Anti-angiogenics and Radiation Therapy

Living reference work entry


Investigation of the combined effects of radiation and anti-angiogenic therapy has yielded intriguing preclinical and clinical results. The cytotoxic effects of radiation on cancer cells are critically dependent on the formation of free radicals and therefore an adequate supply of oxygen by blood vessels. Most tumors, however, are characterized by irregular angiogenesis and marked hypoxia. Anti-angiogenic therapy could contribute to a normalization of blood vessels to improve blood flow, alleviate hypoxia, and subsequently increase the effectiveness of radiotherapy. Clinical evidence in glioblastoma and other tumor entities have shown encouraging outcomes and warrant further characterization of the synergism between these therapies. Care should be taken with respect to the toxicity profiles of both entities, especially where side effects overlap, for example, damage to organs such as the liver, kidney, or the lung, ischemic complications, organ perforation, and the impairment of bone marrow.


Bleeding Ischemia Parenchymal damage Perforation Pneumonitis Fistula DNA damage Double-strand break Ionizing radiation Hypoxia Oxygen-enhancement ratio Radiation Angiogenesis Endothelial cells Macrophages HIF-1α MMP-9 Preclinical Xenograft DC-101 Oxygenation Glioblastoma Bevacizumab Colorectal cancer Cediranib Sunitinib Pazopanib Vandetanib 


  1. Abbott D, Holt J, Freeman M (1998) Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90:978–985CrossRefPubMedGoogle Scholar
  2. Abbott D et al (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274:18808–18812CrossRefPubMedGoogle Scholar
  3. Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13:193–205CrossRefPubMedPubMedCentralGoogle Scholar
  4. Amberger-Murphy V (2009) Hypoxia helps glioma to fight therapy. Curr Cancer Drug Targets 9:381–390CrossRefPubMedGoogle Scholar
  5. Batchelor T et al (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci U S A 110:19059–19064CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bendell JC et al (2012) A phase II trial of preoperative concurrent chemotherapy/radiation therapy plus bevacizumab/erlotinib in the treatment of localized esophageal cancer. Clin Adv Hematol Oncol 10:430–437PubMedGoogle Scholar
  7. Brandes A et al (2010) EORTC study 26041-22041: phase I/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma. Eur J Cancer 46:348–354CrossRefPubMedGoogle Scholar
  8. Buren G et al (2013) Phase II study of induction fixed-dose rate gemcitabine and bevacizumab followed by 30 Gy radiotherapy as preoperative treatment for potentially resectable pancreatic adenocarcinoma. Ann Surg Oncol 20:3787–3793CrossRefPubMedGoogle Scholar
  9. Canter R et al (2014) Phase I trial of neoadjuvant conformal radiotherapy plus sorafenib for patients with locally advanced soft tissue sarcoma of the extremity. Ann Surg Oncol 21:1616–1623CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chauffert B et al (2014) Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: final results of the TEMAVIR study from ANOCEF. Ann Oncol 25:1442–1447CrossRefPubMedGoogle Scholar
  11. Chinot O et al (2014) Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722CrossRefPubMedGoogle Scholar
  12. Clarke J et al (2014) A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro-Oncology 16:984–990CrossRefPubMedPubMedCentralGoogle Scholar
  13. Collis SJ, Swartz MJ, Nelson WG, DeWeese TL (2003) Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 63:1550–1554PubMedGoogle Scholar
  14. Crane C et al (2006) Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 24:1145–1151CrossRefPubMedGoogle Scholar
  15. Crane C et al (2009) Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 27:4096–4102CrossRefPubMedPubMedCentralGoogle Scholar
  16. Crane C et al (2010) Phase II trial of neoadjuvant bevacizumab, capecitabine, and radiotherapy for locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 76:824–830CrossRefPubMedGoogle Scholar
  17. Dings R, Loren M, Heun H, McNiel E (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13:3395–3402. doi:10.1158/1078-0432.CCR-06-2441CrossRefPubMedPubMedCentralGoogle Scholar
  18. Drappatz J et al (2010) Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int J Radiat Oncol Biol Phys 78:85–90CrossRefPubMedGoogle Scholar
  19. Drew R, Fairchild R, Atkins H (1972) The oxygen enhancement ratio as measured with HeLa cells and protracted irradiation from 252Cf and 137Cs. Radiology 104:409–413CrossRefPubMedGoogle Scholar
  20. Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31:363–372CrossRefPubMedGoogle Scholar
  21. Fenton BM, Paoni SF, Ding I (2004) Pathophysiological effects of vascular endothelial growth factor receptor-2-blocking antibody plus fractionated radiotherapy on murine mammary tumors. Cancer Res 64:5712–5719CrossRefPubMedGoogle Scholar
  22. Fury M et al (2012) A phase 2 study of bevacizumab with cisplatin plus intensity-modulated radiation therapy for stage III/IVB head and neck squamous cell cancer. Cancer 118:5008–5014CrossRefPubMedGoogle Scholar
  23. Fyles A et al (1998) Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 48:149–156CrossRefPubMedGoogle Scholar
  24. Gasparini G et al (2012) A phase II study of neoadjuvant bevacizumab plus capecitabine and concomitant radiotherapy in patients with locally advanced rectal cancer. Angiogenesis 15:141–150CrossRefPubMedGoogle Scholar
  25. Gatenby R et al (1988) Oxygen distribution in squamous cell carcinoma metastases and its relationship to outcome of radiation therapy. Int J Radiat Oncol Biol Phys 14:831–838CrossRefPubMedGoogle Scholar
  26. Geng L et al (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419PubMedGoogle Scholar
  27. Gerstner E et al (2011) Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J Neuro-Oncol 103:325–332CrossRefGoogle Scholar
  28. Gilbert M et al (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708CrossRefPubMedPubMedCentralGoogle Scholar
  29. Haas R et al (2015) A phase I study on the combination of neoadjuvant radiotherapy plus pazopanib in patients with locally advanced soft tissue sarcoma of the extremities. Acta Oncol 54:1195–1201CrossRefPubMedGoogle Scholar
  30. Hainsworth JD et al (2012) Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin Adv Hematol Oncol 10:240–246PubMedGoogle Scholar
  31. Hlushchuk R, Riesterer O, Baum O, Wood J (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173:1173–1185CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hofland K et al (2014) Neoadjuvant bevacizumab and irinotecan versus bevacizumab and temozolomide followed by concomitant chemoradiotherapy in newly diagnosed glioblastoma multiforme: a randomized phase II study. Acta Oncol 53:939–944CrossRefPubMedGoogle Scholar
  33. Iwamoto F et al (2010) Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro-Oncology 12:855–861CrossRefPubMedPubMedCentralGoogle Scholar
  34. Iyer NV et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1alpha. Genes Dev 12:149–162CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62CrossRefPubMedGoogle Scholar
  36. Kennecke H et al (2012) Pre-operative bevacizumab, capecitabine, oxaliplatin and radiation among patients with locally advanced or low rectal cancer: a phase II trial. Eur J Cancer 48:37–45CrossRefPubMedGoogle Scholar
  37. Koukourakis M et al (2009) Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res 15:7069–7076CrossRefPubMedGoogle Scholar
  38. Kozin SV et al (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61:39–44PubMedGoogle Scholar
  39. Kreisl T et al (2012) A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro-Oncology 14:1519–1526CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lai A et al (2008) Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int J Radiat Oncol Biol Phys 71:1372–1380CrossRefPubMedGoogle Scholar
  41. Lai A et al (2011) Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol 29:142–148CrossRefPubMedGoogle Scholar
  42. Landuyt W et al (2001) In vivo antitumor effect of vascular targeting combined with either ionizing radiation or anti-angiogenesis treatment. Int J Radiat Oncol Biol Phys 49:443–450CrossRefPubMedGoogle Scholar
  43. Lee CG et al (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570PubMedGoogle Scholar
  44. Lee WH, Cho HJ, Sonntag WE, Lee YW (2011) Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res 176:753–760CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lee N et al (2012) Addition of bevacizumab to standard chemoradiation for locoregionally advanced nasopharyngeal carcinoma (RTOG 0615): a phase 2 multi-institutional trial. Lancet Oncol 13:172–180CrossRefPubMedGoogle Scholar
  46. Lewin J et al (2014) A phase Ib/II translational study of sunitinib with neoadjuvant radiotherapy in soft-tissue sarcoma. Br J Cancer 111:2254–2261CrossRefPubMedPubMedCentralGoogle Scholar
  47. Li J, Huang S, Armstrong E, Fowler J, Harari P (2005) Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade. Int J Radiat Oncol Biol Phys 62:1477–1485CrossRefPubMedGoogle Scholar
  48. Ling C, Spiro I, Mitchell J, Stickler R (1985) The variation of OER with dose rate. Int J Radiat Oncol Biol Phys 11:1367–1373CrossRefPubMedGoogle Scholar
  49. Lordick F, Geinitz H, Theisen J, Sendler A, Sarbia M (2006) Increased risk of ischemic bowel complications during treatment with bevacizumab after pelvic irradiation: report of three cases. Int J Radiat Oncol Biol Phys 64:1295–1298CrossRefPubMedGoogle Scholar
  50. Lu-Emerson C et al (2015) Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma. J Clin Oncol 33:1197–1213CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lund EL, Bastholm L, Kristjansen PE (2000) Therapeutic synergy of TNP-470 and ionizing radiation: effects on tumor growth, vessel morphology, and angiogenesis in human glioblastoma multiforme xenografts. Clin Cancer Res 6:971–978PubMedGoogle Scholar
  52. Matsumoto S, Batra S, Saito K, Yasui H, Choudhuri R (2011) Antiangiogenic agent sunitinib transiently increases tumor oxygenation and suppresses cycling hypoxia. Cancer Res 71:6350–6359. doi:10.1158/0008-5472.CAN-11-2025CrossRefPubMedPubMedCentralGoogle Scholar
  53. Meng Y et al (2010) Blockade of tumor necrosis factor signaling in tumor-associated macrophages as a radiosensitizing strategy. Cancer Res 70:1534–1543CrossRefPubMedGoogle Scholar
  54. Michaels H, Hunt J (1978) A model for radiation damage in cells by direct effect and by indirect effect: a radiation chemistry approach. Radiat Res 74:23CrossRefGoogle Scholar
  55. Moeller BJ, Cao Y, Li CY, Dewhirst MW (2004) Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5:429–441CrossRefPubMedGoogle Scholar
  56. Narayana A et al (2012) A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J Neurosurg 116:341–345CrossRefPubMedGoogle Scholar
  57. Ney D et al (2015) Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma. J Neuro-Oncol 122:135–143CrossRefGoogle Scholar
  58. Neyns B et al (2011) Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neuro-Oncol 103:491–501CrossRefGoogle Scholar
  59. Nordsmark M et al (2001) Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations. Br J Cancer 84:1070–1075CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nordsmark M et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77:18–24CrossRefPubMedGoogle Scholar
  61. Omuro A et al (2014) Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin Cancer Res 20:5023–5031CrossRefPubMedPubMedCentralGoogle Scholar
  62. Palcic B, Brosing JW, Skarsgard LD (1982) Survival measurements at low doses: oxygen enhancement ratio. Br J Cancer 46:980–984CrossRefPubMedPubMedCentralGoogle Scholar
  63. Pan E et al (2012) A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J Neuro-Oncol 110:111–118CrossRefGoogle Scholar
  64. Parshad R, Sanford KK, Jones GM (1983) Chromatid damage after G2 phase X-irradiation of cells from cancer-prone individuals implicates deficiency in DNA repair. Proc Natl Acad Sci U S A 80:5612–5616CrossRefPubMedPubMedCentralGoogle Scholar
  65. Peters K et al (2015) Phase II trial of upfront bevacizumab, irinotecan, and temozolomide for unresectable glioblastoma. Oncologist 20:727–728CrossRefPubMedPubMedCentralGoogle Scholar
  66. Resch G et al (2012) Preoperative treatment with capecitabine, bevacizumab and radiotherapy for primary locally advanced rectal cancer – a two stage phase II clinical trial. Radiother Oncol 102:10–13CrossRefPubMedGoogle Scholar
  67. Sabin R, Anderson R (2011) Cellular senescence – its role in cancer and the response to ionizing radiation. Genome Integr 2:1–9CrossRefGoogle Scholar
  68. Salama JK et al (2011) A randomized phase II study of 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy compared with bevacizumab plus 5-fluorouracil, hydroxyurea, and twice-daily radiotherapy for intermediate-stage and T4N0-1 head and neck cancers. Ann Oncol 22:2304–2309CrossRefPubMedGoogle Scholar
  69. Schefter T et al (2012) A phase II study of bevacizumab in combination with definitive radiotherapy and cisplatin chemotherapy in untreated patients with locally advanced cervical carcinoma: preliminary results of RTOG 0417. Int J Radiat Oncol Biol Phys 83:1179–1184CrossRefPubMedGoogle Scholar
  70. Seiwert TY, Haraf DJ, Cohen EE (2008) Phase I study of bevacizumab added to fluorouracil- and hydroxyurea-based concomitant chemoradiotherapy for poor-prognosis head and neck cancer. J Clin Oncol 26:1732–1741. doi:10.1200/JCO.2007.13.1706CrossRefPubMedGoogle Scholar
  71. Semenza G (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732CrossRefPubMedGoogle Scholar
  72. Small W et al (2011) Phase II trial of full-dose gemcitabine and bevacizumab in combination with attenuated three-dimensional conformal radiotherapy in patients with localized pancreatic cancer. Int J Radiat Oncol Biol Phys 80:476–482CrossRefPubMedGoogle Scholar
  73. Spigel DR et al (2009) Tracheoesophageal fistula formation in patients with lung cancer treated with chemoradiation and bevacizumab. J Clin Oncol 28:43–48CrossRefPubMedGoogle Scholar
  74. Spitz FR et al (1996) Adenoviral-mediated wild-type p53 gene expression sensitizes colorectal cancer cells to ionizing radiation. Clin Cancer Res 2:1665–1671PubMedGoogle Scholar
  75. Stenerlöw B, Karlsson KH, Cooper B, Rydberg B (2003) Measurement of prompt DNA double-strand breaks in mammalian cells without including heat-labile sites: results for cells deficient in nonhomologous end joining. Radiat Res 159:502–510CrossRefPubMedGoogle Scholar
  76. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMedGoogle Scholar
  77. Trédan O, Galmarini C, Patel K, Tannock I (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454CrossRefPubMedGoogle Scholar
  78. Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162CrossRefPubMedGoogle Scholar
  79. Vala I et al (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS One 5:e11222CrossRefGoogle Scholar
  80. Van Linde M et al (2015) Bevacizumab in combination with radiotherapy and temozolomide for patients with newly diagnosed glioblastoma multiforme. Oncologist 20:107–108CrossRefPubMedPubMedCentralGoogle Scholar
  81. Velenik V et al (2011) Neoadjuvant capecitabine, radiotherapy, and bevacizumab (CRAB) in locally advanced rectal cancer: results of an open-label phase II study. Radiat Oncol 6:1–8CrossRefGoogle Scholar
  82. Vincenti S, Brillante N, Lanza V, Bozzoni I (2011) HUVEC respond to radiation by inducing the expression of pro-angiogenic microRNAs. Radiat Ther 175:535–546CrossRefGoogle Scholar
  83. Vredenburgh J et al (2011) The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin Cancer Res 17:4119–4124CrossRefPubMedPubMedCentralGoogle Scholar
  84. Watters D (1999) Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol Cell Biol 77:263–271CrossRefPubMedGoogle Scholar
  85. Winkler F et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563PubMedGoogle Scholar
  86. Yoon S et al (2011) Phase II study of neoadjuvant bevacizumab and radiotherapy for resectable soft tissue sarcomas. Int J Radiat Oncol Biol Phys 81:1081–1090CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daniel H. Schanne
    • 1
    • 2
    • 3
  • Anca-L. Grosu
    • 2
    • 3
  • Dan G. Duda
    • 1
  1. 1.Edwin L. Steele Laboratories, Department of Radiation OncologyHarvard Medical School, Massachusetts General HospitalBostonUSA
  2. 2.Department of Radiation OncologyMedical Center, University of FreiburgFreiburgGermany
  3. 3.German Cancer Consortium (DKTK)FreiburgGermany

Personalised recommendations