS (2008) VE-cadherin and claudin-5: it takes two to tango. Nat Cell Biol 10:883–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavard J, Mege RM (2005) Once upon a time there was beta-catenin in cadherin-mediated signalling. Biol Cell 97:921–926

    Article  PubMed  CAS  Google Scholar 

  • Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14:25–36

    Article  PubMed  CAS  Google Scholar 

  • Gebala V, Collins R, Geudens I et al (2016) Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol 18:443–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gliki G, Ebnet K, Aurrand-Lions M et al (2004) Spermatid differentiation requires the assembly of a cell polarity complex downstream of junctional adhesion molecule-C. Nature 431:320–324

    Article  PubMed  CAS  Google Scholar 

  • Goel A, Jain A, Dalela D (2011) Can radical orchiectomy be avoided for paratesticular adenomatoid tumor? Indian J Urol 27:556–557

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167:339–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grazia Lampugnani M, Zanetti A, Corada M et al (2003) Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 161:793–804

    Article  PubMed  CAS  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K, Kataoka N, Nakamura E et al (2011) Monocyte trans-endothelial migration augments subsequent transmigratory activity with increased PECAM-1 and decreased VE-cadherin at endothelial junctions. Int J Cardiol 149:232–239

    Article  PubMed  Google Scholar 

  • Hayashi M, Majumdar A, Li X et al (2013) VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat Commun 4:1672

    Article  PubMed  CAS  Google Scholar 

  • Hebda JK, Leclair HM, Azzi S et al (2013) The C-terminus region of beta-arrestin1 modulates VE-cadherin expression and endothelial cell permeability. Cell Commun Signal 11:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hellstrom M, Phng LK, Hofmann JJ et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445:776–780

    Article  PubMed  CAS  Google Scholar 

  • Hewat EA, Durmort C, Jacquamet L et al (2007) Architecture of the VE-cadherin hexamer. J Mol Biol 365:744–751

    Article  PubMed  CAS  Google Scholar 

  • Holsinger LJ, Ward K, Duffield B et al (2002) The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene 21:7067–7076

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Ferrara N, Jaffe RB (2006) Paracrine VEGF/VE-cadherin action on ovarian cancer permeability. Exp Biol Med 231:1646–1652

    Article  CAS  Google Scholar 

  • Huveneers S, Oldenburg J, Spanjaard E et al (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196:641–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iden S, Rehder D, August B et al (2006) A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep 7:1239–1246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iden S, Misselwitz S, Peddibhotla SS et al (2012) aPKC phosphorylates JAM-A at Ser285 to promote cell contact maturation and tight junction formation. J Cell Biol 196:623–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilan N, Cheung L, Pinter E et al (2000) Platelet-endothelial cell adhesion molecule-1 (CD31), a scaffolding molecule for selected catenin family members whose binding is mediated by different tyrosine and serine/threonine phosphorylation. J Biol Chem 275:21435–21443

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Bentley K, Gerhardt H (2009) VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans 37:1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953

    Article  PubMed  CAS  Google Scholar 

  • Jean C, Chen XL, Nam JO et al (2014) Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol 204:247–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson-Leger CA, Aurrand-Lions M, Beltraminelli N et al (2002) Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood 100:2479–2486

    Article  PubMed  CAS  Google Scholar 

  • Keiper T, Al-Fakhri N, Chavakis E et al (2005) The role of junctional adhesion molecule-C (JAM-C) in oxidized LDL-mediated leukocyte recruitment. FASEB J 19:2078–2080

    Article  PubMed  CAS  Google Scholar 

  • Kirschmann DA, Seftor EA, Hardy KM et al (2012) Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 18:2726–2732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiss AL (2012) Caveolae and the regulation of endocytosis. Adv Exp Med Biol 729:14–28

    Article  PubMed  CAS  Google Scholar 

  • Koch S, van Meeteren LA, Morin E et al (2014) NRP1 presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev Cell 28:633–646

    Article  PubMed  CAS  Google Scholar 

  • Koenen RR, Pruessmeyer J, Soehnlein O et al (2009) Regulated release and functional modulation of junctional adhesion molecule A by disintegrin metalloproteinases. Blood 113:4799–4809

    Article  PubMed  CAS  Google Scholar 

  • Kowalczyk AP, Reynolds AB (2004) Protecting your tail: regulation of cadherin degradation by p120-catenin. Curr Opin Cell Biol 16:522–527

    Article  PubMed  CAS  Google Scholar 

  • Krebs LT, Xue Y, Norton CR et al (2000) Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14:1343–1352

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lamagna C, Hodivala-Dilke KM, Imhof BA et al (2005a) Antibody against junctional adhesion molecule-C inhibits angiogenesis and tumor growth. Cancer Res 65:5703–5710

    Article  PubMed  CAS  Google Scholar 

  • Lamagna C, Meda P, Mandicourt G et al (2005b) Dual interaction of JAM-C with JAM-B and alpha(M)beta2 integrin: function in junctional complexes and leukocyte adhesion. Mol Biol Cell 16:4992–5003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lambeng N, Wallez Y, Rampon C et al (2005) Vascular endothelial-cadherin tyrosine phosphorylation in angiogenic and quiescent adult tissues. Circ Res 96:384–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampugnani MG, Corada M, Caveda L et al (1995) The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 129:203–217

    Article  PubMed  CAS  Google Scholar 

  • Lampugnani MG, Zanetti A, Breviario F et al (2002) VE-cadherin regulates endothelial actin activating Rac and increasing membrane association of Tiam. Mol Biol Cell 13:1175–1189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampugnani MG, Orsenigo F, Gagliani MC et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lampugnani MG, Orsenigo F, Rudini N et al (2010) CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J Cell Sci 123:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Langer HF, Orlova VV, Xie C et al (2011) A novel function of junctional adhesion molecule-C in mediating melanoma cell metastasis. Cancer Res 71:4096–4105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lathia JD, Mack SC, Mulkearns-Hubert EE et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laukoetter MG, Nava P, Lee WY et al (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204:3067–3076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Guelte A, Dwyer J, Gavard J (2011) Jumping the barrier: VE-cadherin, VEGF and other angiogenic modifiers in cancer. Biol Cell 103:593–605

    Article  CAS  PubMed  Google Scholar 

  • Le Guelte A, Galan-Moya EM, Dwyer J et al (2012) Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation. J Cell Sci 125:4137–4146

    Article  PubMed  CAS  Google Scholar 

  • Leclair HM, Andre-Gregoire G, Treps L et al (2016) The E3 ubiquitin ligase MARCH3 controls the endothelial barrier. FEBS Lett 590:3660–3668

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S, Chen TT, Barber CL et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leenders WP, Kusters B, de Waal RM (2002) Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9:83–87

    Article  PubMed  Google Scholar 

  • Leinster DA, Colom B, Whiteford JR et al (2013) Endothelial cell junctional adhesion molecule C plays a key role in the development of tumors in a murine model of ovarian cancer. FASEB J 27:4244–4253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Stankovic M, Lee BP et al (2009) JAM-C induces endothelial cell permeability through its association and regulation of {beta}3 integrins. Arterioscler Thromb Vasc Biol 29:1200–1206

    Article  PubMed  CAS  Google Scholar 

  • Ludwig RJ, Hardt K, Hatting M et al (2009) Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with alpha4beta1 integrin. Immunology 128:196–205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maddaluno L, Rudini N, Cuttano R et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492–496

    Article  PubMed  CAS  Google Scholar 

  • Mandell KJ, Holley GP, Parkos CA et al (2006) Antibody blockade of junctional adhesion molecule-A in rabbit corneal endothelial tight junctions produces corneal swelling. Invest Ophthalmol Vis Sci 47:2408–2416

    Article  PubMed  Google Scholar 

  • Martin-Padura I, Lostaglio S, Schneemann M et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matter K, Balda MS (2003) Holey barrier: claudins and the regulation of brain endothelial permeability. J Cell Biol 161:459–460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • May C, Doody JF, Abdullah R et al (2005) Identification of a transiently exposed VE-cadherin epitope that allows for specific targeting of an antibody to the tumor neovasculature. Blood 105:4337–4344

    Article  PubMed  CAS  Google Scholar 

  • Meguenani M, Miljkovic-Licina M, Fagiani E et al (2015) Junctional adhesion molecule B interferes with angiogenic VEGF/VEGFR2 signaling. FASEB J 29:3411–3425

    Article  PubMed  CAS  Google Scholar 

  • Michaelis UR (2014) Mechanisms of endothelial cell migration. Cell Mol Life Sci 71:4131–4148

    Article  PubMed  CAS  Google Scholar 

  • Mochida GH, Ganesh VS, Felie JM et al (2010) A homozygous mutation in the tight-junction protein JAM3 causes hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Am J Hum Genet 87:882–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montero-Balaguer M, Swirsding K, Orsenigo F et al (2009) Stable vascular connections and remodeling require full expression of VE-cadherin in zebrafish embryos. PLoS One 4:e5772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muller WA (2011) Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami M, Nguyen LT, Zhang ZW et al (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami T, Felinski EA, Antonetti DA (2009) Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 284:21036–21046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naik MU, Naik UP (2006) Junctional adhesion molecule-A-induced endothelial cell migration on vitronectin is integrin alpha v beta 3 specific. J Cell Sci 119:490–499

    Article  PubMed  CAS  Google Scholar 

  • Naik MU, Vuppalanchi D, Naik UP (2003) Essential role of junctional adhesion molecule-1 in basic fibroblast growth factor-induced endothelial cell migration. Arterioscler Thromb Vasc Biol 23:2165–2171

    Article  PubMed  CAS  Google Scholar 

  • Nanes BA, Chiasson-MacKenzie C, Lowery AM et al (2012) p120-catenin binding masks an endocytic signal conserved in classical cadherins. J Cell Biol 199:365–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawroth R, Poell G, Ranft A et al (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21:4885–4895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nitta T, Hata M, Gotoh S et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161:653–660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noda K, Zhang J, Fukuhara S et al (2010) Vascular endothelial-cadherin stabilizes at cell-cell junctions by anchoring to circumferential actin bundles through alpha- and beta-catenins in cyclic AMP-Epac-Rap1 signal-activated endothelial cells. Mol Biol Cell 21:584–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nottebaum AF, Cagna G, Winderlich M et al (2008) VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med 205:2929–2945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oas RG, Xiao K, Summers S et al (2010) p120-Catenin is required for mouse vascular development. Circ Res 106:941–951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oas RG, Nanes BA, Esimai CC et al (2013) p120-catenin and beta-catenin differentially regulate cadherin adhesive function. Mol Biol Cell 24:704–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olsson AK, Dimberg A, Kreuger J et al (2006) VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 7:359–371

    Article  PubMed  CAS  Google Scholar 

  • Orlova VV, Economopoulou M, Lupu F et al (2006) Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med 203:2703–2714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostermann G, Weber KS, Zernecke A et al (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158

    Article  PubMed  CAS  Google Scholar 

  • Ozaki H, Ishii K, Horiuchi H et al (1999) Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol 163:553–557

    PubMed  CAS  Google Scholar 

  • Paul R, Zhang ZG, Eliceiri BP et al (2001) Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 7:222–227

    Article  PubMed  CAS  Google Scholar 

  • Phng LK, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031–4040

    Article  PubMed  CAS  Google Scholar 

  • Phng LK, Gebala V, Bentley K et al (2015) Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization. Dev Cell 32:123–132

    Article  PubMed  CAS  Google Scholar 

  • Pitulescu ME, Schmidt I, Giaimo BD et al (2017) Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 19:915–927

    Article  PubMed  CAS  Google Scholar 

  • Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146:873–887

    Article  PubMed  CAS  Google Scholar 

  • Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355:607–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rabquer BJ, Amin MA, Teegala N et al (2010) Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J Immunol 185:1777–1785

    Article  PubMed  CAS  Google Scholar 

  • Rehm K, Panzer L, van Vliet V et al (2013) Drebrin preserves endothelial integrity by stabilizing nectin at adherens junctions. J Cell Sci 126:3756–3769

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  CAS  PubMed  Google Scholar 

  • Saharinen P, Eklund L, Miettinen J et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10:527–537

    Article  PubMed  CAS  Google Scholar 

  • Sakurai A, Fukuhara S, Yamagishi A et al (2006) MAGI-1 is required for Rap1 activation upon cell-cell contact and for enhancement of vascular endothelial cadherin-mediated cell adhesion. Mol Biol Cell 17:966–976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santoso S, Orlova VV, Song K et al (2005) The homophilic binding of junctional adhesion molecule-C mediates tumor cell-endothelial cell interactions. J Biol Chem 280:36326–36333

    Article  PubMed  CAS  Google Scholar 

  • Satchell SC, Braet F (2009) Glomerular endothelial cell fenestrations: an integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol 296:F947–F956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheiermann C, Colom B, Meda P et al (2009) Junctional adhesion molecule-C mediates leukocyte infiltration in response to ischemia reperfusion injury. Arterioscler Thromb Vasc Biol 29:1509–1515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrader A, Siefken W, Kueper T et al (2012) Effects of glyceryl glucoside on AQP3 expression, barrier function and hydration of human skin. Skin Pharmacol Physiol 25:192–199

    Article  PubMed  CAS  Google Scholar 

  • Schulz B, Pruessmeyer J, Maretzky T et al (2008) ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102:1192–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seftor RE, Hess AR, Seftor EA et al (2012) Tumor cell vasculogenic mimicry from controversy to therapeutic promise. Am J Pathol 181:1115–1125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solowiej A, Biswas P, Graesser D et al (2003) Lack of platelet endothelial cell adhesion molecule-1 attenuates foreign body inflammation because of decreased angiogenesis. Am J Pathol 162:953–962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spring K, Chabot C, Langlois S et al (2012) Tyrosine phosphorylation of DEP-1/CD148 as a mechanism controlling Src kinase activation, endothelial cell permeability, invasion, and capillary formation. Blood 120:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Sun T, Zhao N, Zhao XL et al (2010) Expression and functional significance of Twist1 in hepatocellular carcinoma: its role in vasculogenic mimicry. Hepatology 51:545–556

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Giampietro C, Conti A et al (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    Article  PubMed  CAS  Google Scholar 

  • Takenaga Y, Takagi N, Murotomi K et al (2009) Inhibition of Src activity decreases tyrosine phosphorylation of occludin in brain capillaries and attenuates increase in permeability of the blood-brain barrier after transient focal cerebral ischemia. J Cereb Blood Flow Metab 29:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Timmerman I, Hoogenboezem M, Bennett AM et al (2012) The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of beta-catenin phosphorylation. Mol Biol Cell 23:4212–4225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Treps L, Edmond S, Galan Moya EM et al (2016) Extracellular vesicle-transported Semaphorin3A promotes vascular permeability in glioblastoma. Oncogene 35:2615–2623

    Article  PubMed  CAS  Google Scholar 

  • Tuncay H, Brinkmann BF, Steinbacher T et al (2015) JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun 6:8128

    Article  PubMed  CAS  Google Scholar 

  • Tzima E, Irani-Tehrani M, Kiosses WB et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437:426–431

    Article  PubMed  CAS  Google Scholar 

  • Ukropec JA, Hollinger MK, Salva SM et al (2000) SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 275:5983–5986

    Article  PubMed  CAS  Google Scholar 

  • Vestweber D (2012) Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci 1257:184–192

    Article  PubMed  CAS  Google Scholar 

  • von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629

    Article  CAS  Google Scholar 

  • Vonlaufen A, Aurrand-Lions M, Pastor CM et al (2006) The role of junctional adhesion molecule C (JAM-C) in acute pancreatitis. J Pathol 209:540–548

    Article  PubMed  CAS  Google Scholar 

  • Walsh TG, Murphy RP, Fitzpatrick P et al (2011) Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 226:3053–3063

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  CAS  PubMed  Google Scholar 

  • Weis SM, Cheresh DA (2005) Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437:497–504

    Article  PubMed  CAS  Google Scholar 

  • Weis S, Cui J, Barnes L et al (2004a) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weis S, Shintani S, Weber A et al (2004b) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113:885–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitehead KJ, Chan AC, Navankasattusas S et al (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wojcikiewicz EP, Koenen RR, Fraemohs L et al (2009) LFA-1 binding destabilizes the JAM-A homophilic interaction during leukocyte transmigration. Biophys J 96:285–293

    Article  PubMed  CAS  Google Scholar 

  • Woodfin A, Voisin MB, Imhof BA et al (2009) Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood 113:6246–6257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woodfin A, Voisin MB, Beyrau M et al (2011) The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol 12:761–769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Bohanan CS, Neumann JC et al (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 283:3942–3950

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Kim DJ, Davis CL et al (2015) Tumor endothelial cells with distinct patterns of TGFbeta-driven endothelial-to-mesenchymal transition. Cancer Res 75:1244–1254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue Y, Gao X, Lindsell CE et al (1999) Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet 8:723–730

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Takeichi M (2000) Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev 14:1169–1180

    PubMed  CAS  Google Scholar 

  • Yamada S, Pokutta S, Drees F et al (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamamoto H, Ehling M, Kato K et al (2015) Integrin beta1 controls VE-cadherin localization and blood vessel stability. Nat Commun 6:6429

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Chen Y, Deng X et al (2013) Hemoglobin-induced nitric oxide synthase overexpression and nitric oxide production contribute to blood-brain barrier disruption in the rat. J Mol Neurosci 51:352–363

    Article  PubMed  CAS  Google Scholar 

  • Zebda N, Tian Y, Tian X et al (2013) Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability. J Biol Chem 288:18290–18299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeisberg EM, Potenta S, Xie L et al (2007a) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg EM, Tarnavski O, Zeisberg M et al (2007b) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

  • Zovein AC, Luque A, Turlo KA et al (2010) Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18:39–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank past and present members of the SOAP Team and in particular former PhD students Lucas Treps and Jagoda Hebda. Research is supported by Ligue Nationale Contre le Cancer (comité Loire-Atlantique, Maine-et-Loire, Morbihan, Vendée, FR) and Fondation ARC pour la Recherche sur le Cancer (FR). JG is laureate of Connect Talent award from Région Pays-de-La-Loire (FR) and Nantes-Métropole (FR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Gavard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roux, Q., Gavard, J. (2018). Endothelial Cell-Cell Junctions in Tumor Angiogenesis. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics