Skip to main content

Anti-Angiogenic Cancer Therapy: Development of Resistance

  • Living reference work entry
  • First Online:
Tumor Angiogenesis
  • 230 Accesses

Abstract

Therapeutic resistance is the major cause for a poor prognosis in cancer patients. Clinical results of anti-angiogenic therapies are very modest, resulting in a moderate improvement of overall survival, and the clinical outcome is associated with the development of resistance. The clinical benefit of anti-angiogenic drugs is due to several intrinsic and acquired limitations including tumor indifference to anti-angiogenic therapy; selection of resistant clones and activation of alternative mechanisms that lead to activation of angiogenesis, even when the target of the drug remains inhibited; therapy-induced reduction of oxygen levels within the tumor and accumulation of infiltrating cancer stem cells; activation of pro-invasive mechanisms and increased dissemination and metastasis; normalization of tumor blood vessels; recruitment of inflammatory cells and immature myeloid cells; alternative mechanisms of tumor vessel formation; and genomic instability of tumor endothelial cells. In this context, the concept and strategies of anti-angiogenic therapies should be extensively reconsidered and reevaluated. In particular, rational combinations of anti-angiogenic agents based on pharmacokinetic and pharmacodynamics data are needed to overcome resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama K, Ohga N, Hida Y et al (2012) Tumor endothelial cells acquire drug resistance by MDR-1 up-regulation via VEGF signaling in tumor microenvironment. Am J Pathol 180:1283–1293

    Article  CAS  PubMed  Google Scholar 

  • Alvero AB, Fu HH, Holmberg J et al (2009) Stem-like ovarian cancer cells can serve as tumor vascular progenitors. Stem Cells 27:2405–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azam F, Mehta S, Harris AL (2010) Mechanisms of resistance to antiangiogenesis therapy. Eur J Cancer 46:1323–1332

    Article  CAS  PubMed  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batchelor TT, Duda DG, di Tomaso E et al (2010) Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J Clin Oncol 28:2817–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Google Scholar 

  • Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black WC, Welch HG (1993) Advances in diagnostic imaging and overestimation of disease prevalence and the benefits of therapy. New Engl J Med 328:1237–1243

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2001) Hypoxia-inducible factor: Achille’s heel of antiangiogenic cancer therapy (review). Int J Oncol 19:257–262

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2004) Antiangiogenic therapy and tumor progression. Cancer Cell 5:13–17

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2005) How Avastin potentiates chemotherapeutic drugs: action and reaction in antiangiogenic therapy. Cancer Biol Ther 4:1307–1310

    Article  CAS  PubMed  Google Scholar 

  • Bussolati B, Deamabrosis I, Russo S et al (2003) Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 17:1159–1161

    CAS  PubMed  Google Scholar 

  • Casanovas O, Hicklin DJ, Bergers G et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  CAS  PubMed  Google Scholar 

  • Ceradini DJ, Kulkarni AR, Gallaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    Article  CAS  PubMed  Google Scholar 

  • Cesca M, Bizzaro F, Zucchetti M et al (2013) Tumor delivery of chemotherapy combined with inhibitors of angiogenesis and vascular targeting agents. Front Oncol 3:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Chae SS, Kamoun WS, Farrar CT et al (2010) Angiopoietin-2 interferes with anti-VEGFR2-induced vessel normalization and survival benefit in mice bearing gliomas. Clin Cancer Res 16:3618–3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung AS, Wu X, Zhuang G et al (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Cooke VG, Le Bleu VS, Keskin D et al (2012) Pericyte depletion results in hypoxia-assciated epithelial to mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21:66–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford Y, Ferrara N (2009) Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends Pharmacol Sci 30:624–630

    Article  CAS  PubMed  Google Scholar 

  • Crawford Y, Kasman I, Yu L et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    Article  CAS  PubMed  Google Scholar 

  • Crivellato E, Nico B, Vacca A et al (2003) B-cell non-Hodgkin’s lymphomas express heterogeneous patterns of neovascularization. Haematologica 88:671–678

    PubMed  Google Scholar 

  • De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  PubMed  CAS  Google Scholar 

  • Dings RP, Vang KB, Castermans K et al (2011) Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin Cancer Res 17:3134–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djonov V, Hogger K, Sedlacek R et al (2001) MMP-19: cellular localization of a novel metalloproteinase within normal breast tissue and mammary gland tumours. J Pathol 195:147–155

    Article  CAS  PubMed  Google Scholar 

  • Ebos JM, Lee CR, Christensen JG et al (2007) Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc Natl Acad Sci USA 104:17069–17074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hallani S, Boisselier B, Peglion F et al (2010) A new alternative mechanism in glioblastoma vascularization: tubular vasculogenic mimicry. Brain 133:973–982

    Article  PubMed  PubMed Central  Google Scholar 

  • Eubank TD, Roberts RD, Khan M et al (2009) Granulocyte-macrophage colony-stimulating factor inhibits breast cancer growth and metastasis by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res 69:2133–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finke J, Ko J, Rini B et al (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 11:856–861

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumour angiogenesis: therapeutic implications. New Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Gabrusiewicz K, Liu D, Cortes-Santiago N et al (2004) Anti-vascular endothelial growth factor-therapy-induced glioma invasion is associated with accumulation of tie-2expressing monocytes. Oncotarget 5:2208–2220

    Article  Google Scholar 

  • Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13:1–14

    Article  CAS  PubMed  Google Scholar 

  • Gottesman MM (2002) Mechanisms of cancer drug resistance. Ann Rev Med 53:615–627

    Article  CAS  PubMed  Google Scholar 

  • Grothey A, Sugrue MM, Purdie DM et al (2008) Bevacizumab beyond first progression is associated with prolonged overall survival in metastatic colorectal cancer: results from a large observational cohort study (BRiTE). J Clin Oncol 26:5326–5334

    Article  CAS  PubMed  Google Scholar 

  • Hida K, Klagsbrun M (2005) A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res 65:2507–2510

    Article  CAS  PubMed  Google Scholar 

  • Hida K, Hida Y, Amin DN et al (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64:8249–8255

    Article  CAS  PubMed  Google Scholar 

  • Hlushchuk R, Riesterer O, Baum O et al (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173:1173–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jan C, Mu L et al (2015) Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in Colo-rectal cancer. PLoS One 10:eo125625

    Google Scholar 

  • Huang D, Ding Y, Zhou M et al (2010) Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res 70:1063–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2013) Normalizing tumor microenvironment to treat cancer bench to bedside to biomarkers. J Clin Oncol 31:2205–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  CAS  PubMed  Google Scholar 

  • Kuczynski EA, Yin M, Bar-Zion A et al (2016) Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Nat Cancer Inst 108:djw032

    Article  Google Scholar 

  • Kuenen O, Johansson M, Oudin A et al (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Nat Acad Sci USA 108:3328–3339

    Google Scholar 

  • Kunkel P, Ulbricht U, Bohlen P et al (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61:6624–6628

    CAS  PubMed  Google Scholar 

  • Leenders WP, Kusters B, Verrijp K et al (2004) Antiangiogenic therapy of cerebral melanoma metastases results in sustained tumor progression via vessel co-option. Clin Cancer Res 10:6222–6230

    Article  CAS  PubMed  Google Scholar 

  • Li R, Ren M, Chen N et al (2014) Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer 14:167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lockhart AC, Rothenberg ML, Dupont J et al (2010) Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol 28:207–214

    Google Scholar 

  • Lu KV, Chang JP, Parachoniak CA et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madden SL, Cook BP, Nacht M et al (2004) Vascular gene expression in nonneoplastic and malignant brain. Am J Pathol 165:601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso MR, Davis R, Norberg SM et al (2006) Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116:2610–2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovina S, Callander NS, O’Connor SL et al (2010) Bone marrow stroma cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappa B activity in myeloma cells. Mol Cancer 9:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Outschoorn UE, Goldberg A, Lin Z et al (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12:924–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGee MC, Hamner JB, Williams RF et al (2010) Improved intratumoral oxygenation through vascular normalization increases glioma sensitivity to ionizing radiation. Int J Radiat Oncol Biol Phys 76:1537–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignatti P, Rifkin DB (1993) Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73:161–195

    CAS  PubMed  Google Scholar 

  • Moschetta M, Mishima Y, Sahin I et al (2014) Role of endothelial progenitor cells in cancer progression. Bichim Biophys Acta 1846:26–39

    CAS  Google Scholar 

  • Motz GT, Santoro LP, Wang T et al (2014) Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med 20:607–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nico B, Crivellato E, Guidolin D et al (2010) Intussusceptive microvascular growth in human glioma. Clin Exp Med 10:93–98

    Article  CAS  PubMed  Google Scholar 

  • Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paez-Ribes M, Man S, Xu P et al (2015) Potential proinvasive or metastatic effects of preclinical antiangiogenic therapy are prevented by concurrent chemotherapy. Clin Cancer Res 21:5488–5498

    Article  CAS  PubMed  Google Scholar 

  • Parker BS, Argani P, Cook BP et al (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64:7857–7866

    Article  CAS  PubMed  Google Scholar 

  • Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51:260–272

    Article  CAS  PubMed  Google Scholar 

  • Pezzella F, Di Bacco A, Andreola S et al (1996) Angiogenesis in primary lung cancer and lung secondaries. Eur J Cancer 32:2494–2500

    Article  Google Scholar 

  • Pezzella F, Pastorino U, Tagliabue E et al (1997) Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151:1417–1423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raffaghello L, Vacca A, Pistoia V et al (2015) Cancer associated fibroblasts in hematological malignancies. Oncotarget 6:2589–2603

    Article  PubMed  Google Scholar 

  • Rapisarda A, Melillo G (2009) Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat 12:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D (2009) Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 33:638–644

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2012) Cancer stem cells and tumor angiogenesis. Cancer Lett 321:13–17

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2013) Mast cells and macrophages exert beneficial and detrimental effects on tumor progression and angiogenesis. Immunol Lett 152:83–88

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Crivellato E (2009) Immune cells and angiogenesis. J Cell Mol Med 13:2822–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Djonov V (2012) Intussusceptive microvascular growth in tumors. Cancer Lett 316:126–131

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Vacca A, Dammacco F (1999) The role of vascular phase in solid tumor growth: a historical review. Neoplasia 1:293–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Nico B, Floris C et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14:81–84

    PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E et al (2007a) The history of the angiogenic switch concept. Leukemia 21:44–52

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Conconi MT, Nussdorfer GG (2007b) Non-classic endogenous novel regulators of angiogenesis. Pharmacol Rev 59:185–205

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E et al (2007c) The structure of the vascular networks of tumors. Cancer Lett 248:18–23

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Dev Biol 55:261–268

    Article  CAS  PubMed  Google Scholar 

  • Ricci-Vitiani L, Pollini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  CAS  PubMed  Google Scholar 

  • Rigamonti N, Kadioglu E, Keklikoglou I et al (2014) Role of angiopoietin-2 in adaptive tumor resistance to VEGF signaling blockade. Cell Rep 8:696–706

    Article  CAS  PubMed  Google Scholar 

  • Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  CAS  PubMed  Google Scholar 

  • van der Schaft DW, Hillen F et al (2005) Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 65:11520–11528

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71

    Article  CAS  PubMed  Google Scholar 

  • Sennino B, Falcon BL, McCauley D et al (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nat Biotechnol 25:911–920

    Article  CAS  PubMed  Google Scholar 

  • Shojaei F, Singh M, Thompson JD et al (2009) Role of Bv8 in neutrophil-dependent angiogenesis in a transgenic model of cancer progression. Proc Natl Cancer Inst 105:2640–2645

    Google Scholar 

  • Shojaei F, Simmons BH, Lee JH et al (2012) HGF/c-met pathway is one of the mediators of sunitinib-induced tumor cell type-dependent metastasis. Cancer Lett 320:48–55

    Article  CAS  PubMed  Google Scholar 

  • Sie M, Wagemakers M, Molema G et al (2009) The angiopoietin 1/angiopoietin 2 balance as a prognostic marker in primary glioblastoma multiforme. J Neurosurg 110:147–155

    Article  PubMed  Google Scholar 

  • Song S, Ewald AJ, Stallcup W et al (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song N, Huang Y, Shi H et al (2009) Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1alpha/CXCR4 axis. Cancer Res 69:6057–6064

    Article  CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202

    Article  CAS  PubMed  Google Scholar 

  • Taylor SM, Nevis KR, Park KL et al (2010) Angiogenic factor signaling regulates centrosome duplication in endothelial cells of developing blood vessels. Blood 116:3108–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tewari KS, Sill MW, Long HJ 3rd et al (2014) Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 370:734–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vermeuller PB, Colpaert C, Salgado R et al (2001) Liver metastases from colorectal adenocarcinomas grow in three patterns with different angiogenesis and desmoplasia. J Pathol 195:336–342

    Article  Google Scholar 

  • Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18

    Article  CAS  PubMed  Google Scholar 

  • Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  • Xiang XQ, Sun HC, Zhang W et al (2009) Human hepatocellular carcinoma tumor-derived endothelial cells manifest increased angiogenesis capability and drug resistance compared with normal endothelial cells. Clin Cancer Res 15:4838–4846

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n.278570 to DR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Ribatti, D. (2017). Anti-Angiogenic Cancer Therapy: Development of Resistance. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics