Skip to main content

The Value of Anti-Angiogenics in Multiple Myeloma Therapy

  • Living reference work entry
  • First Online:
  • 163 Accesses

Abstract

Bone marrow angiogenesis is a hallmark of multiple myeloma and an important component of the profound myeloma-induced changes of the microenvironment. Bone marrow angiogenesis evaluated histologically or via dynamic contrast-enhanced magnetic resonance imaging (dceMRI) is a prognostic marker for survival for multiple myeloma (MM) patients. Normal and malignant plasma cells express angiogenic factors including vascular endothelial growth factors (VEGF) and are able to induce angiogenesis. The constitutive expression of angiogenesis factors by plasma cell accumulation of malignant plasma cells and increasing hypoxia is considered as initial drivers for bone marrow angiogenesis and remodeling of the bone marrow microenvironment in myeloma. Bone marrow angiogenesis may then be further accelerated by sequential loss of angiogenic inhibitors and/or aberrant expression of angiogenic factors during disease progression. Several novel agents such as immunomodulatory drugs (IMiDs), proteasome inhibitors, and histone deacetylase (HDAC) inhibitors approved for myeloma exert anti-angiogenic activity. Several considerations are expected to further develop anti-angiogenic treatment concepts in multiple myeloma: angiogenesis dependency and the “critical” angiogenesis-related drivers may vary and are dependent on the stage of myeloma development from monoclonal gammopathy of unknown significance (MGUS) up to symptomatic and therapy-resistant MM. Promising new agents targeting bone marrow angiogenesis are currently evaluated in early clinical studies including inhibitors of the hepatocyte-growth-factor pathway. Achieving clinical relevant effects might require the combination of angiogenesis inhibitors as well as rational combination with standard of care treatments.

It is expected that additional compounds with the ability to inhibit pathological bone marrow angiogenesis will be integrated into the therapeutic armamentarium for multiple myeloma in the future.

This is a preview of subscription content, log in via an institution.

References

  • Accardi F, Toscani D, Bolzoni M, Dalla Palma B, Aversa F, Giuliani N (2015) Mechanism of action of bortezomib and the new proteasome inhibitors on myeloma cells and the bone microenvironment: impact on myeloma-induced alterations of bone remodeling. Biomed Res Int 2015:172458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beedie SL, Peer CJ, Pisle S, Gardner ER, Mahony C, Barnett S, Ambrozak A, Gutschow M, Chau CH, Vargesson N, Figg WD (2015) Anticancer properties of a novel class of tetrafluorinated thalidomide analogues. Mol Cancer Ther 14:2228–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284:808–812

    Article  CAS  PubMed  Google Scholar 

  • Berndsen CE, Wolberger C (2014) New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol 21:301–307

    Article  CAS  PubMed  Google Scholar 

  • Bianchi G, Munshi NC (2015) Pathogenesis beyond the cancer clone(s) in multiple myeloma. Blood 125:3049–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borset M, Hjorth-Hansen H, Seidel C, Sundan A, WAAGE A (1996) Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88:3998–4004

    CAS  PubMed  Google Scholar 

  • Cai W, Yang H (2016) The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassinelli G, Lanzi C, Tortoreto M, Cominetti D, Petrangolini G, Favini E, Zaffaroni N, Pisano C, Penco S, Vlodavsky I, Zunino F (2013) Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochem Pharmacol 85:1424–1432

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics 6:78–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cidon EU, Alonso P, Masters B (2016) Markers of response to antiangiogenic therapies in colorectal cancer: where are we now and what should be next? Clin Med Insights Oncol 10:41–55

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085

    Article  PubMed  PubMed Central  Google Scholar 

  • De P, Dey N, Terakedis B, Bergsagel PL, Li ZH, Mahadevan D, Garlich JR, Trudel S, Makale MT, Durden DL (2013) An integrin-targeted, pan-isoform, phosphoinositide-3 kinase inhibitor, SF1126, has activity against multiple myeloma in vivo. Cancer Chemother Pharmacol 71:867–881

    Article  CAS  PubMed  Google Scholar 

  • Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV, Castronovo V (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21:427–436

    Article  CAS  PubMed  Google Scholar 

  • Di Martino MT, Rossi M, Caracciolo D, Gulla A, Tagliaferri P, Tassone P (2016) Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin Ther Targets 20:1099–1108

    Google Scholar 

  • Diamanti A, Capriati T, Papadatou B, Knafelz D, Bracci F, Corsetti T, Elia D, Torre G (2015) The clinical implications of thalidomide in inflammatory bowel diseases. Expert Rev Clin Immunol 11:699–708

    Article  CAS  PubMed  Google Scholar 

  • Doshi S, Gisleskog PO, Zhang Y, Zhu M, Oliner KS, Loh E, Perez Ruixo JJ (2015) Rilotumumab exposure-response relationship in patients with advanced or metastatic gastric cancer. Clin Cancer Res 21:2453–2461

    Article  CAS  PubMed  Google Scholar 

  • Du W, Hattori Y, Yamada T, Matsumoto K, Nakamura T, Sagawa M, Otsuki T, Niikura T, Nukiwa T, Ikeda Y (2007) NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor. Blood 109:3042–3049

    Article  CAS  PubMed  Google Scholar 

  • Fenchel M, Konaktchieva M, Weisel K, Kraus S, Claussen CD, Horger M (2010) Response assessment in patients with multiple myeloma during antiangiogenic therapy using arterial spin labeling and diffusion-weighted imaging: a feasibility study. Acad Radiol 17:1326–1333

    Article  PubMed  Google Scholar 

  • Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, Racanelli V, Caivano A, Solimando AG, Vergara D, Maffia M, Latorre D, Rizzello A, Zito A, Ditonno P, Maiorano E, Ribatti D, Vacca A (2014) A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res 20:5796–5807

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 333:1757–1763

    Article  CAS  PubMed  Google Scholar 

  • Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahr S, Mayr C, Kiesslich T, Illig R, Neureiter D, Alinger B, Ganslmayer M, Wissniowski T, Fazio PD, Montalbano R, Ficker JH, Ocker M, Quint K (2015) The pan-deacetylase inhibitor panobinostat affects angiogenesis in hepatocellular carcinoma models via modulation of CTGF expression. Int J Oncol 47:963–970

    CAS  PubMed  Google Scholar 

  • Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, Ito T, Ando H, Waldman MF, Thakurta A, Klippel A, Handa H, Daniel TO, Schafer PH, Chopra R (2014) Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol 164:811–821

    Article  CAS  PubMed  Google Scholar 

  • Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, Bonomini S, Lunghi P, Hojden M, Genestreti G, Svaldi M, Coser P, Fattori PP, Sammarelli G, Gazzola GC, Bataille R, Almici C, Caramatti C, Mangoni L, Rizzoli V (2003) Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102:638–645

    Article  CAS  PubMed  Google Scholar 

  • Giuliani N, Rizzoli V, Roodman GD (2006) Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108:3992–3996

    Article  CAS  PubMed  Google Scholar 

  • Hainsworth JD, Greco FA, Raefsky EL, Thompson DS, Lunin S, Reeves J Jr, White L, Quinn R, Debusk LM, Flinn IW (2014) Rituximab with or without bevacizumab for the treatment of patients with relapsed follicular lymphoma. Clin Lymphoma Myeloma Leuk 14:277–283

    Article  PubMed  Google Scholar 

  • Heider U, Kaiser M, Sterz J, Zavrski I, Jakob C, Fleissner C, Eucker J, Possinger K, Sezer O (2006) Histone deacetylase inhibitors reduce VEGF production and induce growth suppression and apoptosis in human mantle cell lymphoma. Eur J Haematol 76:42–50

    Article  CAS  PubMed  Google Scholar 

  • Hida K, Maishi N, Sakurai Y, Hida Y, Harashima H (2016) Heterogeneity of tumor endothelial cells and drug delivery. Adv Drug Deliv Rev 99:140–147

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Richardson PG, Anderson KC (2011) Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther 10:2034–2042

    Article  CAS  PubMed  Google Scholar 

  • Hose DSA, Goldschmidt H, Meissner T, Rebacz B, Moreaux J, Benes V, Neben K, Hillengass J, Bertsch U, Jauch A, Rossi J-F, Moehler T, Zimmermann J, von Kalle C, Lewis J, Klein B, Schultes C (2009a) Inhibition of HIF1A signaling by a novel class of sulfonanilides for targeted treatment of multiple myeloma. In: 51st annual conference, American Society of Hematology

    Google Scholar 

  • Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Reme T, De VJ, Hundemer M, Condomines M, Bertsch U, Rossi JF, Jauch A, Klein B, Mohler T (2009b) Induction of angiogenesis by normal and malignant plasma cells. Blood 114:128–143

    Article  CAS  PubMed  Google Scholar 

  • Hose DSA, Goldschmidt G, Meissner T, Leber B, Neben K, Hillengass J, Bertsch U, Janssen B, Klein B, Lewis J, Vanderkerken K, Schultes C (2010). A novel class of sulfonanilides entering clinical trials for targeted treatment of multiple myeloma: dual-mechanism compounds inhibiting HIF1A-signaling and inducing apoptosis. In: 52nd annual conference, American Society of Hematology

    Google Scholar 

  • Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H, Okawa Y, Kiziltepe T, Santo L, Vallet S, Cristea D, Calabrese E, Gorgun G, Raje NS, Richardson P, Munshi NC, Lannutti BJ, Puri KD, Giese NA, Anderson KC (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116:1460–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, Nirni S, Lakshmaiah K, Thomas A, Jiang Y, Zhu M, Tang R, Anderson A, Dubey S, Oliner KS, Loh E (2014) Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 15:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388:518–529

    Article  CAS  PubMed  Google Scholar 

  • Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, Turkbey B, Steinberg SM, Choyke P, Doroshow JH, Kummar S (2014) Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1alpha), in patients with refractory solid tumors. Cancer Chemother Pharmacol 73:343–348

    Article  CAS  PubMed  Google Scholar 

  • Jung O, Trapp-Stamborski V, Purushothaman A, Jin H, Wang H, Sanderson RD, Rapraeger AC (2016) Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogene 5:e202

    Article  CAS  Google Scholar 

  • Kasperk C, Haas A, Hillengass J, Weiss C, Neben K, Goldschmidt H, Sommer U, Nawroth P, Meeder PJ, Wiedenhofer B, Schmidmaier G, Tanner M, Neuhof D, Noldge G, Grafe IA (2012) Kyphoplasty in patients with multiple myeloma a retrospective comparative pilot study. J Surg Oncol 105:679–686

    Article  PubMed  Google Scholar 

  • Kharaziha P, de Raeve H, Fristedt C, Li Q, Gruber A, Johnsson P, Kokaraki G, Panzar M, Laane E, Osterborg A, Zhivotovsky B, Jernberg-Wiklund H, Grander D, Celsing F, Bjorkholm M, Vanderkerken K, Panaretakis T (2012) Sorafenib has potent antitumor activity against multiple myeloma in vitro, ex vivo, and in vivo in the 5T33MM mouse model. Cancer Res 72:5348–5362

    Article  CAS  PubMed  Google Scholar 

  • Klein B, Seckinger A, Moehler T, Hose D (2011) Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 183:39–86

    Article  PubMed  Google Scholar 

  • Kocemba KA, Van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M, Pals ST (2013) The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia 27:1729–1737

    Article  CAS  PubMed  Google Scholar 

  • Kong YW, Ferland-Mccollough D, Jackson TJ, Bushell M (2012) microRNAs in cancer management. Lancet Oncol 13:e249–e258

    Article  CAS  PubMed  Google Scholar 

  • Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP, Eisenhauer E (2006) A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma – NCIC CTG IND.145). Investig New Drugs 24:529–535

    CAS  Google Scholar 

  • Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, Lezeau S, Attar E, Wu JY, Lin HY, Divieti-Pajevic P, Hasserjian RP, Schipani E, van Etten RA, Scadden DT (2013) Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med 19:1513–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2002) Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol 119:665–671

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L, Witzig TE, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2003) Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 101:1715–1717

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK, Jett J, Marks R, Richardson R, Quevedo F, Moynihan T, Croghan G, Markovic SN, Bible KC, Qin R, Tan A, Molina J, Kaufmann SH, Erlichman C, Adjei AA (2013) Phase 1 study of sorafenib in combination with bortezomib in patients with advanced malignancies. Investig New Drugs 31:1201–1206

    Article  CAS  Google Scholar 

  • Laubach JP (2014) A phase 1/2 trial of TH-302 and dexamethasone without or with bortezomib (TBorD) in patients with relapsed/refractory multiple myeloma. Blood 124:2142

    Article  CAS  Google Scholar 

  • Laubach J, Ggrderet L, Mahindra A, Gahrton G, Caers J, Sezer O, Voorhees P, Leleu X, Johnsen HE, Streetly M, Jurczyszyn A, Ludwig H, Mellqvist UH, Chng WJ, Pilarski L, Einsele H, Hou J, Turesson I, Zamagni E, Chim CS, Mazumder A, Westin J, Lu J, Reiman T, Kristinsson S, Joshua D, Roussel M, O’Gorman P, Terpos E, Mccarthy P, Dimopoulos M, Moreau P, Orlowski RZ, Miguel JS, Anderson KC, Palumbo A, Kumar S, Rajkumar V, Durie B, Richardson PG (2016) Management of relapsed multiple myeloma: recommendations of the International Myeloma Working Group. Leukemia 30:1005–1017

    Google Scholar 

  • Lehners N, Hayden PJ, Goldschmidt H, Raab MS (2016) Management of high-risk myeloma: an evidence-based review of treatment strategies. Expert Rev Hematol 9:753–765

    Article  CAS  PubMed  Google Scholar 

  • Limaverde-Sousa G, Sternberg C, Ferreira CG (2014) Antiangiogenesis beyond VEGF inhibition: a journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat Rev 40:548–557

    Article  CAS  PubMed  Google Scholar 

  • Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S, Sales G, Deliliers GL, Bicciato S, Lombardi L, Bortoluzzi S, Neri A (2009) Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood 114:e20–e26

    Article  CAS  PubMed  Google Scholar 

  • Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247:77–79

    Article  CAS  PubMed  Google Scholar 

  • Mateos MV, Hernandez MT, Giraldo P, De La Rubia J, De Arriba F, Lopez Corral L, Rosinol L, Paiva B, Palomera L, Bargay J, Oriol A, Prosper F, Lopez J, Olavarria E, Quintana N, Garcia JL, Blade J, Lahuerta JJ, San Miguel JF (2013) Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 369:438–447

    Article  CAS  PubMed  Google Scholar 

  • Medinger M, Halter J, Heim D, Buser A, Gerull S, Stern M, Passweg J (2015) Angiogenic markers in plasma cell myeloma patients treated with novel agents. Anticancer Res 35:1085–1090

    CAS  PubMed  Google Scholar 

  • Merz M, Ritsch J, Kunz C, Wagner B, Sauer S, Hose D, Moehler T, Delorme S, Goldschmidt H, Zechmann C, Hillengass J (2015) Dynamic contrast-enhanced magnetic resonance imaging for assessment of antiangiogenic treatment effects in multiple myeloma. Clin Cancer Res 21:106–112

    Article  CAS  PubMed  Google Scholar 

  • Merz M, Moehler TM, Ritsch J, Bauerle T, Zechmann CM, Wagner B, Jauch A, Hose D, Kunz C, Hielscher T, Laue H, Goldschmidt H, Delorme S, Hillengass J (2016) Prognostic significance of increased bone marrow microcirculation in newly diagnosed multiple myeloma: results of a prospective DCE-MRI study. Eur Radiol 26:1404–1411

    Article  PubMed  Google Scholar 

  • Misawa S, Sato Y, Katayama K, Hanaoka H, Sawai S, Beppu M, Nomura F, Shibuya K, Sekiguchi Y, Iwai Y, Watanabe K, Amino H, Ohwada C, Takeuchi M, Sakaida E, Nakaseko C, Kuwabara S (2015) Vascular endothelial growth factor as a predictive marker for POEMS syndrome treatment response: retrospective cohort study. BMJ Open 5:e009157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moehler TM, Hawighorst H, Neben K, Egerer G, Hillengass J, Max R, Benner A, Ho AD, van Kaick G, Goldschmidt H (2001) Bone marrow microcirculation analysis in multiple myeloma by contrast-enhanced dynamic magnetic resonance imaging. Int J Cancer 93:862–868

    Article  CAS  PubMed  Google Scholar 

  • Moehler TM, Hillengass J, Goldschmidt H, Ho AD (2004) Antiangiogenic therapy in hematologic malignancies. Curr Pharm Des 10:1221–1234

    Article  CAS  PubMed  Google Scholar 

  • Moehler TMMM, Kellermann L, Goldschmidt H, Knauf W (2016) Diagnostic and therapeutic approach to multiple myeloma patients -“real world” data from representative multicenter treatment surveys 2008–2012 in Germany. Oncol Lett 12:5043–5051

    Google Scholar 

  • Moreau P, Touzeau C (2015) Multiple myeloma: from front-line to relapsed therapies. Am Soc Clin Oncol Educ Book e504–11

    Google Scholar 

  • Moreaux J, Cremer FW, Reme T, Raab M, Mahtouk K, Kaukel P, Pantesco V, De Vos J, Jourdan E, Jauch A, Legouffe E, Moos M, Fiol G, Goldschmidt H, Rossi JF, Hose D, Klein B (2005) The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature. Blood 106:1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreaux J, Sprynski AC, Dillon SR, Mahtouk K, Jourdan M, Ythier A, Moine P, Robert N, Jourdan E, Rossi JF, Klein B (2009) APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur J Haematol 83:119–129

    Article  CAS  PubMed  Google Scholar 

  • Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, Sacco A, Glavey S, Shi J, Reagan MR, Prosper F, Bellone M, Chesi M, Bergsagel LP, Vacca A, Roccaro AM, Ghobrial IM (2016) Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30:1103–1115

    Article  CAS  PubMed  Google Scholar 

  • Neben K, Moehler T, Egerer G, Kraemer A, Hillengass J, Benner A, Ho AD, Goldschmidt H (2001a) High plasma basic fibroblast growth factor concentration is associated with response to thalidomide in progressive multiple myeloma. Clin Cancer Res 7:2675–2681

    CAS  PubMed  Google Scholar 

  • Neben K, Moehler T, Kraemer A, Benner A, Egerer G, Ho AD, Goldschmidt H (2001b) Response to thalidomide in progressive multiple myeloma is not mediated by inhibition of angiogenic cytokine secretion. Br J Haematol 115:605–608

    Article  CAS  PubMed  Google Scholar 

  • Neben K, Jauch A, Hielscher T, Hillengass J, Lehners N, Seckinger A, Granzow M, Raab MS, Ho AD, Goldschmidt H, Hose D (2013) Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 31:4325–4332

    Article  PubMed  Google Scholar 

  • Nosas-Garcia S, Moehler T, Wasser K, Kiessling F, Bartl R, Zuna I, Hillengass J, Goldschmidt H, Kauczor HU, Delorme S (2005) Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging 22:154–162

    Article  PubMed  Google Scholar 

  • Ohyashiki JH, Umezu T, Ohyashiki K (2016) Exosomes promote bone marrow angiogenesis in hematologic neoplasia: the role of hypoxia. Curr Opin Hematol 23:268–273

    Article  CAS  PubMed  Google Scholar 

  • Pala D, Rivara S, Mor M, Milazzo FM, Roscilli G, Pavoni E, Giannini G (2016) Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology 26:640–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palumbo A, Cavallo F, Gay F, Di Raimondo F, Ben Yehuda D, Petrucci MT, Pezzatti S, Caravita T, Cerrato C, Ribakovsky E, Genuardi M, Cafro A, Marcatti M, Catalano L, Offidani M, Carella AM, Zamagni E, Patriarca F, Musto P, Evangelista A, Ciccone G, Omede P, Crippa C, Corradini P, Nagler A, Boccadoro M, Cavo M (2014) Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371:895–905

    Article  PubMed  CAS  Google Scholar 

  • Patnaik A, Weiss GJ, Papadopoulos KP, Hofmeister CC, Tibes R, Tolcher A, Isaacs R, Jac J, Han M, Payumo FC, Cotreau MM, Ramanathan RK (2014) Phase I ficlatuzumab monotherapy or with erlotinib for refractory advanced solid tumours and multiple myeloma. Br J Cancer 111:272–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillip CJ, Zaman S, Shentu S, Balakrishnan K, Zhang J, Baladandayuthapani V, Taverna P, Redkar S, Wang M, Stellrecht CM, Gandhi V (2013) Targeting MET kinase with the small-molecule inhibitor amuvatinib induces cytotoxicity in primary myeloma cells and cell lines. J Hematol Oncol 6:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pour L, Svachova H, Adam Z, Mikulkova Z, Buresova L, Kovarova L, Buchler T, Penka M, Vorlicek J, Hajek R (2010) Pretreatment hepatocyte growth factor and thrombospondin-1 levels predict response to high-dose chemotherapy for multiple myeloma. Neoplasma 57:29–34

    Article  CAS  PubMed  Google Scholar 

  • Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820

    Article  CAS  PubMed  Google Scholar 

  • de la Puente P, Muz B, Azab F, Luderer M, Azab AK (2014) Molecularly targeted therapies in multiple myeloma. Leuk Res Treat 2014:976567

    Google Scholar 

  • Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raimondi L, Amodio N, Di Martino MT, Altomare E, Leotta M, Caracciolo D, Gulla A, Neri A, Taverna S, D’Aquila P, Alessandro R, Giordano A, Tagliaferri P, Tassone P (2014) Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget 5:3039–3054

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Kyle RA, Gertz MA, Greipp PR (2000) Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6:3111–3116

    CAS  PubMed  Google Scholar 

  • Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E, Richardson P, Landgren O, Paiva B, Dispenzieri A, Weiss B, Leleu X, Zweegman S, Lonial S, Rosinol L, Zamagni E, Jagannath S, Sezer O, Kristinsson SY, Caers J, Usmani SZ, Lahuerta JJ, Johnsen HE, Beksac M, Cavo M, Goldschmidt H, Terpos E, Kyle RA, Anderson KC, Durie BG, Miguel JF (2014) International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15:e538–e548

    Article  PubMed  Google Scholar 

  • Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, Rajkumar SV, Adjei AA, Kumar S (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29:1190–1202

    Article  CAS  PubMed  Google Scholar 

  • Ribas C, Colleoni GW, Silva MR, Carregoza MJ, Bordin JO (2004) Prognostic significance of vascular endothelial growth factor immunoexpression in the context of adverse standard prognostic factors in multiple myeloma. Eur J Haematol 73:311–317

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2016) Tumor refractoriness to anti-VEGF therapy. Oncotarget 7:46668–46677

    PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Vacca A (2009) The role of monocytes-macrophages in vasculogenesis in multiple myeloma. Leukemia 23:1535–1536

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, De Falco G, Roccaro A, Roncali L, Dammacco F (2001) Angiogenesis, angiogenic factor expression and hematological malignancies. Anticancer Res 21:4333–4339

    CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Ranieri G, Specchia G, Vacca A (2013) The role of angiogenesis in human non-Hodgkin lymphomas. Neoplasia 15:231–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Vacca A (2015) Multiple myeloma as a model for the role of bone marrow niches in the control of angiogenesis. Int Rev Cell Mol Biol 314:259–282

    Article  PubMed  Google Scholar 

  • Ricci V, Ronzoni M, Fabozzi T (2015) Aflibercept a new target therapy in cancer treatment: a review. Crit Rev Oncol Hematol 96:569–576

    Article  PubMed  Google Scholar 

  • Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B, Penco S, Pisano C, Carminati P, Tortoreto M, Zunino F, Vlodavsky I, Sanderson RD, Yang Y (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, Dammacco F, Richardson PG, Anderson KC (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    Article  CAS  PubMed  Google Scholar 

  • Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 123:1542–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Serrano I (2006) Success in translational research: lessons from the development of bortezomib. Nat Rev Drug Discov 5:107–114

    Article  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2010) AKT-ing via microRNA. Cell Cycle 9:3213–3217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer A, Wittsack HJ, Strupp C, Gattermann N, Haas R, Modder U (2002) Vertebral fractures in multiple myeloma: first results of assessment of fracture risk using dynamic contrast-enhanced magnetic resonance imaging. Ann Hematol 81:517–521

    Article  CAS  PubMed  Google Scholar 

  • Seckinger A, Meissner T, Moreaux J, Goldschmidt H, Fuhler GM, Benner A, Hundemer M, Reme T, Shaughnessy JD Jr, Barlogie B, Bertsch U, Hillengass J, Ho AD, Pantesco V, Jauch A, De Vos J, Rossi JF, Mohler T, Klein B, Hose D (2009) Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene 28:3866–3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seckinger A, Delgado JA, Moreno L, Neuber B, Grab A, Lipp S, Merino J, Vu MD, Strein K, Prosper F, Hundemer M, Miguel JS, Hose D, Paiva B (2015a) Target expression, preclinical activity and mechanism of action of EM801: a novel first-in-class Bcma T-cell bispecific antibody for the treatment of multiple myeloma. In: 57th annual conference, American Society of Hematology

    Google Scholar 

  • Seckinger A, Meissner T, Moreaux J, Benes V, Hillengass J, Castoldi M, Zimmermann J, Ho AD, Jauch A, Goldschmidt H, Klein B, Hose D (2015b) miRNAs in multiple myeloma – a survival relevant complex regulator of gene expression. Oncotarget 6:39165–39183

    PubMed  PubMed Central  Google Scholar 

  • Seidel, C., Borset, M., Turesson, I., Abildgaard, N., Sundan, A., Waage, A. 1998. Elevated serum concentrations of hepatocyte growth factor in patients with multiple myeloma. The Nordic Myeloma Study Group. Blood, 91, 806–812.

    Google Scholar 

  • Seki R, Yamagishi S, Matsui T, Yoshida T, Torimura T, Ueno T, Sata M, Okamura T (2013) Pigment epithelium-derived factor (PEDF) inhibits survival and proliferation of VEGF-exposed multiple myeloma cells through its anti-oxidative properties. Biochem Biophys Res Commun 431:693–697

    Article  CAS  PubMed  Google Scholar 

  • Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, Dietel M, Possinger K (2000) Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 79:574–577

    Article  CAS  PubMed  Google Scholar 

  • Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O’Donnell MR, Mohrbacher AF, Forman SJ, Frankel P, Chen HX, Doroshow JH, Gandara DR (2011) Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California cancer consortium trial. Br J Haematol 154:533–535

    Article  PubMed  PubMed Central  Google Scholar 

  • Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D, Martella E, Lazzaretti M, Mancini C, Agnelli L, Patrene K, Maiga S, Franceschi V, Colla S, Anderson J, Neri A, Amiot M, Aversa F, Roodman GD, Giuliani N (2013) Hypoxia-inducible factor (HIF)-1alpha suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia 27:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Storti P, Toscani D, Airoldi I, Marchica V, Maiga S, Bolzoni M, Fiorini E, Campanini N, Martella E, Mancini C, Guasco D, Ferri V, Donofrio G, Aversa F, Amiot M, Giuliani N (2016) The anti-tumoral effect of lenalidomide is increased in vivo by hypoxia-inducible factor (HIF)-1alpha inhibition in myeloma cells. Haematologica 101:e107–e110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, Cea M, Cagnetta A, Wen K, van Eenennaam H, van Elsas A, Qiu L, Richardson P, Munshi N, Anderson KC (2016) APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 127:3225–3236

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  CAS  PubMed  Google Scholar 

  • Vacca A, Scavelli C, Serini G, Di Pietro G, Cirulli T, Merchionne F, Ribatti D, Bussolino F, Guidolin D, Piaggio G, Bacigalupo A, Dammacco F (2006) Loss of inhibitory semaphorin 3A (SEMA3A) autocrine loops in bone marrow endothelial cells of patients with multiple myeloma. Blood 108:1661–1667

    Article  CAS  PubMed  Google Scholar 

  • Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, Moreaux J (2016) Chetomin, targeting HIF-1alpha/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer 114:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD (2015) Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 35(Suppl):S224–S243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A, Menu E (2016a) Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol 239:162–173

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Y, Yan X (2016b) Efficacy and safety of novel agent-based therapies for multiple myeloma: a meta-analysis. Biomed Res Int 2016:6848902

    PubMed  PubMed Central  Google Scholar 

  • White D, Kassim A, Bhaskar B, Yi J, Wamstad K, Paton VE (2013) Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer 119:339–347

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Du J, Hou J, Jiang H, Zou J (2011) Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo. BMC Cancer 11:261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yordanova A, Hose D, Neben K, Witzens-Harig M, Gutgemann I, Raab MS, Moehler T, Goldschmidt H, Schmidt-Wolf IG (2013) Sorafenib in patients with refractory or recurrent multiple myeloma. Hematol Oncol 31:197–200

    Article  CAS  PubMed  Google Scholar 

  • Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang L, Wang Y, Zhao G (2016) Development of anti-angiogenic tyrosine kinases inhibitors: molecular structures and binding modes. Cancer Chemother Pharmacol 77:905–926

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Adjei AA (2015) Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist 20:660–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S, Chang XB, Bjorklund CC, Fonseca R, Bergsagel PL, Orlowski RZ, Stewart AK (2011) Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118:4771–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Katja Weisert for administrative assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Moehler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Moehler, T., Hose, D., Andrulis, M., Seckinger, A., Goldschmidt, H. (2017). The Value of Anti-Angiogenics in Multiple Myeloma Therapy. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics