Skip to main content

The Implication of Antiangiogenic Treatment of Malignancies on Human Metabolism

  • Living reference work entry
  • First Online:
Tumor Angiogenesis
  • 147 Accesses

Abstract

As angiogenesis is one of the hallmarks of cancer, a high number of therapeutic strategies have been developed to target the formation of new blood vessels in a growing tumor. Even though clinical efficacy has been documented in some cancer types, it is highly acknowledged that tumors develop resistance to antiangiogenic therapy. A well-characterized response to antiangiogenic therapy is the development of intratumoral hypoxia. This, in turn, may lead to specific adaptations in cellular metabolism in order for tumor cells to grow in a nutrient- and oxygen-deprived microenvironment.

The presented chapter describes key features of metabolic adaptations in response to induced hypoxia following antiangiogenic therapy. Importantly, antiangiogenic therapy can lead to metabolic reprogramming toward anaerobic metabolism where glycolysis is uncoupled from oxidative phosphorylation. This in turn points at potential metabolic targets that may be of importance for the development of combinatorial treatment principles. Moreover, due to intra- and intertumoral heterogeneity, the challenge lies in identifying tumor subtypes that might respond to antimetabolic therapies. Thus, antimetabolic therapies might leverage future antiangiogenic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnihotri S, Zadeh G (2016) Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 18(2):160–172. doi:10.1093/neuonc/nov125

    Article  PubMed  Google Scholar 

  • Aquino-Parsons C, Luo C, Vikse CM, Olive PL (1999) Comparison between the comet assay and the oxygen microelectrode for measurement of tumor hypoxia. Radiother Oncol 51(2):179–185

    Article  CAS  PubMed  Google Scholar 

  • Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. doi:10.1038/nrm2639

    Article  CAS  PubMed  Google Scholar 

  • Bardos JI, Ashcroft M (2004) Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26(3):262–269. doi:10.1002/bies.20002

    Article  CAS  PubMed  Google Scholar 

  • Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen PY, Sorensen AG, Jain RK (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110(47):19059–19064. doi:10.1073/pnas.1318022110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brahimi-Horn MC, Bellot G, Pouyssegur J (2011) Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev 21(1):67–72. doi:10.1016/j.gde.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, Hammond EH, Devi SN, Kaur B, Van Meir EG (2004) Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res 64(3):920–927

    Article  CAS  PubMed  Google Scholar 

  • Brown GT, Murray GI (2015) Current mechanistic insights into the roles of matrix metalloproteinases in tumour invasion and metastasis. J Pathol 237(3):273–281. doi:10.1002/path.4586

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Wilson WR (2004) Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4(6):437–447. doi:10.1038/nrc1367

    Article  CAS  PubMed  Google Scholar 

  • Chen YS, Chen ZP (2014) Vasculogenic mimicry: a novel target for glioma therapy. Chin J Cancer 33(2):74–79. doi:10.5732/cjc.012.10292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chesnelong C, Chaumeil MM, Blough MD, Al-Najjar M, Stechishin OD, Chan JA, Pieper RO, Ronen SM, Weiss S, Luchman HA, Cairncross JG (2014) Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro Oncol 16(5):686–695. doi:10.1093/neuonc/not243

    Article  CAS  PubMed  Google Scholar 

  • Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford Y, Kasman I, Yu L, Zhong C, Wu X, Modrusan Z, Kaminker J, Ferrara N (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15(1):21–34. doi:10.1016/j.ccr.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  • De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8(7):393–404. doi:10.1038/nrclinonc.2011.83

    Article  PubMed  Google Scholar 

  • Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC, Pezzella F (2013) Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med 2(4):427–436. doi:10.1002/cam4.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fack F, Espedal H, Keunen O, Golebiewska A, Obad N, Harter PN, Mittelbronn M, Bahr O, Weyerbrock A, Stuhr L, Miletic H, Sakariassen PO, Stieber D, Rygh CB, Lund-Johansen M, Zheng L, Gottlieb E, Niclou SP, Bjerkvig R (2015) Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathol 129(1):115–131. doi:10.1007/s00401-014-1352-5

    Article  CAS  PubMed  Google Scholar 

  • Favaro E, Lord S, Harris AL, Buffa FM (2011) Gene expression and hypoxia in breast cancer. Genome Med 3(8):55. doi:10.1186/gm271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favaro E, Bensaad K, Chong MG, Tennant DA, Ferguson DJ, Snell C, Steers G, Turley H, Li JL, Gunther UL, Buffa FM, McIntyre A, Harris AL (2012) Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab 16(6):751–764. doi:10.1016/j.cmet.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  • Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, Vokes NI, Guarente L, Vander Heiden MG, Stephanopoulos G (2013) Reductive glutamine metabolism is a function of the alpha-ketoglutarate to citrate ratio in cells. Nat Commun 4:2236. doi:10.1038/ncomms3236

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi:10.1038/nrc909

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2010) Role of myeloid cells in vascular endothelial growth factor-independent tumor angiogenesis. Curr Opin Hematol 17(3):219–224. doi:10.1097/MOH.0b013e3283386660

    CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669

    Article  CAS  PubMed  Google Scholar 

  • Fortin Ensign SP, Mathews IT, Symons MH, Berens ME, Tran NL (2013) Implications of Rho GTPase signaling in glioma cell invasion and tumor progression. Front Oncol 3:241. doi:10.3389/fonc.2013.00241

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao P, Zhang H, Dinavahi R, Li F, Xiang Y, Raman V, Bhujwalla ZM, Felsher DW, Cheng L, Pevsner J, Lee LA, Semenza GL, Dang CV (2007) HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell 12(3):230–238. doi:10.1016/j.ccr.2007.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899. doi:10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  • Giatromanolaki A, Sivridis E, Gatter KC, Turley H, Harris AL, Koukourakis MI, Tumour and Angiogenesis Research Group (2006) Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol Oncol 103(3):912–918. doi:10.1016/j.ygyno.2006.05.043

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Hartenbach EM, Olson TA, Goswitz JJ, Mohanraj D, Twiggs LB, Carson LF, Ramakrishnan S (1997) Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett 121(2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Hartwich J, Orr WS, Ng CY, Spence Y, Morton C, Davidoff AM (2013) HIF-1alpha activation mediates resistance to anti-angiogenic therapy in neuroblastoma xenografts. J Pediatr Surg 48(1):39–46. doi:10.1016/j.jpedsurg.2012.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Hattingen E, Jurcoane A, Bahr O, Rieger J, Magerkurth J, Anti S, Steinbach JP, Pilatus U (2011) Bevacizumab impairs oxidative energy metabolism and shows antitumoral effects in recurrent glioblastomas: a 31P/1H MRSI and quantitative magnetic resonance imaging study. Neuro Oncol 13(12):1349–1363. doi:10.1093/neuonc/nor132

    Article  PubMed  PubMed Central  Google Scholar 

  • Hockel M, Vaupel P (2001) Biological consequences of tumor hypoxia. Semin Oncol 28(2 Suppl 8):36–41

    Article  CAS  PubMed  Google Scholar 

  • Hockel M, Schlenger K, Hockel S, Vaupel P (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59(18):4525–4528

    CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG Jr (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468. doi:10.1126/science.1059817

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472. doi:10.1126/science.1059796

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271(1):58–65

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Carmeliet P (2012) SnapShot: tumor angiogenesis. Cell 149 (6):1408–1408. e1401. doi:10.1016/j.cell.2012.05.025

    Article  CAS  PubMed  Google Scholar 

  • Jiang BH, Agani F, Passaniti A, Semenza GL (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57(23):5328–5335

    CAS  PubMed  Google Scholar 

  • Joseph JV, Balasubramaniyan V, Walenkamp A, Kruyt FA (2013) TGF-beta as a therapeutic target in high grade gliomas – promises and challenges. Biochem Pharmacol 85(4):478–485. doi:10.1016/j.bcp.2012.11.005

    Article  CAS  PubMed  Google Scholar 

  • Kanno T, Sudo K, Maekawa M, Nishimura Y, Ukita M, Fukutake K (1988) Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta 173(1):89–98

    Article  CAS  PubMed  Google Scholar 

  • Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R, Lamszus K (2016) Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol. doi:10.1093/neuonc/now024

    PubMed  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108(9):3749–3754. doi:10.1073/pnas.1014480108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Panteliadou M, Pouliliou SE, Chondrou PS, Mavropoulou S, Sivridis E (2014) Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br J Cancer 110(9):2217–2223. doi:10.1038/bjc.2014.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koul D, Parthasarathy R, Shen R, Davies MA, Jasser SA, Chintala SK, Rao JS, Sun Y, Benvenisite EN, Liu TJ, Yung WK (2001) Suppression of matrix metalloproteinase-2 gene expression and invasion in human glioma cells by MMAC/PTEN. Oncogene 20(46):6669–6678. doi:10.1038/sj.onc.1204799

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482. doi:10.1016/j.ccr.2008.05.005

    Article  CAS  PubMed  Google Scholar 

  • Kubiatowski T, Jang T, Lachyankar MB, Salmonsen R, Nabi RR, Quesenberry PJ, Litofsky NS, Ross AH, Recht LD (2001) Association of increased phosphatidylinositol 3-kinase signaling with increased invasiveness and gelatinase activity in malignant gliomas. J Neurosurg 95(3):480–488. doi:10.3171/jns.2001.95.3.0480

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Wigfield S, Gee HE, Devlin CM, Singleton D, Li JL, Buffa F, Huffman M, Sinn AL, Silver J, Turley H, Leek R, Harris AL, Ivan M (2013) Dichloroacetate reverses the hypoxic adaptation to bevacizumab and enhances its antitumor effects in mouse xenografts. J Mol Med (Berl) 91(6):749–758. doi:10.1007/s00109-013-0996-2

    Article  CAS  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL (2001) HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21(12):3995–4004. doi:10.1128/MCB.21.12.3995-4004.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu X, Konig I, Anderson K, Machesky LM (2010) The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr Biol 20(4):339–345. doi:10.1016/j.cub.2009.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HS, Blann AD, Chong AY, Freestone B, Lip GY (2004) Plasma vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in diabetes: implications for cardiovascular risk and effects of multifactorial intervention. Diabetes Care 27(12):2918–2924

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kong Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(24):5928–5935. doi:10.1158/1078-0432.CCR-10-1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. doi:10.1016/S0002-9440(10)65173-5

    Article  Google Scholar 

  • Mayers JR, Vander Heiden MG (2015) Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci 40(3):130–140. doi:10.1016/j.tibs.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntyre A, Harris AL (2015) Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7 (4):368-379. doi:10.15252/emmm.201404271

  • McIntyre A, Patiar S, Wigfield S, Li JL, Ledaki I, Turley H, Leek R, Snell C, Gatter K, Sly WS, Vaughan-Jones RD, Swietach P, Harris AL (2012) Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy. Clin Cancer Res 18(11):3100–3111. doi:10.1158/1078-0432.CCR-11-1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metallo CM (2012) Expanding the reach of cancer metabolomics. Cancer Prev Res (Phila) 5(12):1337–1340. doi:10.1158/1940-6207.CAPR-12-0433

    Article  CAS  Google Scholar 

  • Nagy JA, Chang SH, Dvorak AM, Dvorak HF (2009) Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 100(6):865–869. doi:10.1038/sj.bjc.6604929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norden AD, Drappatz J, Wen PY (2009) Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5(11):610–620. doi:10.1038/nrneurol.2009.159

    Article  CAS  PubMed  Google Scholar 

  • Oudard S, Arvelo F, Miccoli L, Apiou F, Dutrillaux AM, Poisson M, Dutrillaux B, Poupon MF (1996) High glycolysis in gliomas despite low hexokinase transcription and activity correlated to chromosome 10 loss. Br J Cancer 74(6):839–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks SK, Chiche J, Pouyssegur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13(9):611–623. doi:10.1038/nrc3579

    Article  CAS  PubMed  Google Scholar 

  • Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555(1–3):14–20

    Article  CAS  PubMed  Google Scholar 

  • Pisarsky L, Bill R, Fagiani E, Dimeloe S, Goosen RW, Hagmann J, Hess C, Christofori G (2016) Targeting metabolic symbiosis to overcome resistance to antiangiogenic therapy. Cell Rep 15(6):1161–1174. doi:10.1016/j.celrep.2016.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero M, Brennan PA, Thomas GJ, Moncada S (2006) Nitric oxide is a factor in the stabilization of hypoxia-inducible factor-1alpha in cancer: role of free radical formation. Cancer Res 66(2):770–774. doi:10.1158/0008-5472.CAN-05-0333

    Article  CAS  PubMed  Google Scholar 

  • Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, Sawaya R (2002) Necrosis and glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery 51(1):2–12. Discussion 12–13

    Article  PubMed  Google Scholar 

  • Riganti C, Gazzano E, Polimeni M, Aldieri E, Ghigo D (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53(3):421–436. doi:10.1016/j.freeradbiomed.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  • Seliger C, Leukel P, Moeckel S, Jachnik B, Lottaz C, Kreutz M, Brawanski A, Proescholdt M, Bogdahn U, Bosserhoff AK, Vollmann-Zwerenz A, Hau P (2013) Lactate-modulated induction of THBS-1 activates transforming growth factor (TGF)-beta2 and migration of glioma cells in vitro. PLoS One 8(11):e78935. doi:10.1371/journal.pone.0078935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2002b) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8(4 Suppl):S62–S67

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. doi:10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71. doi:10.1146/annurev-pathol-012513-104720

    Article  CAS  PubMed  Google Scholar 

  • Shen YC, Ou DL, Hsu C, Lin KL, Chang CY, Lin CY, Liu SH, Cheng AL (2013) Activating oxidative phosphorylation by a pyruvate dehydrogenase kinase inhibitor overcomes sorafenib resistance of hepatocellular carcinoma. Br J Cancer 108(1):72–81. doi:10.1038/bjc.2012.559

    Article  CAS  PubMed  Google Scholar 

  • Singleton DC, Rouhi P, Zois CE, Haider S, Li JL, Kessler BM, Cao Y, Harris AL (2015) Hypoxic regulation of RIOK3 is a major mechanism for cancer cell invasion and metastasis. Oncogene 34(36):4713–4722. doi:10.1038/onc.2014.396

    Article  CAS  PubMed  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108(11):4274–4280. doi:10.1073/pnas.1016030108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun RC, Denko NC (2014) Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19(2):285–292. doi:10.1016/j.cmet.2013.11.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcotte S, Desrosiers RR, Beliveau R (2003) HIF-1alpha mRNA and protein upregulation involves Rho GTPase expression during hypoxia in renal cell carcinoma. J Cell Sci 116(Pt 11):2247–2260. doi:10.1242/jcs.00427

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Hockel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9(8):1221–1235. doi:10.1089/ars.2007.1628

    Article  CAS  PubMed  Google Scholar 

  • Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582(14):2093–2101. doi:10.1016/j.febslet.2008.04.039

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The Metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welti J, Loges S, Dimmeler S, Carmeliet P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123(8):3190–3200. doi:10.1172/JCI70212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011a) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208(2):313–326. doi:10.1084/jem.20101470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf A, Agnihotri S, Munoz D, Guha A (2011b) Developmental profile and regulation of the glycolytic enzyme hexokinase 2 in normal brain and glioblastoma multiforme. Neurobiol Dis 44(1):84–91. doi:10.1016/j.nbd.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  • Yopp AC, Schwartz LH, Kemeny N, Gultekin DH, Gonen M, Bamboat Z, Shia J, Haviland D, D’Angelica MI, Fong Y, DeMatteo RP, Allen PJ, Jarnagin WR (2011) Antiangiogenic therapy for primary liver cancer: correlation of changes in dynamic contrast-enhanced magnetic resonance imaging with tissue hypoxia markers and clinical response. Ann Surg Oncol 18(8):2192–2199. doi:10.1245/s10434-011-1570-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Gao S, Ren H, Sun W, Zhang H, Sun J, Yang S, Hao J (2014) Hypoxia-inducible factor-1 promotes pancreatic ductal adenocarcinoma invasion and metastasis by activating transcription of the actin-bundling protein fascin. Cancer Res 74(9):2455–2464. doi:10.1158/0008-5472.CAN-13-3009

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL (2000) Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 60(6):1541–1545

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Obad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Obad, N., Bjerkvig, R. (2017). The Implication of Antiangiogenic Treatment of Malignancies on Human Metabolism. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics