Skip to main content

The Value of Anti-angiogenics in Prostate Cancer Therapy

  • Living reference work entry
  • First Online:
Tumor Angiogenesis

Abstract

Prostate cancer, the most common cancer diagnosed in men, has been investigated extensively concerning the use of anti-angiogenics. There is a significant amount of preclinical and early clinical data about the potential value of this class of drugs as is the case with many other solid cancer types. Vascular endothelial growth factors and their receptors (VEGF/VEGFRs) seem to be key players in neo-angiogenesis and its expression can be regulated by androgen receptor signaling. Platelet-derived growth factor receptor alpha (PDGFR-α) is of lesser importance in primary prostate cancer; however, PDGFR-A might be involved in the formation of bone metastases. Other mechanisms of pro- and anti-angiogenic factors will be described herein.

The clinical development focused mainly on metastatic, castration-resistant prostate cancer. Phase I/II trials showed consistently interesting results in terms of response rates or reduction of tumor growth. Yet, randomized studies failed to demonstrate a significant overall survival benefit despite increased progression-free survival or clinical signs of activity, such as reduced need for analgesic drugs. This chapter will provide an overview of angiogenesis in prostate cancer and on the development of angiogenesis inhibitors, in particular bevacizumab, sunitinib, tasquinimod, lenalidomide, and cabozantinib.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Algire GH, Chalkley HW (1945) Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic implants. J Natl Cancer Inst 6:73–85

    Article  Google Scholar 

  • Algire GH, Legallais FY (1948) The transparent chamber technique in the mouse in the study of tumor histo-physiology. Fed Proc 7:268

    CAS  PubMed  Google Scholar 

  • Anastasiadis AG, Stisser BC, Ghafar MA et al (2002) Tumor hypoxia and the progression of prostate cancer. Curr Urol Rep 3:222–228

    Article  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62:4123–4131

    CAS  PubMed  Google Scholar 

  • Beardsley EK, Hotte SJ, North S et al (2012) A phase II study of sorafenib in combination with bicalutamide in patients with chemotherapy-naive castration resistant prostate cancer. Investig New Drugs 30:1652–1659

    Article  CAS  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boll K, Reiche K, Kasack K et al (2013) MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma. Oncogene 32:277–285

    Article  CAS  PubMed  Google Scholar 

  • Bratt O, Haggman M, Ahlgren G et al (2009) Open-label, clinical phase I studies of tasquinimod in patients with castration-resistant prostate cancer. Br J Cancer 101:1233–1240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carducci M, Armstrong A, Pili R et al (2015) A phase 3, randomized, double-blind, placebo-controlled study of tasquinimod (TASQ) in men with metastatic castrate resistant prostate cancer (mCRPC). Eur J Cancer 51:S713–S714

    Article  Google Scholar 

  • Cash J, Korchnak A, Gorman J et al (2007) VEGF transcription and mRNA stability are altered by WT1 not DDS(R384W) expression in LNCaP cells. Oncol Rep 17:1413–1419

    CAS  PubMed  Google Scholar 

  • Chen L, Qiu X, Wang R et al (2014) The efficacy and safety of docetaxel plus thalidomide vs. docetaxel alone in patients with androgen-independent prostate cancer: a systematic review. Sci Report 4:4818

    Article  Google Scholar 

  • Choueiri TK, Escudier B, Powles T et al (2016) Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol 17:917–927

    Article  CAS  PubMed  Google Scholar 

  • Christensen M, Najy AJ, Snyder M et al (2014) A critical role of the PTEN/PDGF signaling network for the regulation of radiosensitivity in adenocarcinoma of the prostate. Int J Radiat Oncol Biol Phys 88:151–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu QS (2009) Aflibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 9:263–271

    Article  CAS  PubMed  Google Scholar 

  • Crawford ED, Higano CS, Shore ND et al (2015) Treating patients with metastatic castration resistant prostate cancer: a comprehensive review of available therapies. J Urol 194:1537–1547

    Article  PubMed  Google Scholar 

  • Dahut WL, Gulley JL, Arlen PM et al (2004) Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 22:2532–2539

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple SL, Becker RE, Isaacs JT (2007) The quinoline-3-carboxamide anti-angiogenic agent, tasquinimod, enhances the anti-prostate cancer efficacy of androgen ablation and taxotere without effecting serum PSA directly in human xenografts. Prostate 67:790–797

    Article  CAS  PubMed  Google Scholar 

  • D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 91:4082–4085

    Article  PubMed Central  PubMed  Google Scholar 

  • Dayyani F, Gallick GE, Logothetis CJ et al (2011) Novel therapies for metastatic castrate-resistant prostate cancer. J Natl Cancer Inst 103:1665–1675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Lorenzo G, Figg WD, Fossa SD et al (2008) Combination of bevacizumab and docetaxel in docetaxel-pretreated hormone-refractory prostate cancer: a phase 2 study. Eur Urol 54:1089–1094

    Article  PubMed  Google Scholar 

  • Eisermann K, Broderick CJ, Bazarov A et al (2013) Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol Cancer 12:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elisei R, Schlumberger MJ, Muller SP et al (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31:3639–3646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26

    Article  CAS  PubMed  Google Scholar 

  • Farooqi AA, Siddik ZH (2015) Platelet-derived growth factor (PDGF) signalling in cancer: rapidly emerging signalling landscape. Cell Biochem Funct 33:257–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  CAS  PubMed  Google Scholar 

  • Figg WD, Arlen P, Gulley J et al (2001) A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Semin Oncol 28:62–66

    Article  CAS  PubMed  Google Scholar 

  • Fizazi K, Ulys A, Sengelov L et al (2016) A randomized, double-blind, placebo-controlled phase II study of maintenance therapy with tasquinimod (TASQ) in patients (pts) with mCRPC responsive to or stabilized during first-line docetaxel chemotherapy. J Clin Oncol 34:201

    Article  Google Scholar 

  • Folkman J, Hanahan D (1991) Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp 22:339–347

    CAS  PubMed  Google Scholar 

  • Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsche S, Kenzelmann M, Hoffmann MJ et al (2006) Concomitant down-regulation of SPRY1 and SPRY2 in prostate carcinoma. Endocr Relat Cancer 13:839–849

    Article  CAS  PubMed  Google Scholar 

  • Furusato M, Wakui S, Sasaki H et al (1994) Tumour angiogenesis in latent prostatic carcinoma. Br J Cancer 70:1244–1246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giri D, Ropiquet F, Ittmann M (1999) Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clin Cancer Res 5:1063–1071

    CAS  PubMed  Google Scholar 

  • Green MM, Hiley CT, Shanks JH et al (2007) Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome. Int J Radiat Oncol Biol Phys 67:84–90

    Article  CAS  PubMed  Google Scholar 

  • Greene HSN (1950) The heterologous transplantation of human melanomas. Yale J Biol Med 22:611–620

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henry JY, Lu L, Adams M et al (2012) Lenalidomide enhances the anti-prostate cancer activity of docetaxel in vitro and in vivo. Prostate 72:856–867

    Article  CAS  PubMed  Google Scholar 

  • Hernandez S, de Muga S, Agell L et al (2009) FGFR3 mutations in prostate cancer: association with low-grade tumors. Mod Pathol 22:848–856

    CAS  PubMed  Google Scholar 

  • Huang CN, Huang SP, Pao JB et al (2012a) Genetic polymorphisms in androgen receptor-binding sites predict survival in prostate cancer patients receiving androgen-deprivation therapy. Ann Oncol 23:707–713

    Article  PubMed  Google Scholar 

  • Huang W, Fridman Y, Bonfil RD et al (2012b) A novel function for platelet-derived growth factor D: induction of osteoclastic differentiation for intraosseous tumor growth. Oncogene 31:4527–4535

    Article  CAS  PubMed  Google Scholar 

  • Isambert N, Freyer G, Zanetta S et al (2012) Phase I dose-escalation study of intravenous aflibercept in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res 18:1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly WK, Halabi S, Carducci M et al (2012) Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: CALGB 90401. J Clin Oncol 30:1534–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K (2007) Cancer immunoediting from immune surveillance to immune escape. Immunology 121:1–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kitagawa Y, Dai J, Zhang J et al (2005) Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res 65:10921–10929

    Article  CAS  PubMed  Google Scholar 

  • Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    Article  CAS  PubMed  Google Scholar 

  • Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11:709–724

    Article  CAS  PubMed  Google Scholar 

  • Kwart AM, Sims JE (1978) Blood vascular invasion: a poor prognostic factor in adenocarcinoma of the prostate. J Urol 119:138–140

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts D, Storkebaum E, Morimoto M et al (2003) VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 34:383–394

    Article  CAS  PubMed  Google Scholar 

  • Lind AJ, Wikstrom P, Granfors T et al (2005) Angiopoietin 2 expression is related to histological grade, vascular density, metastases, and outcome in prostate cancer. Prostate 62:394–399

    Article  PubMed  Google Scholar 

  • Mavrou A, Brakspear K, Hamdollah-Zadeh M et al (2015) Serine-arginine protein kinase 1 (SRPK1) inhibition as a potential novel targeted therapeutic strategy in prostate cancer. Oncogene 34:4311–4319

    Article  CAS  PubMed  Google Scholar 

  • McIntyre A, Harris AL (2015) Metabolic and hypoxic adaptation to anti-angiogenic therapy: a target for induced essentiality. EMBO Mol Med 7:368–379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta R, Kyshtoobayeva A, Kurosaki T et al (2001) Independent association of angiogenesis index with outcome in prostate cancer. Clin Cancer Res 7:81–88

    CAS  PubMed  Google Scholar 

  • Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michaelson MD, Oudard S, Ou YC et al (2014) Randomized, placebo-controlled, phase III trial of sunitinib plus prednisone versus prednisone alone in progressive, metastatic, castration-resistant prostate cancer. J Clin Oncol 32:76–82

    Article  CAS  PubMed  Google Scholar 

  • Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol 28:3239–3247

    Article  CAS  PubMed  Google Scholar 

  • Morrissey C, Dowell A, Koreckij TD et al (2010) Inhibition of angiopoietin-2 in LuCaP 23.1 prostate cancer tumors decreases tumor growth and viability. Prostate 70:1799–1808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nabhan C, Patel A, Villines D et al (2014) Lenalidomide monotherapy in chemotherapy-naive, castration-resistant prostate cancer patients: final results of a phase II study. Clin Genitourin Cancer 12:27–32

    Article  PubMed  Google Scholar 

  • Ng SS, MacPherson GR, Gutschow M et al (2004) Antitumor effects of thalidomide analogs in human prostate cancer xenografts implanted in immunodeficient mice. Clin Cancer Res 10:4192–4197

    Article  CAS  PubMed  Google Scholar 

  • Ning YM, Gulley JL, Arlen PM et al (2010) Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:2070–2076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    Article  CAS  PubMed  Google Scholar 

  • Ocana A, Amir E, Vera F et al (2011) Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. J Clin Oncol 29:254–256

    Article  CAS  PubMed  Google Scholar 

  • Olsson A, Nakhle J, Sundstedt A et al (2015) Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment. J Immunother Cancer 3:53

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel JN, Jiang C, Hertz DL et al (2015) Bevacizumab and the risk of arterial and venous thromboembolism in patients with metastatic, castration-resistant prostate cancer treated on Cancer and Leukemia Group B (CALGB) 90401 (Alliance). Cancer 121:1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Paulsson J, Sjoblom T, Micke P et al (2009) Prognostic significance of stromal platelet-derived growth factor beta-receptor expression in human breast cancer. Am J Pathol 175:334–341

    Article  PubMed Central  PubMed  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  • Perlmutter MA, Lepor H (2007) Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol 9(Suppl 1):S3–S8

    PubMed Central  PubMed  Google Scholar 

  • Petrylak DP, Vogelzang NJ, Budnik N et al (2015) Docetaxel and prednisone with or without lenalidomide in chemotherapy-naive patients with metastatic castration-resistant prostate cancer (MAINSAIL): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 16:417–425

    Article  CAS  PubMed  Google Scholar 

  • Picus J, Halabi S, Kelly WK et al (2011) A phase 2 study of estramustine, docetaxel, and bevacizumab in men with castrate-resistant prostate cancer: results from Cancer and Leukemia Group B Study 90006. Cancer 117:526–533

    Article  CAS  PubMed  Google Scholar 

  • Pili R, Haggman M, Stadler WM et al (2011) Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol 29:4022–4028

    Article  CAS  PubMed  Google Scholar 

  • Pircher A, Wellbrock J, Fiedler W et al (2014) New antiangiogenic strategies beyond inhibition of vascular endothelial growth factor with special focus on axon guidance molecules. Oncology 86:46–52

    Article  CAS  PubMed  Google Scholar 

  • Rapisarda A, Melillo G (2009) Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat 12:74–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigamonti N, Kadioglu E, Keklikoglou I et al (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706

    Article  CAS  PubMed  Google Scholar 

  • Ropiquet F, Giri D, Kwabi-Addo B et al (2000) Increased expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Res 60:4245–4250

    CAS  PubMed  Google Scholar 

  • Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2:83–90

    Article  PubMed  Google Scholar 

  • Sanborn SL, Gibbons J, Krishnamurthi S et al (2009) Phase I trial of docetaxel given every 3 weeks and daily lenalidomide in patients with advanced solid tumors. Investig New Drugs 27:453–460

    Article  CAS  Google Scholar 

  • Scher HI, Morris MJ, Basch E et al (2011) End points and outcomes in castration-resistant prostate cancer: from clinical trials to clinical practice. J Clin Oncol 29:3695–3704

    Article  PubMed Central  PubMed  Google Scholar 

  • Schweizer MT, Carducci MA (2013) From bevacizumab to tasquinimod: angiogenesis as a therapeutic target in prostate cancer. Cancer J 19:99–106

    Article  CAS  PubMed  Google Scholar 

  • Scolnik M, Tykochinsky G, Servadio C et al (1992) The development of vascular supply of normal rat prostate during the sexual maturation: an angiographic study. Prostate 21:1–14

    Article  CAS  PubMed  Google Scholar 

  • Sennino B, Ishiguro-Oonuma T, Wei Y et al (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2:270–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sfar S, Hassen E, Saad H et al (2006) Association of VEGF genetic polymorphisms with prostate carcinoma risk and clinical outcome. Cytokine 35:21–28

    Article  CAS  PubMed  Google Scholar 

  • Sieveking DP, Lim P, Chow RW et al (2010) A sex-specific role for androgens in angiogenesis. J Exp Med 207:345–352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DC, Smith MR, Sweeney C et al (2013) Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol 31:412–419

    Article  CAS  PubMed  Google Scholar 

  • Smith MR, Sweeney CJ, Corn PG et al (2014) Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J Clin Oncol 32:3391–3399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith M, Bono JD, Sternberg C et al (2016) Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J Clin Oncol 34:3005–3013

    Article  CAS  PubMed  Google Scholar 

  • Song S, Ewald AJ, Stallcup W et al (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sonpavde G, Periman PO, Bernold D et al (2010) Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol 21:319–324

    Article  CAS  PubMed  Google Scholar 

  • Sulzbacher I, Dominkus M, Pichlhofer B et al (2009) Expression of platelet-derived growth factor-alpha receptor and c-kit in giant cell tumours of bone. Pathology 41:630–633

    Article  CAS  PubMed  Google Scholar 

  • Szczyrba J, Nolte E, Hart M et al (2013) Identification of ZNF217, hnRNP-K, VEGF-A and IPO7 as targets for microRNAs that are downregulated in prostate carcinoma. Int J Cancer 132:775–784

    Article  CAS  PubMed  Google Scholar 

  • Tannock IF, Fizazi K, Ivanov S et al (2013) Aflibercept versus placebo in combination with docetaxel and prednisone for treatment of men with metastatic castration-resistant prostate cancer (VENICE): a phase 3, double-blind randomised trial. Lancet Oncol 14:760–768

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129

    Article  CAS  PubMed  Google Scholar 

  • Ustach CV, Huang W, Conley-LaComb MK et al (2010) A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer Res 70:9631–9640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Cutsem E, Tabernero J, Lakomy R et al (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30:3499–3506

    Article  PubMed  Google Scholar 

  • Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105:140–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakui S, Furusato M, Itoh T et al (1992) Tumour angiogenesis in prostatic carcinoma with and without bone marrow metastasis: a morphometric study. J Pathol 168:257–262

    Article  CAS  PubMed  Google Scholar 

  • Welti J, Loges S, Dimmeler S et al (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest 123:3190–3200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yue X, Wang P, Xu J et al (2012) MicroRNA-205 functions as a tumor suppressor in human glioblastoma cells by targeting VEGF-A. Oncol Rep 27:1200–1206

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztian Homicsko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Homicsko, K., Berthold, D. (2017). The Value of Anti-angiogenics in Prostate Cancer Therapy. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics